Support vector machine with discriminative low‐rank embedding
Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM...
        Saved in:
      
    
          | Published in | CAAI Transactions on Intelligence Technology Vol. 9; no. 5; pp. 1249 - 1262 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          John Wiley & Sons, Inc
    
        01.10.2024
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2468-2322 2468-6557 2468-2322  | 
| DOI | 10.1049/cit2.12329 | 
Cover
| Abstract | Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks. | 
    
|---|---|
| AbstractList | Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks. Abstract Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions. To address this issue, the authors propose a novel SVM with discriminative low‐rank embedding (LRSVM) that finds a discriminative latent low‐rank subspace more suitable for SVM classification. The extension models of LRSVM are introduced by imposing different orthogonality constraints to prevent computational inaccuracies. A detailed derivation of the authors’ iterative algorithms are given that is essentially for solving the SVM on the low‐rank subspace. Additionally, some theorems and properties of the proposed models are presented by the authors. It is worth mentioning that the subproblems of the proposed algorithms are equivalent to the standard or the weighted linear discriminant analysis (LDA) problems. This indicates that the projection subspaces obtained by the authors’ algorithms are more suitable for SVM classification compared to those from the LDA method. The convergence analysis for the authors proposed algorithms are also provided. Furthermore, the authors conduct experiments on various machine learning data sets to evaluate the algorithms. The experiment results show that the authors’ algorithms perform significantly better than other algorithms, which indicates their superior abilities on classification tasks.  | 
    
| Author | Lai, Zhihui Kong, Heng Liang, Guangfei  | 
    
| Author_xml | – sequence: 1 givenname: Guangfei orcidid: 0000-0002-5515-7414 surname: Liang fullname: Liang, Guangfei organization: Shenzhen Institute of Artificial Intelligence and Robotics for Society – sequence: 2 givenname: Zhihui orcidid: 0000-0002-4388-3080 surname: Lai fullname: Lai, Zhihui email: laizhihui@szu.edu.cn organization: BaoAn Central Hospital of Shenzhen – sequence: 3 givenname: Heng surname: Kong fullname: Kong, Heng organization: BaoAn Central Hospital of Shenzhen  | 
    
| BookMark | eNp9kMtKAzEUhoNUsF42PsGAO6U1t5lJViLFS6HgwroOmeTEpk4nY2Zq6c5H8Bl9EqeOiCtX53D48vHnP0SDKlSA0CnBY4K5vDS-pWNCGZV7aEh5JkbdTgd_9gN00jRLjDGRUqYsH6Krx3Vdh9gmb2DaEJOVNgtfQbLx7SKxvjHRr3ylW_8GSRk2n-8fUVcvCawKsNZXz8do3-mygZOfeYSebm_mk_vR7OFuOrmejQzLqBw5gCLLeRczY6woqMsZoyTHgqWZcyAtE07qnFBdCCvTHJuMY8opUM4tdpwdoWnvtUEvVd2l0nGrgvbq-xDis9Kx9aYEpVPuMptzlkrCmcgFCEslTg1oV-BUdK6L3rWuar3d6LL8FRKsdlWqXZXqu8qOPuvpOobXNTStWoZ1rLrPKkYk5YIIuct33lMmhqaJ4P5Xkh7e-BK2_5BqMp3T_s0XOqyQ8w | 
    
| Cites_doi | 10.1145/1961189.1961199 10.1023/a:1018628609742 10.1109/CCGRID.2019.00065 10.1007/s10462‐018‐9614‐6 10.1109/tpami.2013.178 10.1109/tpami.2007.1068 10.1109/tpami.2006.17 10.1007/bf00994018 10.1109/tpami.2021.3092177 10.1016/j.asoc.2018.02.040 10.1016/j.patcog.2019.03.028 10.1016/j.neunet.2012.07.011 10.1145/1970392.1970395 10.1038/s41597‐022‐01721‐8 10.1162/089976600300015565 10.1109/tnnls.2018.2844242 10.1145/3280989 10.1145/2339530.2339609 10.1609/aaai.v35i12.17237 10.1016/j.neunet.2019.01.016 10.1109/tpami.2021.3069498 10.1109/FSKD.2010.5569345 10.1109/78.558484 10.1109/tnn.2011.2130540 10.1016/j.patcog.2020.107736 10.1109/tnnls.2015.2513006 10.1109/tip.2017.2691543 10.1109/72.991432  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/cit2.12329 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2468-2322 | 
    
| EndPage | 1262 | 
    
| ExternalDocumentID | oai_doaj_org_article_a54f6d74359143878e8d2905ceafb058 10.1049/cit2.12329 10_1049_cit2_12329 CIT212329  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62272319; 61976145 – fundername: Shenzhen Municipal Science and Technology Innovation Council funderid: JCYJ20210324094413037; JCYJ20220818095803007  | 
    
| GroupedDBID | 0R~ 0SF 1OC 24P 6I. AACTN AAEDW AAFTH AAHHS AAHJG AAJGR AALRI AAXUO ABMAC ABQXS ACCFJ ACCMX ACESK ACGFS ACXQS ADBBV ADVLN ADZOD AEEZP AEQDE AEXQZ AFKRA AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M41 M43 NCXOZ O9- OCL OK1 PIMPY RIE RIG ROL RUI SSZ AAMMB AAYWO AAYXX ACVFH ADCNI ADMLS AEFGJ AEUPX AFFHD AFPUW AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC PUEGO UNPAY  | 
    
| ID | FETCH-LOGICAL-c3629-feeb674104633bb2f73321708356ffe9d38f9a712ab8d9570c640242e244d0f43 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2468-2322 2468-6557  | 
    
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Sun Sep 07 10:51:14 EDT 2025 Wed Aug 13 04:56:28 EDT 2025 Wed Oct 29 21:25:24 EDT 2025 Wed Jan 22 17:15:27 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3629-feeb674104633bb2f73321708356ffe9d38f9a712ab8d9570c640242e244d0f43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4388-3080 0000-0002-5515-7414  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3192481894?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3192481894 | 
    
| PQPubID | 6852857 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a54f6d74359143878e8d2905ceafb058 unpaywall_primary_10_1049_cit2_12329 proquest_journals_3192481894 crossref_primary_10_1049_cit2_12329 wiley_primary_10_1049_cit2_12329_CIT212329  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2024 2024-10-00 20241001 2024-10-01  | 
    
| PublicationDateYYYYMMDD | 2024-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing | 
    
| PublicationTitle | CAAI Transactions on Intelligence Technology | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2023; 10 2019; 93 2011; 2 2019; 51 2021; 44 2017; 26 2012 2019; 52 2019; 30 2010 2017; 28 2002; 13 1997; 45 1998 2007 2003 2012; 35 2018; 66 1999; 9 1995; 20 2007; 29 2009; 58 2001 2022 2021; 112 2000; 12 2021 2006; 28 2019 2011; 22 2014; 36 2019; 114 2017 2020; 21 2013 e_1_2_9_30_1 Cai X. (e_1_2_9_34_1) 2013 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 Mangasarian O.L. (e_1_2_9_6_1) 2001 Fu Z. (e_1_2_9_32_1) 2022 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 Liu J. (e_1_2_9_19_1) 2022 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 Nie F. (e_1_2_9_15_1) 2017 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 Chang W. (e_1_2_9_39_1) 2021 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 Zhu J. (e_1_2_9_14_1) 2003 e_1_2_9_3_1 Wolf L. (e_1_2_9_35_1) 2007 e_1_2_9_2_1 Ren J. (e_1_2_9_31_1) 2022 e_1_2_9_9_1 Dua D. (e_1_2_9_40_1) 2017 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Blanco V. (e_1_2_9_13_1) 2020; 21  | 
    
| References_xml | – start-page: 49 year: 2003 end-page: 56 – start-page: 480 year: 2012 end-page: 488 – volume: 58 start-page: 1 issue: 3 year: 2009 end-page: 37 article-title: Robust principal component analysis? publication-title: J. ACM – volume: 2 start-page: 1 issue: 3 year: 2011 end-page: 27 article-title: LIBSVM: a library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – start-page: 1 year: 2007 end-page: 6 – start-page: 508 year: 2019 end-page: 517 – volume: 12 start-page: 1207 issue: 5 year: 2000 end-page: 1245 article-title: New support vector algorithms publication-title: Neural Comput. – volume: 52 start-page: 803 issue: 2 year: 2019 end-page: 855 article-title: Problem formulations and solvers in linear SVM: a review publication-title: Artif. Intell. – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 30 start-page: 474 issue: 2 year: 2019 end-page: 485 article-title: Unified low‐rank matrix estimate via penalized matrix least squares approximation publication-title: IEEE Transact. Neural Networks Learn. Syst. – start-page: 6211 year: 2022 end-page: 6219 – volume: 35 start-page: 46 year: 2012 end-page: 53 article-title: Laplacian twin support vector machine for semi‐supervised classification publication-title: Neural Network. – start-page: 1560 year: 2010 end-page: 1564 – year: 1998 – start-page: 1 year: 2022 end-page: 13 article-title: Latent low‐rank representation with weighted distance penalty for clustering publication-title: IEEE Trans. Cybern. – volume: 28 start-page: 359 issue: 2 year: 2017 end-page: 370 article-title: A novel twin support‐vector machine with pinball loss publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 10 issue: 1 year: 2023 article-title: MedMNIST v2 ‐‐ A large‐scale lightweight benchmark for 2D and 3D biomedical image classification publication-title: Sci. Data – start-page: 1 year: 2021 end-page: 14 article-title: Multitask learning for classification problem via new tight relaxation of rank minimization publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 13 start-page: 464 issue: 2 year: 2002 end-page: 471 article-title: Fuzzy support vector machines publication-title: IEEE Trans. Neural Network. – volume: 45 start-page: 673 issue: 3 year: 1997 end-page: 685 article-title: Low‐rank estimation of higher order statistics publication-title: IEEE Trans. Signal Process. – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach. Learn. – volume: 29 start-page: 905 issue: 5 year: 2007 end-page: 910 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 69 issue: 1 year: 2006 end-page: 74 article-title: Multisurface proximal support vector machine classification via generalized eigenvalues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 93 start-page: 55 year: 2019 end-page: 67 article-title: Robust Low‐rank subspace segmentation with finite mixture noise publication-title: Pattern Recogn. – volume: 112 issue: Apr year: 2021 article-title: A hierarchical weighted low‐rank representation for image clustering and classification publication-title: Pattern Recogn. – volume: 22 start-page: 962 issue: 6 year: 2011 end-page: 968 article-title: Improvements on twin support vector machines publication-title: IEEE Trans. Neural Network. – volume: 36 start-page: 984 issue: 5 year: 2014 end-page: 997 article-title: Support vector machine classifier with pinball loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2021 article-title: Geodesic multi‐class SVM with stiefel manifold embedding publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 article-title: Nonlinear kernel support vector machine with 0‐1 soft margin loss publication-title: arXiv – start-page: 10329 year: 2021 end-page: 10337 – volume: 26 start-page: 2905 issue: 6 year: 2017 end-page: 2917 article-title: Low‐rank embedding for robust image feature extraction publication-title: IEEE Trans. Image Process. – volume: 66 start-page: 384 year: 2018 end-page: 393 article-title: OLLAWV: online learning algorithm using worst‐violators publication-title: Appl. Soft Comput. – year: 2017 – volume: 21 start-page: 1 year: 2020 end-page: 29 article-title: On lp‐support vector machines and multidimensional kernels publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 7253 issue: 10 year: 2021 end-page: 7265 article-title: Support vector machine classifier via L soft‐margin loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2415 year: 2017 end-page: 2421 – start-page: 77 year: 2001 end-page: 86 – volume: 114 start-page: 47 year: 2019 end-page: 59 article-title: Robust capped L1‐norm twin support vector machine publication-title: Neural Network. – start-page: 1124 year: 2013 end-page: 1132 – volume: 51 start-page: 1 issue: 6 year: 2019 end-page: 38 article-title: Parallel computing of support vector machines: a survey publication-title: ACM Comput. Surv. – ident: e_1_2_9_23_1 doi: 10.1145/1961189.1961199 – ident: e_1_2_9_5_1 doi: 10.1023/a:1018628609742 – start-page: 1 volume-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition year: 2007 ident: e_1_2_9_35_1 – ident: e_1_2_9_26_1 doi: 10.1109/CCGRID.2019.00065 – ident: e_1_2_9_21_1 doi: 10.1007/s10462‐018‐9614‐6 – start-page: 1124 volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago Illinois USA year: 2013 ident: e_1_2_9_34_1 – ident: e_1_2_9_18_1 doi: 10.1109/tpami.2013.178 – ident: e_1_2_9_8_1 doi: 10.1109/tpami.2007.1068 – start-page: 1 year: 2022 ident: e_1_2_9_32_1 article-title: Latent low‐rank representation with weighted distance penalty for clustering publication-title: IEEE Trans. Cybern. – ident: e_1_2_9_7_1 doi: 10.1109/tpami.2006.17 – ident: e_1_2_9_2_1 doi: 10.1007/bf00994018 – ident: e_1_2_9_16_1 doi: 10.1109/tpami.2021.3092177 – ident: e_1_2_9_24_1 doi: 10.1016/j.asoc.2018.02.040 – volume: 21 start-page: 1 year: 2020 ident: e_1_2_9_13_1 article-title: On lp‐support vector machines and multidimensional kernels publication-title: J. Mach. Learn. Res. – start-page: 6211 volume-title: Proceedings of the 30th ACM International Conference on Multimedia, in MM ’22 year: 2022 ident: e_1_2_9_31_1 – ident: e_1_2_9_36_1 doi: 10.1016/j.patcog.2019.03.028 – volume-title: UCI Machine Learning Repository year: 2017 ident: e_1_2_9_40_1 – ident: e_1_2_9_11_1 doi: 10.1016/j.neunet.2012.07.011 – ident: e_1_2_9_28_1 doi: 10.1145/1970392.1970395 – ident: e_1_2_9_41_1 doi: 10.1038/s41597‐022‐01721‐8 – ident: e_1_2_9_3_1 doi: 10.1162/089976600300015565 – start-page: 77 volume-title: Proceedings KDD‐2001: Knowledge Discovery and Data Mining year: 2001 ident: e_1_2_9_6_1 – ident: e_1_2_9_38_1 doi: 10.1109/tnnls.2018.2844242 – start-page: 1 year: 2021 ident: e_1_2_9_39_1 article-title: Multitask learning for classification problem via new tight relaxation of rank minimization publication-title: IEEE Transact. Neural Networks Learn. Syst. – ident: e_1_2_9_27_1 doi: 10.1145/3280989 – ident: e_1_2_9_33_1 doi: 10.1145/2339530.2339609 – ident: e_1_2_9_25_1 doi: 10.1609/aaai.v35i12.17237 – ident: e_1_2_9_9_1 doi: 10.1016/j.neunet.2019.01.016 – ident: e_1_2_9_20_1 doi: 10.1109/tpami.2021.3069498 – ident: e_1_2_9_12_1 doi: 10.1109/FSKD.2010.5569345 – start-page: 2415 volume-title: Proceedings of the Thirty‐First AAAI Conference on Artificial Intelligence year: 2017 ident: e_1_2_9_15_1 – ident: e_1_2_9_30_1 doi: 10.1109/78.558484 – start-page: 49 volume-title: Advances in Neural Information Processing Systems year: 2003 ident: e_1_2_9_14_1 – ident: e_1_2_9_10_1 doi: 10.1109/tnn.2011.2130540 – ident: e_1_2_9_37_1 doi: 10.1016/j.patcog.2020.107736 – ident: e_1_2_9_22_1 – ident: e_1_2_9_17_1 doi: 10.1109/tnnls.2015.2513006 – year: 2022 ident: e_1_2_9_19_1 article-title: Nonlinear kernel support vector machine with 0‐1 soft margin loss publication-title: arXiv – ident: e_1_2_9_29_1 doi: 10.1109/tip.2017.2691543 – ident: e_1_2_9_4_1 doi: 10.1109/72.991432  | 
    
| SSID | ssj0001999537 ssib050169717 ssib050729737 ssib052855658  | 
    
| Score | 2.2791631 | 
    
| Snippet | Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can limit... Abstract Support vector machine (SVM) is a binary classifier widely used in machine learning. However, neglecting the latent data structure in previous SVM can...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1249 | 
    
| SubjectTerms | Algorithms Classification Data structures Decomposition Discriminant analysis Eigenvalues Embedding Iterative algorithms iterative methods Machine learning Orthogonality Performance evaluation Regression analysis Subspaces Support vector machines Variables  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi15EUbE6JeBOQl3X_Ghy1OGYgp422C00TQLC1g3dHN78E_wb_UvMS7vhLvPirZQcHt9r8n1JX76HUAtEsim4jH2uLVzJsbEwpojB3EqLVHIT-qc8PfP-kD6O2OhXqy-oCavsgSvg2jmjjhvPc0xCp-5MWGFSmbDC5k4nLFzzTYT8tZkKpyte9zCSrfxIqWwXL_P0BvSD3GCgYNS_oS53F-Us_1jm4_GmXg2E0ztA-7VSxLdVhIdox5ZHXlsvZqCY8Xs4bceTUAtpMRynYrhhW3XpgjUMj6fL788vaMqO7URbAyx1jIa9-0G3H9c9EOLCU4uMnbWae9YHYy-ideoyQvwuAoQTd85KQ4STedZJcy2MZFlScAq0az1tm8RRcoIa5bS0pwjnmfOLmRZaCCjudIJ2DHPEEplwl-YsQlcrXNSssrpQ4Rc1lQrQUwG9CN0BZOsRYE8dXvikqTpp6q-kRai5AlzVc-ZNEdgLev0gaYRa6yRsDeU65GfLENV9GKTh6ew_4j5He6lHtyrma6LG_HVhL7womevL8P39AEeB3J8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zO3jyAxUrU4ruJHR2bZMmxzkcU3B42GCeQtMkIM5uaOfQkz_B3-gvMW_WDupheAttWsL7JnmefLzPi1ALSLJMCfOMrxWE5CiPSpl6IG4laMCItPlT7odkMI7uJnhSQ-dlLEzl_D5iV-lTHrQB9tkWahBs-HYdNcbDh-4jZI2DsCHzLijLBOO41CCtfFxBHSvOX2GU24tsnnwsk-m0ylEtyPR3Ua9s3upuyXN7kYt2-vlHuXFz-_fQTsEx3e6qU-yjmsoODCtfzIFru-92n959sbcolQsbsS7E5q7ye8Hs505ny5-vb0jn7qoXoSTg2yEa929GvYFXZE_wUgNKzNNKCWL4AkiChUIEOg5Ds_4AykW0VkyGVLMk7gSJoJLh2E9JBICtDOBLX0fhEapns0wdIzeJtZkGBRWUwrVQTaOOxDpUIfOJDhLsoIvSuny-Esng9nA7YhwMwK0BHHQNhl_XAGFr-8DYixfjhCc40kQaWoMZJGaPqaIyYD5OVaKFj6mDmqXbeDHa3ngIq0jDPFjkoNbalRubcmm9vKEK792OAls6-d8_m6ievy7UqeEouTgrOukvoDrhHg priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDnAe9iKJidUrBnYRqlyZtAl50OKageNhgt5A0iQj7xdwc3vwT_Bv9S8xL141dBt5KeYXyXpL36WvyfQjVAZJ1nvLIxdrAkRwTMa3zCMStFMM81b5_yvNL2u6Spx7tVdBteRam0IdYFtxgZvj1Gia4VEUXEge1Loj5-xRfAxDwLbTdcCAD4xuT11WFxbEP9aKZGI4XOUtc6pMSfrN6fC0jeeH-NdrcmQ3H8msu-_11fvUJqLWP9hbkGN4VoT5AFTM8dKw9GwNBh5---h4O_N5IE0J5NYQTt0XXLljTwv5o_vv9A03aQzNQRkPWOkLd1kOn2Y4WPRGi3KUaHlljVOooAIS-EqWwzZLEfVUASKXWGq4TZrnMGlgqpjnN4jwlkIaNS-M6tiQ5RtXhaGhOUCgz6xY3xRRjsNnTMtLQ1CYm4XFqsaQBuiz9IsaF9IXwv6wJF-A94b0XoHtw2dIC5Kr9jdHkTSxGv5CU2FQ7WKEc2q1nzDCNeUxzI62KKQtQrXS4WMyhD5HAt6HjCU4CVF8GYeOrXPn4bDARzccO9len_zE-Q7vYebHYxFdD1elkZs4djEzVhR9zfztX1zI priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Support vector machine with discriminative low‐rank embedding | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12329 https://www.proquest.com/docview/3192481894 https://doi.org/10.1049/cit2.12329 https://doaj.org/article/a54f6d74359143878e8d2905ceafb058  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: ADMLS dateStart: 20200901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library (Open Access collection) customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: IDLOA dateStart: 20170601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050729737 issn: 2468-6557 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AKRWK dateStart: 20160101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: BENPR dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AVUZU dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NaxsxEB0S-9BeSkJa6jYxC82psMlGH7vSoRQnsZuU2pg0hvQkpJVUCo7tpnZDLiE_Ib-xv6QaeTfBF1_EIgS7zKxmnqTRewD7CJJtmcs0-NrhlRyXCmvLFMmtjCAyt1E_pT_Iz0bs6xW_2oBBfRcGyyrrmBgDtZ2WuEd-SHGlELKLZJ9nv1NUjcLT1VpCQ1fSCvZTpBjbhCZBZqwGNI-7g-HF865LwEOcFjVPKZOH5a85OUBcIVcyUyTwX0GdLxaTmb671ePxKo6Niai3Ba8qBJl0li7fhg032QmYezFDJJ38jbvwyXWskXQJbrMmePN2qd6FsS0ZT2__PTyiWHviro2zmL1ew6jXvTw5SytthLQMKUem3jmTBzSAhF_UGOILSsPqAgFV7r2TlgovdXFEtBFW8iIrc4bp2IV0bjPP6BtoTKYT9xYSXfgQ5IwwQmDRpxfsyHJPHZVZ7onmLfhQ20XNlhQYKh5dM6nQeiparwXHaLKnEUhbHTumNz9VNQuU5sznNoAWLlF2vRBOWCIzXjrtTcZFC3Zrg6tqLv1Rz55vwf6TE9Z-ysfonzVD1Mn5JYlP79a_8j28JMFuy_K9XWjMbxZuL8CQuWnDJmHD0IrelzY0O6f9b9_b1f_Wjkv70Pbvu6FvNBh2fvwHTJXiWQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5RONBL1YpWTUupJeBSacvin137gBBQUMJPVFVB4ubaa7uqFJIUkkbc-gh9oj4MT1KPswvKJTduq9VqdzUznvk8npkPYAtBsqsKlUVde2zJ8Zl0rspwuJWVVBUu8adcdIv2JT-9EldL8K_phcGyysYnJkfthhXmyHcY7hRidFF8f_QrQ9YoPF1tKDRMTa3g9tKIsbqx48zfTeMW7nav8yXqe5vSk-PeUTurWQayKjpvlQXvbRHjKo7OYtbSUDIWcTpCkyIErxyTQZlylxornRJlXhUcA5uPgdHlgbP43mewwhlXcfO3cnjc_frtMcsT8ZdgZTMXlaud6ueYfkYco-YiYSIMmEO5q5PByNxNTb8_j5tT4Dt5CS9qxEoOZib2Cpb8YC1i_MkIkTv5nbL-5DrVZHqCaV2Cnb4ztjD0paQ_nN7_-Yvk8MRfW-8wWr6GyyeR0htYHgwH_i0QU4boVK20UmKRaZB814nAPFN5EagRLdhs5KJHs5EbOh2Vc6VRejpJrwWHKLKHJ3BMdroxvPmh61WnjeChcBEkCYU076X00lGVi8qbYHMhW7DeCFzXa_dWP1paC7YelLDwVz4l_Sx4RB91ejRdvVv8yY-w2u5dnOvzTvfsPTynUYaz0sF1WB7fTPyHCIHGdqO2MwLfn9q0_wM04BYJ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF60BfUiiorVqgF7EqJxs5vsHmu1tP7hwUrxsmSzuyL0j9pavPkIPqNP4s4mbeml4C2EIYSZzMy3k5lvEKoASFZpxH1raw0jOdpnSqU-kFtJhnmk3P6Uh8eo0SK3bdrOe3NgFibjh5gV3MAzXLwGB9cDZbIDJwGSzPR9hM8BEfBVVLSJPCAFVKy-tF5b8yKLhT_U8WZimDCysnhKUUr4xfwBC0nJcfcvAM71cW-QfE2STmcRwrocVN9Cmzl49KqZtbfRiu7tWLg9HgCI9j5dAd7ruvZI7UGF1YOh22xxF4Q1r9Of_H7_wJ52T3elVpC4dlGrfvNca_j5WgQ_tdmG-0ZrGVkgAFxfoZTYxGFoDxaApSJjNFchMzyJL3EimeI0DtKIQCbWNpOrwJBwDxV6_Z7eR14SGxvfJJOMQb-nYeRSURPqkAeRwQktodOpXsQgY78Q7q814QK0J5z2SugKVDaTAMZqd6M_fBO5A4iEEhMpi1coh43rMdNMYR7QVCdGBpSVUHmqcJG70YcI4XhoIQUnJVSZGWHpq5w5-ywREbXmM3ZXB_8RPkFrT9d1cd98vDtEG9gqNGvpK6PCaDjWRxaajORx_gH-AfhM2_I | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zO3jyAxUrU4ruJHR2bZMmxzkcU3B42GCeQtMkIM5uaOfQkz_B3-gvMW_WDupheAttWsL7JnmefLzPi1ALSLJMCfOMrxWE5CiPSpl6IG4laMCItPlT7odkMI7uJnhSQ-dlLEzl_D5iV-lTHrQB9tkWahBs-HYdNcbDh-4jZI2DsCHzLijLBOO41CCtfFxBHSvOX2GU24tsnnwsk-m0ylEtyPR3Ua9s3upuyXN7kYt2-vlHuXFz-_fQTsEx3e6qU-yjmsoODCtfzIFru-92n959sbcolQsbsS7E5q7ye8Hs505ny5-vb0jn7qoXoSTg2yEa929GvYFXZE_wUgNKzNNKCWL4AkiChUIEOg5Ds_4AykW0VkyGVLMk7gSJoJLh2E9JBICtDOBLX0fhEapns0wdIzeJtZkGBRWUwrVQTaOOxDpUIfOJDhLsoIvSuny-Esng9nA7YhwMwK0BHHQNhl_XAGFr-8DYixfjhCc40kQaWoMZJGaPqaIyYD5OVaKFj6mDmqXbeDHa3ngIq0jDPFjkoNbalRubcmm9vKEK792OAls6-d8_m6ievy7UqeEouTgrOukvoDrhHg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine+with+discriminative+low%E2%80%90rank+embedding&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Liang%2C+Guangfei&rft.au=Lai%2C+Zhihui&rft.au=Kong%2C+Heng&rft.date=2024-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=9&rft.issue=5&rft.spage=1249&rft.epage=1262&rft_id=info:doi/10.1049%2Fcit2.12329 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |