Magnesium-Based Resorbable Scaffold Versus Permanent Metallic Sirolimus-Eluting Stent in Patients With ST-Segment Elevation Myocardial Infarction: The MAGSTEMI Randomized Clinical Trial
BACKGROUND:The use of poly-L-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being t...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 140; no. 23; pp. 1904 - 1916 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
by the American College of Cardiology Foundation and the American Heart Association, Inc
03.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 1524-4539 |
DOI | 10.1161/CIRCULATIONAHA.119.043467 |
Cover
Abstract | BACKGROUND:The use of poly-L-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being thromboresistant and exhibiting early restoration of vasomotor function. To date, however, no randomized clinical trial has investigated the performance of MgBRS. Therefore, this study aimed to compare the in-stent/scaffold vasomotion between MgBRS and permanent metallic sirolimus-eluting stent (SES) at 12-month follow-up in ST-segment–elevation myocardial infarction patients.
METHODS:This investigator-driven, multicenter, randomized, single-blind, controlled trial randomized ST-segment–elevation myocardial infarction patients 1:1 to SES or MgBRS at 11 academic centers. The primary end point was the rate of increase (≥3%) after nitroglycerin in mean lumen diameter of the in-stent/scaffold segment at 12 months with superiority of MgBRS over SES in the as-treated population. The main secondary end points included angiographic parameters of restenosis, device-oriented composite end point, their individual components, and device thrombosis rate. Besides, endothelial-dependent vasomotor response to acetylcholine (ie, endothelial function) was also assessed in a subgroup of patients (n=69).
RESULTS:Between June 2017 and June 2018, 150 ST-segment–elevation myocardial infarction patients were randomized (MgBRS, n=74; SES, n=76). At 1 year, the primary end point was significantly higher in the MgBRS arm (56.5% versus 33.8%; P=0.010). Conversely, late lumen loss was significantly lower in the SES group (in-segment0.39±0.49mm versus 0.02±0.27mm, P<0.001; in-device0.61±0.55mm versus 0.06±0.21mm; P<0.001). The device-oriented composite end point was higher in the MgBRS arm driven by an increase in ischemia-driven target lesion revascularization rate (12[16.2%] versus 4[5.2%], P=0.030). Definite thrombosis rate was similar between groups (1[1.4%] in the MgBRS arm versus 2[2.6%] in the SES group; P=1.0). Endothelial function assessment at device segment evidenced a more pronounced vasoconstrictive response to maximal dose of acetylcholine in the MgBRS arm (−8.3±3.5% versus −2.4±1.3% in the SES group, P=0.003).
CONCLUSIONS:When compared to SES, MgBRS demonstrated a higher capacity of vasomotor response to pharmacological agents (either endothelium-independent or endothelium-dependent) at 1 year. However, MgBRS was associated with a lower angiographic efficacy, a higher rate of target lesion revascularization, without thrombotic safety concerns.
CLINICAL TRIAL REGISTRATION:URLhttps://www.clinicaltrials.gov. Unique identifierNCT03234348. |
---|---|
AbstractList | The use of poly-
-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being thromboresistant and exhibiting early restoration of vasomotor function. To date, however, no randomized clinical trial has investigated the performance of MgBRS. Therefore, this study aimed to compare the in-stent/scaffold vasomotion between MgBRS and permanent metallic sirolimus-eluting stent (SES) at 12-month follow-up in ST-segment-elevation myocardial infarction patients.
This investigator-driven, multicenter, randomized, single-blind, controlled trial randomized ST-segment-elevation myocardial infarction patients 1:1 to SES or MgBRS at 11 academic centers. The primary end point was the rate of increase (≥3%) after nitroglycerin in mean lumen diameter of the in-stent/scaffold segment at 12 months with superiority of MgBRS over SES in the as-treated population. The main secondary end points included angiographic parameters of restenosis, device-oriented composite end point, their individual components, and device thrombosis rate. Besides, endothelial-dependent vasomotor response to acetylcholine (ie, endothelial function) was also assessed in a subgroup of patients (n=69).
Between June 2017 and June 2018, 150 ST-segment-elevation myocardial infarction patients were randomized (MgBRS, n=74; SES, n=76). At 1 year, the primary end point was significantly higher in the MgBRS arm (56.5% versus 33.8%;
=0.010). Conversely, late lumen loss was significantly lower in the SES group (in-segment: 0.39±0.49mm versus 0.02±0.27mm,
<0.001; in-device: 0.61±0.55mm versus 0.06±0.21mm;
<0.001). The device-oriented composite end point was higher in the MgBRS arm driven by an increase in ischemia-driven target lesion revascularization rate (12[16.2%] versus 4[5.2%],
=0.030). Definite thrombosis rate was similar between groups (1[1.4%] in the MgBRS arm versus 2[2.6%] in the SES group;
=1.0). Endothelial function assessment at device segment evidenced a more pronounced vasoconstrictive response to maximal dose of acetylcholine in the MgBRS arm (-8.3±3.5% versus -2.4±1.3% in the SES group,
=0.003).
When compared to SES, MgBRS demonstrated a higher capacity of vasomotor response to pharmacological agents (either endothelium-independent or endothelium-dependent) at 1 year. However, MgBRS was associated with a lower angiographic efficacy, a higher rate of target lesion revascularization, without thrombotic safety concerns.
URL: https://www.clinicaltrials.gov. Unique identifier: NCT03234348. The use of poly-l-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being thromboresistant and exhibiting early restoration of vasomotor function. To date, however, no randomized clinical trial has investigated the performance of MgBRS. Therefore, this study aimed to compare the in-stent/scaffold vasomotion between MgBRS and permanent metallic sirolimus-eluting stent (SES) at 12-month follow-up in ST-segment-elevation myocardial infarction patients.BACKGROUNDThe use of poly-l-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being thromboresistant and exhibiting early restoration of vasomotor function. To date, however, no randomized clinical trial has investigated the performance of MgBRS. Therefore, this study aimed to compare the in-stent/scaffold vasomotion between MgBRS and permanent metallic sirolimus-eluting stent (SES) at 12-month follow-up in ST-segment-elevation myocardial infarction patients.This investigator-driven, multicenter, randomized, single-blind, controlled trial randomized ST-segment-elevation myocardial infarction patients 1:1 to SES or MgBRS at 11 academic centers. The primary end point was the rate of increase (≥3%) after nitroglycerin in mean lumen diameter of the in-stent/scaffold segment at 12 months with superiority of MgBRS over SES in the as-treated population. The main secondary end points included angiographic parameters of restenosis, device-oriented composite end point, their individual components, and device thrombosis rate. Besides, endothelial-dependent vasomotor response to acetylcholine (ie, endothelial function) was also assessed in a subgroup of patients (n=69).METHODSThis investigator-driven, multicenter, randomized, single-blind, controlled trial randomized ST-segment-elevation myocardial infarction patients 1:1 to SES or MgBRS at 11 academic centers. The primary end point was the rate of increase (≥3%) after nitroglycerin in mean lumen diameter of the in-stent/scaffold segment at 12 months with superiority of MgBRS over SES in the as-treated population. The main secondary end points included angiographic parameters of restenosis, device-oriented composite end point, their individual components, and device thrombosis rate. Besides, endothelial-dependent vasomotor response to acetylcholine (ie, endothelial function) was also assessed in a subgroup of patients (n=69).Between June 2017 and June 2018, 150 ST-segment-elevation myocardial infarction patients were randomized (MgBRS, n=74; SES, n=76). At 1 year, the primary end point was significantly higher in the MgBRS arm (56.5% versus 33.8%; P=0.010). Conversely, late lumen loss was significantly lower in the SES group (in-segment: 0.39±0.49mm versus 0.02±0.27mm, P<0.001; in-device: 0.61±0.55mm versus 0.06±0.21mm; P<0.001). The device-oriented composite end point was higher in the MgBRS arm driven by an increase in ischemia-driven target lesion revascularization rate (12[16.2%] versus 4[5.2%], P=0.030). Definite thrombosis rate was similar between groups (1[1.4%] in the MgBRS arm versus 2[2.6%] in the SES group; P=1.0). Endothelial function assessment at device segment evidenced a more pronounced vasoconstrictive response to maximal dose of acetylcholine in the MgBRS arm (-8.3±3.5% versus -2.4±1.3% in the SES group, P=0.003).RESULTSBetween June 2017 and June 2018, 150 ST-segment-elevation myocardial infarction patients were randomized (MgBRS, n=74; SES, n=76). At 1 year, the primary end point was significantly higher in the MgBRS arm (56.5% versus 33.8%; P=0.010). Conversely, late lumen loss was significantly lower in the SES group (in-segment: 0.39±0.49mm versus 0.02±0.27mm, P<0.001; in-device: 0.61±0.55mm versus 0.06±0.21mm; P<0.001). The device-oriented composite end point was higher in the MgBRS arm driven by an increase in ischemia-driven target lesion revascularization rate (12[16.2%] versus 4[5.2%], P=0.030). Definite thrombosis rate was similar between groups (1[1.4%] in the MgBRS arm versus 2[2.6%] in the SES group; P=1.0). Endothelial function assessment at device segment evidenced a more pronounced vasoconstrictive response to maximal dose of acetylcholine in the MgBRS arm (-8.3±3.5% versus -2.4±1.3% in the SES group, P=0.003).When compared to SES, MgBRS demonstrated a higher capacity of vasomotor response to pharmacological agents (either endothelium-independent or endothelium-dependent) at 1 year. However, MgBRS was associated with a lower angiographic efficacy, a higher rate of target lesion revascularization, without thrombotic safety concerns.CONCLUSIONSWhen compared to SES, MgBRS demonstrated a higher capacity of vasomotor response to pharmacological agents (either endothelium-independent or endothelium-dependent) at 1 year. However, MgBRS was associated with a lower angiographic efficacy, a higher rate of target lesion revascularization, without thrombotic safety concerns.URL: https://www.clinicaltrials.gov. Unique identifier: NCT03234348.CLINICAL TRIAL REGISTRATIONURL: https://www.clinicaltrials.gov. Unique identifier: NCT03234348. BACKGROUND:The use of poly-L-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological benefit. Magnesium-based bioresorbable scaffold (MgBRS) presents a short resorption period (<1 year) and have the potential of being thromboresistant and exhibiting early restoration of vasomotor function. To date, however, no randomized clinical trial has investigated the performance of MgBRS. Therefore, this study aimed to compare the in-stent/scaffold vasomotion between MgBRS and permanent metallic sirolimus-eluting stent (SES) at 12-month follow-up in ST-segment–elevation myocardial infarction patients. METHODS:This investigator-driven, multicenter, randomized, single-blind, controlled trial randomized ST-segment–elevation myocardial infarction patients 1:1 to SES or MgBRS at 11 academic centers. The primary end point was the rate of increase (≥3%) after nitroglycerin in mean lumen diameter of the in-stent/scaffold segment at 12 months with superiority of MgBRS over SES in the as-treated population. The main secondary end points included angiographic parameters of restenosis, device-oriented composite end point, their individual components, and device thrombosis rate. Besides, endothelial-dependent vasomotor response to acetylcholine (ie, endothelial function) was also assessed in a subgroup of patients (n=69). RESULTS:Between June 2017 and June 2018, 150 ST-segment–elevation myocardial infarction patients were randomized (MgBRS, n=74; SES, n=76). At 1 year, the primary end point was significantly higher in the MgBRS arm (56.5% versus 33.8%; P=0.010). Conversely, late lumen loss was significantly lower in the SES group (in-segment0.39±0.49mm versus 0.02±0.27mm, P<0.001; in-device0.61±0.55mm versus 0.06±0.21mm; P<0.001). The device-oriented composite end point was higher in the MgBRS arm driven by an increase in ischemia-driven target lesion revascularization rate (12[16.2%] versus 4[5.2%], P=0.030). Definite thrombosis rate was similar between groups (1[1.4%] in the MgBRS arm versus 2[2.6%] in the SES group; P=1.0). Endothelial function assessment at device segment evidenced a more pronounced vasoconstrictive response to maximal dose of acetylcholine in the MgBRS arm (−8.3±3.5% versus −2.4±1.3% in the SES group, P=0.003). CONCLUSIONS:When compared to SES, MgBRS demonstrated a higher capacity of vasomotor response to pharmacological agents (either endothelium-independent or endothelium-dependent) at 1 year. However, MgBRS was associated with a lower angiographic efficacy, a higher rate of target lesion revascularization, without thrombotic safety concerns. CLINICAL TRIAL REGISTRATION:URLhttps://www.clinicaltrials.gov. Unique identifierNCT03234348. |
Author | Gomez-Lara, Josep Alfonso, Fernando Serra, Antonio Bordes, Pascual Hernández-Antolín, Rosana Ortega-Paz, Luis Iñiguez, Andrés García del Blanco, Bruno Goicolea, Javier Romaní, Sebastián Salinas, Pablo Brugaletta, Salvatore Cequier, Angel Sabaté, Manel Cuesta, Javier Gómez-Hospital, Joan Antoni |
AuthorAffiliation | Interventional Cardiology Department, Cardiovascular Institute, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain (M.S., S.B.). Hospital Universitario de La Princesa, Madrid, Spain (F.A., J.C.). Hospital Universitario de Bellvitge, IDIBELL, Barcelona, Spain (A.C., J.A.G.H.). Hospital San Pedro de Alcántara, Cáceres, Spain (S.R.). Hospital General de Alicante, Alicante, Spain (P.B.). Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (A.S.). Hospital Alvaro Cunqueiro, Vigo, Spain (A.I.). Hospital Clínico San Carlos, Madrid, Spain (P.S.). Hospital Vall d’Hebrón, Barcelona, Spain (B.G.D.B.). Hospital Puerta de Hierro-Majadahonda, Madrid, Spain (J.G.). Hospital Ramón y Cajal, Madrid, Spain (R.H.A.). Barcicore, Cardiac Imaging Corelab, Barcelona, Spain (L.O.P., J.G.L.) |
AuthorAffiliation_xml | – name: Interventional Cardiology Department, Cardiovascular Institute, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain (M.S., S.B.). Hospital Universitario de La Princesa, Madrid, Spain (F.A., J.C.). Hospital Universitario de Bellvitge, IDIBELL, Barcelona, Spain (A.C., J.A.G.H.). Hospital San Pedro de Alcántara, Cáceres, Spain (S.R.). Hospital General de Alicante, Alicante, Spain (P.B.). Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (A.S.). Hospital Alvaro Cunqueiro, Vigo, Spain (A.I.). Hospital Clínico San Carlos, Madrid, Spain (P.S.). Hospital Vall d’Hebrón, Barcelona, Spain (B.G.D.B.). Hospital Puerta de Hierro-Majadahonda, Madrid, Spain (J.G.). Hospital Ramón y Cajal, Madrid, Spain (R.H.A.). Barcicore, Cardiac Imaging Corelab, Barcelona, Spain (L.O.P., J.G.L.) |
Author_xml | – sequence: 1 givenname: Manel surname: Sabaté fullname: Sabaté, Manel organization: Interventional Cardiology Department, Cardiovascular Institute, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain (M.S., S.B.). Hospital Universitario de La Princesa, Madrid, Spain (F.A., J.C.). Hospital Universitario de Bellvitge, IDIBELL, Barcelona, Spain (A.C., J.A.G.H.). Hospital San Pedro de Alcántara, Cáceres, Spain (S.R.). Hospital General de Alicante, Alicante, Spain (P.B.). Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (A.S.). Hospital Alvaro Cunqueiro, Vigo, Spain (A.I.). Hospital Clínico San Carlos, Madrid, Spain (P.S.). Hospital Vall d’Hebrón, Barcelona, Spain (B.G.D.B.). Hospital Puerta de Hierro-Majadahonda, Madrid, Spain (J.G.). Hospital Ramón y Cajal, Madrid, Spain (R.H.A.). Barcicore, Cardiac Imaging Corelab, Barcelona, Spain (L.O.P., J.G.L.) – sequence: 2 givenname: Fernando surname: Alfonso fullname: Alfonso, Fernando – sequence: 3 givenname: Angel surname: Cequier fullname: Cequier, Angel – sequence: 4 givenname: Sebastián surname: Romaní fullname: Romaní, Sebastián – sequence: 5 givenname: Pascual surname: Bordes fullname: Bordes, Pascual – sequence: 6 givenname: Antonio surname: Serra fullname: Serra, Antonio – sequence: 7 givenname: Andrés surname: Iñiguez fullname: Iñiguez, Andrés – sequence: 8 givenname: Pablo surname: Salinas fullname: Salinas, Pablo – sequence: 9 givenname: Bruno surname: García del Blanco fullname: García del Blanco, Bruno – sequence: 10 givenname: Javier surname: Goicolea fullname: Goicolea, Javier – sequence: 11 givenname: Rosana surname: Hernández-Antolín fullname: Hernández-Antolín, Rosana – sequence: 12 givenname: Javier surname: Cuesta fullname: Cuesta, Javier – sequence: 13 givenname: Joan surname: Gómez-Hospital middlename: Antoni fullname: Gómez-Hospital, Joan Antoni – sequence: 14 givenname: Luis surname: Ortega-Paz fullname: Ortega-Paz, Luis – sequence: 15 givenname: Josep surname: Gomez-Lara fullname: Gomez-Lara, Josep – sequence: 16 givenname: Salvatore surname: Brugaletta fullname: Brugaletta, Salvatore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31553204$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUs1uEzEYtFAR_YFXQObGZYt_djdZLiiNQhspoVV2C8eV1_s5MXjtYnupypvxdjikIMGJkz_PNzOyZnyKjqyzgNArSs4pLemb-XIzv13NmuX1h9nVLGHVOcl5Xk6eoBNasDzLC14doRNCSJVNOGPH6DSEz-la8knxDB1zWhSckfwE_ViLrYWgxyG7EAF6vIHgfCc6A7iWQilnevwRfBgDvgE_CAs24jVEYYyWuNbeGT2MIVuYMWq7xXXcE7TFNyLqNAb8Sccdrpushu2w3y0MfEs7Z_H6wUnhey0MXlolvNyjb3GzA7yeXdbNYr3EG2F7N-jv6Wlzo62Widz4JHmOniphArx4PM_Q7ftFM7_KVteXy_lslUlesmlWUcU6yPui6EQlyimjXV9y0XNSyi6FoLhguVKECNYXrJpALtSUd7kgUnEKlJ-h1wffO---jhBiO-ggwZgUhRtDy5KIsoLTMlFfPlLHboC-vfN6EP6h_R13IlQHgvQuBA_qD4WSdl9t-3e1CavaQ7VJ--4frdTxV47RC23-yyE_ONw7E1OlX8x4D77dgTBx16bfQTihk4wRWlGW5mwPTflPGQe-pw |
CitedBy_id | crossref_primary_10_4244_EIJ_D_20_00198 crossref_primary_10_3389_fcvm_2022_914370 crossref_primary_10_3389_fcvm_2022_974957 crossref_primary_10_1016_j_actbio_2021_06_004 crossref_primary_10_1016_j_ijcard_2023_04_029 crossref_primary_10_1097_MCA_0000000000001202 crossref_primary_10_1136_openhrt_2022_002107 crossref_primary_10_3390_nano14060531 crossref_primary_10_4244_EIJ_D_20_01162 crossref_primary_10_1016_j_repce_2020_11_017 crossref_primary_10_1089_ars_2022_0204 crossref_primary_10_1136_neurintsurg_2022_018941 crossref_primary_10_1016_j_repc_2020_07_003 crossref_primary_10_23736_S2724_5683_21_05658_1 crossref_primary_10_1093_eurheartj_ehaa1096 crossref_primary_10_1002_ccd_29260 crossref_primary_10_1016_j_jma_2024_05_028 crossref_primary_10_1016_j_mechmat_2021_104092 crossref_primary_10_1161_CIRCINTERVENTIONS_124_014665 crossref_primary_10_1016_j_ijcard_2022_05_024 crossref_primary_10_2174_1573403X16666200618161942 crossref_primary_10_1016_j_mtla_2020_100727 crossref_primary_10_3390_ma15145031 crossref_primary_10_23736_S2724_5683_20_05184_1 crossref_primary_10_1016_j_rec_2021_01_007 crossref_primary_10_1016_j_carrev_2022_05_028 crossref_primary_10_1016_j_bioactmat_2024_05_002 crossref_primary_10_1007_s11886_021_01447_w crossref_primary_10_1007_s10557_021_07258_z crossref_primary_10_4244_EIJ_D_21_00651 crossref_primary_10_1016_j_conctc_2024_101260 crossref_primary_10_1016_j_bioactmat_2023_02_014 crossref_primary_10_1016_j_ahj_2024_05_019 crossref_primary_10_1016_j_medengphy_2022_103878 crossref_primary_10_3389_fcvm_2022_856930 crossref_primary_10_1016_j_carrev_2021_02_003 crossref_primary_10_23736_S0026_4725_20_05188_9 crossref_primary_10_1016_j_carrev_2021_09_012 crossref_primary_10_1016_j_jcin_2019_10_032 crossref_primary_10_1088_1748_605X_aca3e8 crossref_primary_10_1016_j_actbio_2021_03_058 crossref_primary_10_1016_j_carrev_2019_10_012 crossref_primary_10_1016_j_carrev_2022_05_012 crossref_primary_10_1016_j_jjcc_2022_09_003 crossref_primary_10_1007_s44174_024_00200_5 crossref_primary_10_4244_EIJ_D_19_00773 crossref_primary_10_2459_JCM_0000000000001286 crossref_primary_10_3390_biomedicines11041150 crossref_primary_10_1161_CIRCULATIONAHA_119_043773 crossref_primary_10_1161_CIRCULATIONAHA_119_044740 crossref_primary_10_4244_EIJV15I16A254 crossref_primary_10_1002_ccd_30435 crossref_primary_10_1016_j_bioactmat_2024_05_027 crossref_primary_10_5041_RMMJ_10402 crossref_primary_10_4244_EIJV16I11A162 crossref_primary_10_3389_fcvm_2022_949494 crossref_primary_10_1002_adhm_202201740 crossref_primary_10_1016_j_mtbio_2022_100368 crossref_primary_10_1126_sciadv_abf0614 crossref_primary_10_1161_CIRCINTERVENTIONS_124_014889 crossref_primary_10_3390_jcdd10020084 crossref_primary_10_4244_EIJ_E_24_00044 crossref_primary_10_3390_jcm14020532 crossref_primary_10_1007_s10557_022_07401_4 crossref_primary_10_1016_j_isci_2024_111512 crossref_primary_10_1016_j_matdes_2020_109182 crossref_primary_10_3390_ma14185454 crossref_primary_10_4244_EIJV16I2A17 crossref_primary_10_4244_EIJV16I2A16 crossref_primary_10_1080_17434440_2021_1904894 crossref_primary_10_1016_j_hjc_2023_12_004 crossref_primary_10_1007_s12928_024_01070_w crossref_primary_10_53986_ibjm_2022_0034 crossref_primary_10_1016_j_ccl_2020_07_004 crossref_primary_10_3389_fbioe_2024_1457553 crossref_primary_10_1016_j_recesp_2021_01_012 crossref_primary_10_1080_17425247_2020_1764932 crossref_primary_10_1016_j_surfcoat_2024_130607 crossref_primary_10_1161_CIRCULATIONAHA_120_045964 crossref_primary_10_1002_ccd_29557 crossref_primary_10_1161_JAHA_121_022123 crossref_primary_10_4244_EIJV15I15A238 |
Cites_doi | 10.1002/ccd.27825 10.1093/eurheartj/ehw196 10.1056/NEJM198610233151702 10.1161/CIRCULATIONAHA.106.685313 10.1056/NEJMoa1614954 10.1016/j.jacc.2015.08.853 10.1161/CIRCULATIONAHA.117.031843 10.4244/EIJ-D-18-01203 10.1080/17482940601052648 10.4244/EIJ-D-16-00915 10.1093/eurheartj/ehy394 10.1016/s0735-1097(02)01953-8 10.1161/01.cir.100.15.1623 10.4244/EIJ-D-17-00958 10.4244/EIJ-D-18-01058 10.1016/j.jacc.2014.09.041 10.1016/S0140-6736(15)00447-X 10.4244/EIJV14I9A176 10.1016/j.jcin.2017.11.042 10.4244/EIJ-D-18-01000 10.1093/eurheartj/ehv500 10.4244/EIJ-D-17-00708 10.1016/j.jcin.2017.07.023 10.4244/EIJ-D-17-00254 10.1093/eurheartj/ehy710 10.1016/S0140-6736(16)32050-5 10.4244/EIJ-D-16-00974 10.4244/EIJ-D-18-00839 10.1016/j.jcin.2018.04.026 10.1161/CIRCINTERVENTIONS.116.004762 |
ContentType | Journal Article |
Copyright | 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
Copyright_xml | – notice: 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCULATIONAHA.119.043467 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1916 |
ExternalDocumentID | 31553204 10_1161_CIRCULATIONAHA_119_043467 00003017-201912030-00008 |
Genre | Multicenter Study Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADKSD ADSXY |
ID | FETCH-LOGICAL-c3628-91f2be4d55ba9a6821bd63ad306cb532f3a24ff00a2d5297e4af83b4a0cf31e13 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Mon Sep 08 12:56:30 EDT 2025 Mon Jul 21 05:40:20 EDT 2025 Tue Jul 01 04:15:26 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Fri May 16 03:41:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | STEMI vascular endothelium-dependent relaxation stents, drug-eluting tissue scaffolds |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3628-91f2be4d55ba9a6821bd63ad306cb532f3a24ff00a2d5297e4af83b4a0cf31e13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 31553204 |
PQID | 2297125316 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2297125316 pubmed_primary_31553204 crossref_primary_10_1161_CIRCULATIONAHA_119_043467 crossref_citationtrail_10_1161_CIRCULATIONAHA_119_043467 wolterskluwer_health_00003017-201912030-00008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-December-03 2019-12-03 20191203 |
PublicationDateYYYYMMDD | 2019-12-03 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-December-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2019 |
Publisher | by the American College of Cardiology Foundation and the American Heart Association, Inc |
Publisher_xml | – name: by the American College of Cardiology Foundation and the American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 de Hemptinne Q (e_1_3_4_32_2) 2018; 30 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 32282250 - Circulation. 2020 Apr 14;141(15):e748-e749 32282245 - Circulation. 2020 Apr 14;141(15):e746-e747 |
References_xml | – ident: e_1_3_4_14_2 doi: 10.1002/ccd.27825 – ident: e_1_3_4_18_2 doi: 10.1093/eurheartj/ehw196 – ident: e_1_3_4_25_2 doi: 10.1056/NEJM198610233151702 – ident: e_1_3_4_17_2 doi: 10.1161/CIRCULATIONAHA.106.685313 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa1614954 – ident: e_1_3_4_20_2 doi: 10.1016/j.jacc.2015.08.853 – ident: e_1_3_4_4_2 doi: 10.1161/CIRCULATIONAHA.117.031843 – ident: e_1_3_4_24_2 doi: 10.4244/EIJ-D-18-01203 – ident: e_1_3_4_7_2 doi: 10.1080/17482940601052648 – ident: e_1_3_4_30_2 doi: 10.4244/EIJ-D-16-00915 – ident: e_1_3_4_6_2 doi: 10.1093/eurheartj/ehy394 – ident: e_1_3_4_23_2 doi: 10.1016/s0735-1097(02)01953-8 – ident: e_1_3_4_16_2 doi: 10.1161/01.cir.100.15.1623 – ident: e_1_3_4_28_2 doi: 10.4244/EIJ-D-17-00958 – ident: e_1_3_4_27_2 doi: 10.4244/EIJ-D-18-01058 – ident: e_1_3_4_13_2 doi: 10.1016/j.jacc.2014.09.041 – ident: e_1_3_4_12_2 doi: 10.1016/S0140-6736(15)00447-X – ident: e_1_3_4_11_2 doi: 10.4244/EIJV14I9A176 – ident: e_1_3_4_21_2 doi: 10.1016/j.jcin.2017.11.042 – ident: e_1_3_4_26_2 doi: 10.4244/EIJ-D-18-01000 – ident: e_1_3_4_8_2 doi: 10.1093/eurheartj/ehv500 – volume: 30 start-page: 202 year: 2018 ident: e_1_3_4_32_2 article-title: Drug-eluting resorbable magnesium scaffold implantation in ST-segment–elevation myocardial infarction: a pilot study. publication-title: J Invasive Cardiol – ident: e_1_3_4_22_2 doi: 10.4244/EIJ-D-17-00708 – ident: e_1_3_4_15_2 doi: 10.1016/j.jcin.2017.07.023 – ident: e_1_3_4_31_2 doi: 10.4244/EIJ-D-17-00254 – ident: e_1_3_4_9_2 doi: 10.1093/eurheartj/ehy710 – ident: e_1_3_4_2_2 doi: 10.1016/S0140-6736(16)32050-5 – ident: e_1_3_4_5_2 doi: 10.4244/EIJ-D-16-00974 – ident: e_1_3_4_10_2 doi: 10.4244/EIJ-D-18-00839 – ident: e_1_3_4_19_2 doi: 10.1016/j.jcin.2018.04.026 – ident: e_1_3_4_29_2 doi: 10.1161/CIRCINTERVENTIONS.116.004762 – reference: 32282250 - Circulation. 2020 Apr 14;141(15):e748-e749 – reference: 32282245 - Circulation. 2020 Apr 14;141(15):e746-e747 |
SSID | ssj0006375 |
Score | 2.579306 |
Snippet | BACKGROUND:The use of poly-L-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of... The use of poly- -lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological... The use of poly-l-lactide acid-based bioresorbable scaffolds is limited in daily clinical practice because of safety concerns and lack of physiological... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1904 |
SubjectTerms | Absorbable Implants Acetylcholine - pharmacology Aged Angioplasty, Balloon, Coronary Coronary Angiography Coronary Restenosis - epidemiology Drug-Eluting Stents Endothelium, Vascular - drug effects Endothelium, Vascular - physiopathology Female Humans Incidence Magnesium Male Middle Aged Nitroglycerin - pharmacology Polyesters Risk Factors Sample Size Sirolimus - administration & dosage Sirolimus - therapeutic use ST Elevation Myocardial Infarction - drug therapy ST Elevation Myocardial Infarction - surgery Thrombectomy Tissue Scaffolds Vasodilation - drug effects Vasodilator Agents - therapeutic use Vasomotor System - physiopathology |
Title | Magnesium-Based Resorbable Scaffold Versus Permanent Metallic Sirolimus-Eluting Stent in Patients With ST-Segment Elevation Myocardial Infarction: The MAGSTEMI Randomized Clinical Trial |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201912030-00008 https://www.ncbi.nlm.nih.gov/pubmed/31553204 https://www.proquest.com/docview/2297125316 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IU0ghGDjUm7yJMTLlJHYzqW8lVIoiIJYO7G3yImdKaJNoE2Etn_Gv-PYzq27SBsvUWTlfvzlnPP5XBB6JWKXCepwK6FCWoxzagU0cC3BfI-5cSDsWFEDk6_e-Ih9PnaPNza_daKWyiI6iM8uzSv5H6nCGMhVZcneQLLNRWEA9kG-sAUJw_ZaMp7wE_hTpeXCegfKSGgufhnpZKhpzJMkn4t9RYiVKxXpvuCZWvifSLC3VWnraao69izKlTVSD6krc6sD0kwV7k916tsPRdNOZ9ZUnuiogdFcGg53f3IKWnApTK2OBOBSR4moiTcZfJzOQML7hzwT-SI9UzxynYM5U1-maxQP02VcdRG7rDlQh6yY8ogXZm3fJBplsokQGcwT-M6a-a3I8bxZYJG_y7Rq210H8ZpVJsX_qsu91yywBJ1epHrAybp8iKObOdi0mcHKaG9zcrIu_zLUEb66slXbs6oJVG3OGMMvpuii40JUqjJMLZ-SdTViyk5VeCG0oxXA6GIdCwNcZO9y7eUp7TX8dDg8-mJqIY8HMNo_sBllpmvJueLgtvFpfUt9CYfAvqW9gE10i_hgTKoohe9t-XyP-m7dWlA9_zbaq-775sq7rhtsF7ywO-jun1wFdqx-6ryOjnU2u4_uVW4VHhiMPEAbMttBu4OMF_niFL_GOtBZC2UHbU-qeJJd9PccgnCLIFwjCBsE4QZBuEYQvoAgrBGE0wzXCMIKQbhFEG4QhFsE4RZBbzHgB9f4wS1-cI0frPHzEB19GM2GY6tqZmLFYCMqoyIhkWTCdSPe515AnEh4lAtw2ePIpSShnLAksW1OhEv6vmQ8CWjEuB0n1JEOfYS2sjyTTxC2ibQDD6wDYnPm9uPAl1HAGDgiUSRsSnsoqCUWxlWlf9VwZh5qj99zwnVhw1g_NMLuIdKc-suUu7nOSXv1tAhBOakVRxBHXq5CAi8CHhR1vB56bOZLc1mqOpYRm_WQtTaBQpMAHl41tZ_e8Phn6Hb7m3iOtoplKV-AI1FELzU4_gEb7xgb |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnesium-Based+Resorbable+Scaffold+Versus+Permanent+Metallic+Sirolimus-Eluting+Stent+in+Patients+With+ST-Segment+Elevation+Myocardial+Infarction%3A+The+MAGSTEMI+Randomized+Clinical+Trial&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Sabat%C3%A9%2C+Manel&rft.au=Alfonso%2C+Fernando&rft.au=Cequier%2C+Angel&rft.au=Roman%C3%AD%2C+Sebasti%C3%A1n&rft.date=2019-12-03&rft.pub=by+the+American+College+of+Cardiology+Foundation+and+the+American+Heart+Association%2C+Inc&rft.issn=0009-7322&rft.volume=140&rft.issue=23&rft.spage=1904&rft.epage=1916&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.119.043467&rft.externalDocID=00003017-201912030-00008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |