Support vector machine with discriminative low‐rank embedding

Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 9; no. 5; pp. 1249 - 1262
Main Authors Liang, Guangfei, Lai, Zhihui, Kong, Heng
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.10.2024
Wiley
Subjects
Online AccessGet full text
ISSN2468-2322
2468-6557
2468-2322
DOI10.1049/cit2.12329

Cover

Abstract Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks.
AbstractList Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks.
Abstract Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks.
Author Lai, Zhihui
Kong, Heng
Liang, Guangfei
Author_xml – sequence: 1
  givenname: Guangfei
  orcidid: 0000-0002-5515-7414
  surname: Liang
  fullname: Liang, Guangfei
  organization: Shenzhen Institute of Artificial Intelligence and Robotics for Society
– sequence: 2
  givenname: Zhihui
  orcidid: 0000-0002-4388-3080
  surname: Lai
  fullname: Lai, Zhihui
  email: laizhihui@szu.edu.cn
  organization: BaoAn Central Hospital of Shenzhen
– sequence: 3
  givenname: Heng
  surname: Kong
  fullname: Kong, Heng
  organization: BaoAn Central Hospital of Shenzhen
BookMark eNp9kMtKAzEUhoNUsF42PsGAO6U1t5lJViLFS6HgwroOmeTEpk4nY2Zq6c5H8Bl9EqeOiCtX53D48vHnP0SDKlSA0CnBY4K5vDS-pWNCGZV7aEh5JkbdTgd_9gN00jRLjDGRUqYsH6Krx3Vdh9gmb2DaEJOVNgtfQbLx7SKxvjHRr3ylW_8GSRk2n-8fUVcvCawKsNZXz8do3-mygZOfeYSebm_mk_vR7OFuOrmejQzLqBw5gCLLeRczY6woqMsZoyTHgqWZcyAtE07qnFBdCCvTHJuMY8opUM4tdpwdoWnvtUEvVd2l0nGrgvbq-xDis9Kx9aYEpVPuMptzlkrCmcgFCEslTg1oV-BUdK6L3rWuar3d6LL8FRKsdlWqXZXqu8qOPuvpOobXNTStWoZ1rLrPKkYk5YIIuct33lMmhqaJ4P5Xkh7e-BK2_5BqMp3T_s0XOqyQ8w
Cites_doi 10.1145/1961189.1961199
10.1023/a:1018628609742
10.1109/CCGRID.2019.00065
10.1007/s10462‐018‐9614‐6
10.1109/tpami.2013.178
10.1109/tpami.2007.1068
10.1109/tpami.2006.17
10.1007/bf00994018
10.1109/tpami.2021.3092177
10.1016/j.asoc.2018.02.040
10.1016/j.patcog.2019.03.028
10.1016/j.neunet.2012.07.011
10.1145/1970392.1970395
10.1038/s41597‐022‐01721‐8
10.1162/089976600300015565
10.1109/tnnls.2018.2844242
10.1145/3280989
10.1145/2339530.2339609
10.1609/aaai.v35i12.17237
10.1016/j.neunet.2019.01.016
10.1109/tpami.2021.3069498
10.1109/FSKD.2010.5569345
10.1109/78.558484
10.1109/tnn.2011.2130540
10.1016/j.patcog.2020.107736
10.1109/tnnls.2015.2513006
10.1109/tip.2017.2691543
10.1109/72.991432
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1049/cit2.12329
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 1262
ExternalDocumentID oai_doaj_org_article_a54f6d74359143878e8d2905ceafb058
10.1049/cit2.12329
10_1049_cit2_12329
CIT212329
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62272319; 61976145
– fundername: Shenzhen Municipal Science and Technology Innovation Council
  funderid: JCYJ20210324094413037; JCYJ20220818095803007
GroupedDBID 0R~
0SF
1OC
24P
6I.
AACTN
AAEDW
AAFTH
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
NCXOZ
O9-
OCL
OK1
PIMPY
RIE
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3629-feeb674104633bb2f73321708356ffe9d38f9a712ab8d9570c640242e244d0f43
IEDL.DBID BENPR
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:53:08 EDT 2025
Sun Sep 07 10:51:14 EDT 2025
Wed Aug 13 04:56:28 EDT 2025
Wed Oct 29 21:25:24 EDT 2025
Wed Jan 22 17:15:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3629-feeb674104633bb2f73321708356ffe9d38f9a712ab8d9570c640242e244d0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4388-3080
0000-0002-5515-7414
OpenAccessLink https://www.proquest.com/docview/3192481894?pq-origsite=%requestingapplication%&accountid=15518
PQID 3192481894
PQPubID 6852857
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a54f6d74359143878e8d2905ceafb058
unpaywall_primary_10_1049_cit2_12329
proquest_journals_3192481894
crossref_primary_10_1049_cit2_12329
wiley_primary_10_1049_cit2_12329_CIT212329
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 10
2019; 93
2011; 2
2019; 51
2021; 44
2017; 26
2012
2019; 52
2019; 30
2010
2017; 28
2002; 13
1997; 45
1998
2007
2003
2012; 35
2018; 66
1999; 9
1995; 20
2007; 29
2009; 58
2001
2022
2021; 112
2000; 12
2021
2006; 28
2019
2011; 22
2014; 36
2019; 114
2017
2020; 21
2013
e_1_2_9_30_1
Cai X. (e_1_2_9_34_1) 2013
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
Mangasarian O.L. (e_1_2_9_6_1) 2001
Fu Z. (e_1_2_9_32_1) 2022
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
Liu J. (e_1_2_9_19_1) 2022
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Nie F. (e_1_2_9_15_1) 2017
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
Chang W. (e_1_2_9_39_1) 2021
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
Zhu J. (e_1_2_9_14_1) 2003
e_1_2_9_3_1
Wolf L. (e_1_2_9_35_1) 2007
e_1_2_9_2_1
Ren J. (e_1_2_9_31_1) 2022
e_1_2_9_9_1
Dua D. (e_1_2_9_40_1) 2017
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Blanco V. (e_1_2_9_13_1) 2020; 21
References_xml – start-page: 49
  year: 2003
  end-page: 56
– start-page: 480
  year: 2012
  end-page: 488
– volume: 58
  start-page: 1
  issue: 3
  year: 2009
  end-page: 37
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  end-page: 27
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– start-page: 1
  year: 2007
  end-page: 6
– start-page: 508
  year: 2019
  end-page: 517
– volume: 12
  start-page: 1207
  issue: 5
  year: 2000
  end-page: 1245
  article-title: New support vector algorithms
  publication-title: Neural Comput.
– volume: 52
  start-page: 803
  issue: 2
  year: 2019
  end-page: 855
  article-title: Problem formulations and solvers in linear SVM: a review
  publication-title: Artif. Intell.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 30
  start-page: 474
  issue: 2
  year: 2019
  end-page: 485
  article-title: Unified low‐rank matrix estimate via penalized matrix least squares approximation
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– start-page: 6211
  year: 2022
  end-page: 6219
– volume: 35
  start-page: 46
  year: 2012
  end-page: 53
  article-title: Laplacian twin support vector machine for semi‐supervised classification
  publication-title: Neural Network.
– start-page: 1560
  year: 2010
  end-page: 1564
– year: 1998
– start-page: 1
  year: 2022
  end-page: 13
  article-title: Latent low‐rank representation with weighted distance penalty for clustering
  publication-title: IEEE Trans. Cybern.
– volume: 28
  start-page: 359
  issue: 2
  year: 2017
  end-page: 370
  article-title: A novel twin support‐vector machine with pinball loss
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 10
  issue: 1
  year: 2023
  article-title: MedMNIST v2 ‐‐ A large‐scale lightweight benchmark for 2D and 3D biomedical image classification
  publication-title: Sci. Data
– start-page: 1
  year: 2021
  end-page: 14
  article-title: Multitask learning for classification problem via new tight relaxation of rank minimization
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 13
  start-page: 464
  issue: 2
  year: 2002
  end-page: 471
  article-title: Fuzzy support vector machines
  publication-title: IEEE Trans. Neural Network.
– volume: 45
  start-page: 673
  issue: 3
  year: 1997
  end-page: 685
  article-title: Low‐rank estimation of higher order statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach. Learn.
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  end-page: 910
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 69
  issue: 1
  year: 2006
  end-page: 74
  article-title: Multisurface proximal support vector machine classification via generalized eigenvalues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 93
  start-page: 55
  year: 2019
  end-page: 67
  article-title: Robust Low‐rank subspace segmentation with finite mixture noise
  publication-title: Pattern Recogn.
– volume: 112
  issue: Apr
  year: 2021
  article-title: A hierarchical weighted low‐rank representation for image clustering and classification
  publication-title: Pattern Recogn.
– volume: 22
  start-page: 962
  issue: 6
  year: 2011
  end-page: 968
  article-title: Improvements on twin support vector machines
  publication-title: IEEE Trans. Neural Network.
– volume: 36
  start-page: 984
  issue: 5
  year: 2014
  end-page: 997
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2021
  article-title: Geodesic multi‐class SVM with stiefel manifold embedding
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  article-title: Nonlinear kernel support vector machine with 0‐1 soft margin loss
  publication-title: arXiv
– start-page: 10329
  year: 2021
  end-page: 10337
– volume: 26
  start-page: 2905
  issue: 6
  year: 2017
  end-page: 2917
  article-title: Low‐rank embedding for robust image feature extraction
  publication-title: IEEE Trans. Image Process.
– volume: 66
  start-page: 384
  year: 2018
  end-page: 393
  article-title: OLLAWV: online learning algorithm using worst‐violators
  publication-title: Appl. Soft Comput.
– year: 2017
– volume: 21
  start-page: 1
  year: 2020
  end-page: 29
  article-title: On lp‐support vector machines and multidimensional kernels
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 7253
  issue: 10
  year: 2021
  end-page: 7265
  article-title: Support vector machine classifier via L soft‐margin loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2415
  year: 2017
  end-page: 2421
– start-page: 77
  year: 2001
  end-page: 86
– volume: 114
  start-page: 47
  year: 2019
  end-page: 59
  article-title: Robust capped L1‐norm twin support vector machine
  publication-title: Neural Network.
– start-page: 1124
  year: 2013
  end-page: 1132
– volume: 51
  start-page: 1
  issue: 6
  year: 2019
  end-page: 38
  article-title: Parallel computing of support vector machines: a survey
  publication-title: ACM Comput. Surv.
– ident: e_1_2_9_23_1
  doi: 10.1145/1961189.1961199
– ident: e_1_2_9_5_1
  doi: 10.1023/a:1018628609742
– start-page: 1
  volume-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2007
  ident: e_1_2_9_35_1
– ident: e_1_2_9_26_1
  doi: 10.1109/CCGRID.2019.00065
– ident: e_1_2_9_21_1
  doi: 10.1007/s10462‐018‐9614‐6
– start-page: 1124
  volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago Illinois USA
  year: 2013
  ident: e_1_2_9_34_1
– ident: e_1_2_9_18_1
  doi: 10.1109/tpami.2013.178
– ident: e_1_2_9_8_1
  doi: 10.1109/tpami.2007.1068
– start-page: 1
  year: 2022
  ident: e_1_2_9_32_1
  article-title: Latent low‐rank representation with weighted distance penalty for clustering
  publication-title: IEEE Trans. Cybern.
– ident: e_1_2_9_7_1
  doi: 10.1109/tpami.2006.17
– ident: e_1_2_9_2_1
  doi: 10.1007/bf00994018
– ident: e_1_2_9_16_1
  doi: 10.1109/tpami.2021.3092177
– ident: e_1_2_9_24_1
  doi: 10.1016/j.asoc.2018.02.040
– volume: 21
  start-page: 1
  year: 2020
  ident: e_1_2_9_13_1
  article-title: On lp‐support vector machines and multidimensional kernels
  publication-title: J. Mach. Learn. Res.
– start-page: 6211
  volume-title: Proceedings of the 30th ACM International Conference on Multimedia, in MM ’22
  year: 2022
  ident: e_1_2_9_31_1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.patcog.2019.03.028
– volume-title: UCI Machine Learning Repository
  year: 2017
  ident: e_1_2_9_40_1
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neunet.2012.07.011
– ident: e_1_2_9_28_1
  doi: 10.1145/1970392.1970395
– ident: e_1_2_9_41_1
  doi: 10.1038/s41597‐022‐01721‐8
– ident: e_1_2_9_3_1
  doi: 10.1162/089976600300015565
– start-page: 77
  volume-title: Proceedings KDD‐2001: Knowledge Discovery and Data Mining
  year: 2001
  ident: e_1_2_9_6_1
– ident: e_1_2_9_38_1
  doi: 10.1109/tnnls.2018.2844242
– start-page: 1
  year: 2021
  ident: e_1_2_9_39_1
  article-title: Multitask learning for classification problem via new tight relaxation of rank minimization
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– ident: e_1_2_9_27_1
  doi: 10.1145/3280989
– ident: e_1_2_9_33_1
  doi: 10.1145/2339530.2339609
– ident: e_1_2_9_25_1
  doi: 10.1609/aaai.v35i12.17237
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neunet.2019.01.016
– ident: e_1_2_9_20_1
  doi: 10.1109/tpami.2021.3069498
– ident: e_1_2_9_12_1
  doi: 10.1109/FSKD.2010.5569345
– start-page: 2415
  volume-title: Proceedings of the Thirty‐First AAAI Conference on Artificial Intelligence
  year: 2017
  ident: e_1_2_9_15_1
– ident: e_1_2_9_30_1
  doi: 10.1109/78.558484
– start-page: 49
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: e_1_2_9_14_1
– ident: e_1_2_9_10_1
  doi: 10.1109/tnn.2011.2130540
– ident: e_1_2_9_37_1
  doi: 10.1016/j.patcog.2020.107736
– ident: e_1_2_9_22_1
– ident: e_1_2_9_17_1
  doi: 10.1109/tnnls.2015.2513006
– year: 2022
  ident: e_1_2_9_19_1
  article-title: Nonlinear kernel support vector machine with 0‐1 soft margin loss
  publication-title: arXiv
– ident: e_1_2_9_29_1
  doi: 10.1109/tip.2017.2691543
– ident: e_1_2_9_4_1
  doi: 10.1109/72.991432
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.2791631
Snippet Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit...
Abstract Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1249
SubjectTerms Algorithms
Classification
Data structures
Decomposition
Discriminant analysis
Eigenvalues
Embedding
Iterative algorithms
iterative methods
Machine learning
Orthogonality
Performance evaluation
Regression analysis
Subspaces
Support vector machines
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi15EUbE6JeBOQl3X_Ghy1OGYgp422C00TQLC1g3dHN78E_wb_UvMS7vhLvPirZQcHt9r8n1JX76HUAtEsim4jH2uLVzJsbEwpojB3EqLVHIT-qc8PfP-kD6O2OhXqy-oCavsgSvg2jmjjhvPc0xCp-5MWGFSmbDC5k4nLFzzTYT8tZkKpyte9zCSrfxIqWwXL_P0BvSD3GCgYNS_oS53F-Us_1jm4_GmXg2E0ztA-7VSxLdVhIdox5ZHXlsvZqCY8Xs4bceTUAtpMRynYrhhW3XpgjUMj6fL788vaMqO7URbAyx1jIa9-0G3H9c9EOLCU4uMnbWae9YHYy-ideoyQvwuAoQTd85KQ4STedZJcy2MZFlScAq0az1tm8RRcoIa5bS0pwjnmfOLmRZaCCjudIJ2DHPEEplwl-YsQlcrXNSssrpQ4Rc1lQrQUwG9CN0BZOsRYE8dXvikqTpp6q-kRai5AlzVc-ZNEdgLev0gaYRa6yRsDeU65GfLENV9GKTh6ew_4j5He6lHtyrma6LG_HVhL7womevL8P39AEeB3J8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zO3jyAxUrU4ruJHR2bZMmxzkcU3B42GCeQtMkIM5uaOfQkz_B3-gvMW_WDupheAttWsL7JnmefLzPi1ALSLJMCfOMrxWE5CiPSpl6IG4laMCItPlT7odkMI7uJnhSQ-dlLEzl_D5iV-lTHrQB9tkWahBs-HYdNcbDh-4jZI2DsCHzLijLBOO41CCtfFxBHSvOX2GU24tsnnwsk-m0ylEtyPR3Ua9s3upuyXN7kYt2-vlHuXFz-_fQTsEx3e6qU-yjmsoODCtfzIFru-92n959sbcolQsbsS7E5q7ye8Hs505ny5-vb0jn7qoXoSTg2yEa929GvYFXZE_wUgNKzNNKCWL4AkiChUIEOg5Ds_4AykW0VkyGVLMk7gSJoJLh2E9JBICtDOBLX0fhEapns0wdIzeJtZkGBRWUwrVQTaOOxDpUIfOJDhLsoIvSuny-Esng9nA7YhwMwK0BHHQNhl_XAGFr-8DYixfjhCc40kQaWoMZJGaPqaIyYD5OVaKFj6mDmqXbeDHa3ngIq0jDPFjkoNbalRubcmm9vKEK792OAls6-d8_m6ievy7UqeEouTgrOukvoDrhHg
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDnAe9iKJidUrBnYRqlyZtAl50OKageNhgt5A0iQj7xdwc3vwT_Bv9S8xL141dBt5KeYXyXpL36WvyfQjVAZJ1nvLIxdrAkRwTMa3zCMStFMM81b5_yvNL2u6Spx7tVdBteRam0IdYFtxgZvj1Gia4VEUXEge1Loj5-xRfAxDwLbTdcCAD4xuT11WFxbEP9aKZGI4XOUtc6pMSfrN6fC0jeeH-NdrcmQ3H8msu-_11fvUJqLWP9hbkGN4VoT5AFTM8dKw9GwNBh5---h4O_N5IE0J5NYQTt0XXLljTwv5o_vv9A03aQzNQRkPWOkLd1kOn2Y4WPRGi3KUaHlljVOooAIS-EqWwzZLEfVUASKXWGq4TZrnMGlgqpjnN4jwlkIaNS-M6tiQ5RtXhaGhOUCgz6xY3xRRjsNnTMtLQ1CYm4XFqsaQBuiz9IsaF9IXwv6wJF-A94b0XoHtw2dIC5Kr9jdHkTSxGv5CU2FQ7WKEc2q1nzDCNeUxzI62KKQtQrXS4WMyhD5HAt6HjCU4CVF8GYeOrXPn4bDARzccO9len_zE-Q7vYebHYxFdD1elkZs4djEzVhR9zfztX1zI
  priority: 102
  providerName: Wiley-Blackwell
Title Support vector machine with discriminative low‐rank embedding
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12329
https://www.proquest.com/docview/3192481894
https://doi.org/10.1049/cit2.12329
https://doaj.org/article/a54f6d74359143878e8d2905ceafb058
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: ADMLS
  dateStart: 20200901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library (Open Access collection)
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: IDLOA
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050729737
  issn: 2468-6557
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AKRWK
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AVUZU
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NaxsxEB0S-9BeSkJa6jYxC82psMlGH7vSoRQnsZuU2pg0hvQkpJVUCo7tpnZDLiE_Ib-xv6QaeTfBF1_EIgS7zKxmnqTRewD7CJJtmcs0-NrhlRyXCmvLFMmtjCAyt1E_pT_Iz0bs6xW_2oBBfRcGyyrrmBgDtZ2WuEd-SHGlELKLZJ9nv1NUjcLT1VpCQ1fSCvZTpBjbhCZBZqwGNI-7g-HF865LwEOcFjVPKZOH5a85OUBcIVcyUyTwX0GdLxaTmb671ePxKo6Niai3Ba8qBJl0li7fhg032QmYezFDJJ38jbvwyXWskXQJbrMmePN2qd6FsS0ZT2__PTyiWHviro2zmL1ew6jXvTw5SytthLQMKUem3jmTBzSAhF_UGOILSsPqAgFV7r2TlgovdXFEtBFW8iIrc4bp2IV0bjPP6BtoTKYT9xYSXfgQ5IwwQmDRpxfsyHJPHZVZ7onmLfhQ20XNlhQYKh5dM6nQeiparwXHaLKnEUhbHTumNz9VNQuU5sznNoAWLlF2vRBOWCIzXjrtTcZFC3Zrg6tqLv1Rz55vwf6TE9Z-ysfonzVD1Mn5JYlP79a_8j28JMFuy_K9XWjMbxZuL8CQuWnDJmHD0IrelzY0O6f9b9_b1f_Wjkv70Pbvu6FvNBh2fvwHTJXiWQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5RONBL1YpWTUupJeBSacvin137gBBQUMJPVFVB4ubaa7uqFJIUkkbc-gh9oj4MT1KPswvKJTduq9VqdzUznvk8npkPYAtBsqsKlUVde2zJ8Zl0rspwuJWVVBUu8adcdIv2JT-9EldL8K_phcGyysYnJkfthhXmyHcY7hRidFF8f_QrQ9YoPF1tKDRMTa3g9tKIsbqx48zfTeMW7nav8yXqe5vSk-PeUTurWQayKjpvlQXvbRHjKo7OYtbSUDIWcTpCkyIErxyTQZlylxornRJlXhUcA5uPgdHlgbP43mewwhlXcfO3cnjc_frtMcsT8ZdgZTMXlaud6ueYfkYco-YiYSIMmEO5q5PByNxNTb8_j5tT4Dt5CS9qxEoOZib2Cpb8YC1i_MkIkTv5nbL-5DrVZHqCaV2Cnb4ztjD0paQ_nN7_-Yvk8MRfW-8wWr6GyyeR0htYHgwH_i0QU4boVK20UmKRaZB814nAPFN5EagRLdhs5KJHs5EbOh2Vc6VRejpJrwWHKLKHJ3BMdroxvPmh61WnjeChcBEkCYU076X00lGVi8qbYHMhW7DeCFzXa_dWP1paC7YelLDwVz4l_Sx4RB91ejRdvVv8yY-w2u5dnOvzTvfsPTynUYaz0sF1WB7fTPyHCIHGdqO2MwLfn9q0_wM04BYJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60BfUiiorVqgF7EqJxs5vsHmu1tP7hwUrxsmSzuyL0j9pavPkIPqNP4s4mbeml4C2EIYSZzMy3k5lvEKoASFZpxH1raw0jOdpnSqU-kFtJhnmk3P6Uh8eo0SK3bdrOe3NgFibjh5gV3MAzXLwGB9cDZbIDJwGSzPR9hM8BEfBVVLSJPCAFVKy-tF5b8yKLhT_U8WZimDCysnhKUUr4xfwBC0nJcfcvAM71cW-QfE2STmcRwrocVN9Cmzl49KqZtbfRiu7tWLg9HgCI9j5dAd7ruvZI7UGF1YOh22xxF4Q1r9Of_H7_wJ52T3elVpC4dlGrfvNca_j5WgQ_tdmG-0ZrGVkgAFxfoZTYxGFoDxaApSJjNFchMzyJL3EimeI0DtKIQCbWNpOrwJBwDxV6_Z7eR14SGxvfJJOMQb-nYeRSURPqkAeRwQktodOpXsQgY78Q7q814QK0J5z2SugKVDaTAMZqd6M_fBO5A4iEEhMpi1coh43rMdNMYR7QVCdGBpSVUHmqcJG70YcI4XhoIQUnJVSZGWHpq5w5-ywREbXmM3ZXB_8RPkFrT9d1cd98vDtEG9gqNGvpK6PCaDjWRxaajORx_gH-AfhM2_I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zO3jyAxUrU4ruJHR2bZMmxzkcU3B42GCeQtMkIM5uaOfQkz_B3-gvMW_WDupheAttWsL7JnmefLzPi1ALSLJMCfOMrxWE5CiPSpl6IG4laMCItPlT7odkMI7uJnhSQ-dlLEzl_D5iV-lTHrQB9tkWahBs-HYdNcbDh-4jZI2DsCHzLijLBOO41CCtfFxBHSvOX2GU24tsnnwsk-m0ylEtyPR3Ua9s3upuyXN7kYt2-vlHuXFz-_fQTsEx3e6qU-yjmsoODCtfzIFru-92n959sbcolQsbsS7E5q7ye8Hs505ny5-vb0jn7qoXoSTg2yEa929GvYFXZE_wUgNKzNNKCWL4AkiChUIEOg5Ds_4AykW0VkyGVLMk7gSJoJLh2E9JBICtDOBLX0fhEapns0wdIzeJtZkGBRWUwrVQTaOOxDpUIfOJDhLsoIvSuny-Esng9nA7YhwMwK0BHHQNhl_XAGFr-8DYixfjhCc40kQaWoMZJGaPqaIyYD5OVaKFj6mDmqXbeDHa3ngIq0jDPFjkoNbalRubcmm9vKEK792OAls6-d8_m6ievy7UqeEouTgrOukvoDrhHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine+with+discriminative+low%E2%80%90rank+embedding&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Liang%2C+Guangfei&rft.au=Lai%2C+Zhihui&rft.au=Kong%2C+Heng&rft.date=2024-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=9&rft.issue=5&rft.spage=1249&rft.epage=1262&rft_id=info:doi/10.1049%2Fcit2.12329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon