Sparse representation scheme with enhanced medium pixel intensity for face recognition
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all traini...
        Saved in:
      
    
          | Published in | CAAI Transactions on Intelligence Technology Vol. 9; no. 1; pp. 116 - 127 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          John Wiley & Sons, Inc
    
        01.02.2024
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2468-2322 2468-6557 2468-2322  | 
| DOI | 10.1049/cit2.12247 | 
Cover
| Abstract | Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms. | 
    
|---|---|
| AbstractList | Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms. Abstract Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms.  | 
    
| Author | Zhang, Xuexue Zhang, Bob Gao, Weihao Zhang, Yongjun Long, Wei Wang, Zewei  | 
    
| Author_xml | – sequence: 1 givenname: Xuexue orcidid: 0000-0003-1510-3638 surname: Zhang fullname: Zhang, Xuexue organization: Guizhou University – sequence: 2 givenname: Yongjun orcidid: 0000-0002-7534-1219 surname: Zhang fullname: Zhang, Yongjun email: zyj6667@126.com organization: Guizhou University – sequence: 3 givenname: Zewei orcidid: 0000-0001-8805-0755 surname: Wang fullname: Wang, Zewei organization: Guizhou University – sequence: 4 givenname: Wei surname: Long fullname: Long, Wei organization: Guizhou University – sequence: 5 givenname: Weihao surname: Gao fullname: Gao, Weihao organization: Guizhou University – sequence: 6 givenname: Bob orcidid: 0000-0003-2497-9519 surname: Zhang fullname: Zhang, Bob organization: Avenida da Universidade  | 
    
| BookMark | eNp9kMtKAzEUhoMoWC8bnyDgTqnmMpdkKcVLoeDCyzbE5KRNmSZjMqX27Z06Iq7KWeQQvnzn5D9BhyEGQOiCkhtKCnlrfMduKGNFfYBGrKjEmHHGDv_1x-g85yUhhEopS16P0PtLq1MGnKBNkCF0uvMx4GwWsAK88d0CQ1joYMDiFVi_XuHWf0GDfeggZN9tsYsJO212DhPnwe8EZ-jI6SbD-e95it4e7l8nT-PZ8-N0cjcbG16xelzbot_DCNC21CWj1Uchy5oxJ6h0AMC5sMYIy4UuOWcgnfmgUFvquAYHlp-i6eC1US9Vm_xKp62K2qufi5jmSqfOmwaU4GBr42hVF7ovEJWzhEApiqKfSlnvuh5c69Dq7UY3zZ-QErVLWO0SVj8J9_TlQLcpfq4hd2oZ1yn0n1WcSkZlxQjpqauBMinmnMDtV9IB3vgGtntINZm-suHNNwaFmqE | 
    
| Cites_doi | 10.1016/j.patcog.2011.10.017 10.1016/j.patcog.2012.04.012 10.1109/jproc.2010.2044470 10.1007/s10489‐019‐01612‐3 10.1016/j.patcog.2014.01.007 10.1016/j.ins.2019.08.004 10.1155/2020/8964321 10.1016/j.patcog.2016.12.021 10.1016/j.patcog.2012.03.007 10.1109/tip.2015.2425545 10.1016/j.patrec.2015.07.032 10.1109/tcsvt.2011.2138790 10.1109/jstsp.2007.910971 10.1007/s11042‐020‐08965‐9 10.1016/j.patcog.2019.04.027 10.1007/s00521‐012‐1252‐3 10.1109/access.2015.2430359 10.1109/tcsvt.2020.3042178 10.1109/tnnls.2015.2508025 10.1016/j.patcog.2012.11.003 10.1109/tnnls.2017.2712801 10.1561/0600000079 10.1016/j.neucom.2015.05.070 10.1109/tip.2013.2262292 10.1109/TPAMI.2009.155 10.1016/j.asoc.2020.106183 10.1016/j.dsp.2019.04.006 10.1109/ICIT.2013.6505840 10.1016/j.media.2021.101985 10.1109/tip.2014.2316640 10.1007/s10489‐021‐02557‐2 10.1016/s0031‐3203(02)00031‐6 10.1049/cit2.12115 10.1007/s10489‐015‐0735‐1 10.1016/j.ins.2016.09.059 10.1109/tnnls.2012.2197412 10.1016/j.patcog.2012.01.003 10.1016/j.patcog.2018.03.021 10.1016/j.jvcir.2020.102763 10.1016/j.patcog.2011.08.022 10.1109/tcsvt.2018.2799214 10.1109/SIBGRAPI.2012.52 10.1016/j.ins.2013.02.051 10.1007/s10489‐017‐0956‐6 10.1109/tpami.2008.79 10.1109/ICCV.2011.6126277  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/cit2.12247 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2468-2322 | 
    
| EndPage | 127 | 
    
| ExternalDocumentID | oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912 10.1049/cit2.12247 10_1049_cit2_12247 CIT212247  | 
    
| Genre | article | 
    
| GroupedDBID | 0R~ 0SF 1OC 24P 6I. AACTN AAEDW AAFTH AAHHS AAHJG AAJGR AALRI AAXUO ABMAC ABQXS ACCFJ ACCMX ACESK ACGFS ACXQS ADBBV ADVLN ADZOD AEEZP AEQDE AEXQZ AFKRA AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M41 M43 NCXOZ O9- OCL OK1 PIMPY RIE RIG ROL RUI SSZ AAMMB AAYWO AAYXX ACVFH ADCNI ADMLS AEFGJ AEUPX AFFHD AFPUW AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3627-7d4995c8ead5a5216b495722f819feee338dcc8d38a5332e9fcb1e7d1f3aefed3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2468-2322 2468-6557  | 
    
| IngestDate | Fri Oct 03 12:43:38 EDT 2025 Tue Aug 19 19:18:38 EDT 2025 Wed Aug 13 04:07:50 EDT 2025 Wed Oct 29 21:32:49 EDT 2025 Wed Jan 22 16:15:16 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3627-7d4995c8ead5a5216b495722f819feee338dcc8d38a5332e9fcb1e7d1f3aefed3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7534-1219 0000-0003-2497-9519 0000-0001-8805-0755 0000-0003-1510-3638  | 
    
| OpenAccessLink | https://doaj.org/article/83ed7cf1674a4a4e86fd00e5844b4912 | 
    
| PQID | 3192196200 | 
    
| PQPubID | 6852857 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912 unpaywall_primary_10_1049_cit2_12247 proquest_journals_3192196200 crossref_primary_10_1049_cit2_12247 wiley_primary_10_1049_cit2_12247_CIT212247  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2024 2024-02-00 20240201 2024-02-01  | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing | 
    
| PublicationTitle | CAAI Transactions on Intelligence Technology | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2021; 69 2010; 98 2018; 29 2019; 90 2019; 93 2015; 3 2012 2013; 44 2013; 22 2011 2013; 46 2015; 168 2017; 66 2018; 81 2003; 36 2014; 47 2014; 24 2020; 79 2020; 12 2017; 29 2020; 32 2008; 31 2017; 375 2014; 23 2018; 48 2020; 506 2015; 24 2015; 68 2015; 28 2009; 32 2020; 2020 2022 2020; 50 2020; 71 2013; 238 2020; 90 2018 2011; 21 2022; 52 2013 2007; 1 2012; 45 2012; 23 2016; 44 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Xu Y. (e_1_2_9_39_1) 2013; 44 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 Gong P. (e_1_2_9_47_1) 2013 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1  | 
    
| References_xml | – year: 2011 – volume: 375 start-page: 171 year: 2017 end-page: 82 article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition publication-title: Inf. Sci. – volume: 81 start-page: 341 year: 2018 end-page: 56 article-title: Robust, discriminative and comprehensive dictionary learning for face recognition publication-title: Pattern Recogn. – volume: 45 start-page: 4069 issue: 12 year: 2012 end-page: 79 article-title: Orthogonal discriminant vector for face recognition across pose publication-title: Pattern Recogn. – volume: 24 start-page: 2760 issue: 9 year: 2015 end-page: 71 article-title: Learning a nonnegative sparse graph for linear regression publication-title: IEEE Trans. Image Process. – volume: 69 start-page: 69 year: 2021 end-page: 101985 article-title: A survey on incorporating domain knowledge into deep learning for medical image analysis publication-title: Med. Image Anal. – volume: 48 start-page: 156 issue: 1 year: 2018 end-page: 65 article-title: Robust face recognition via discriminative and common hybrid dictionary learning publication-title: Appl. Intell. – volume: 46 start-page: 1151 issue: 4 year: 2013 end-page: 8 article-title: Using the original and ‘symmetrical face’training samples to perform representation based two‐step face recognition publication-title: Pattern Recogn. – volume: 1 start-page: 606 issue: 4 year: 2007 end-page: 17 article-title: An interior‐point method for large‐scale $\ell_1 $‐regularized least squares publication-title: IEEE J. Sel. Topics Signal Proc. – year: 2022 article-title: Application of improved virtual sample and sparse representation in face recognition publication-title: CAAI Tran. Intell. Technol. – volume: 28 start-page: 278 issue: 2 year: 2015 end-page: 93 article-title: A locality‐constrained and label embedding dictionary learning algorithm for image classification publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 45 start-page: 1104 issue: 3 year: 2012 end-page: 18 article-title: Beyond sparsity: the role of L1‐optimizer in pattern classification publication-title: Pattern Recogn. – volume: 23 start-page: 1013 issue: 7 year: 2012 end-page: 27 article-title: $ L_ {1/2} $ regularization: a thresholding representation theory and a fast solver publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 45 start-page: 3131 issue: 9 year: 2012 end-page: 40 article-title: Image warping for face recognition: from local optimality towards global optimization publication-title: Pattern Recogn. – volume: 45 start-page: 3317 issue: 9 year: 2012 end-page: 27 article-title: Face recognition in 2D and 2.5 D using ridgelets and photometric stereo publication-title: Pattern Recogn. – volume: 2020 start-page: 2020 year: 2020 end-page: 10 article-title: A dictionary learning algorithm based on dictionary reconstruction and its application in face recognition publication-title: Math. Probl Eng. – volume: 238 start-page: 138 year: 2013 end-page: 48 article-title: Using the idea of the sparse representation to perform coarse‐to‐fine face recognition publication-title: Inf. Sci. – volume: 21 start-page: 1255 issue: 9 year: 2011 end-page: 62 article-title: A two‐phase test sample sparse representation method for use with face recognition publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 79 start-page: 23325 issue: 31 year: 2020 end-page: 46 article-title: Compound dictionary learning based classification method with a novel virtual sample generation Technology for Face Recognition publication-title: Multimed. Tool. Appl. – volume: 168 start-page: 566 year: 2015 end-page: 74 article-title: Adaptive weighted fusion: a novel fusion approach for image classification publication-title: Neurocomputing – volume: 52 start-page: 3766 issue: 4 year: 2022 end-page: 80 article-title: Dictionary learning and face recognition based on sample expansion publication-title: Appl. Intell. – volume: 45 start-page: 2708 issue: 7 year: 2012 end-page: 18 article-title: Robust classification using ℓ2, 1‐norm based regression model publication-title: Pattern Recogn. – volume: 68 start-page: 9 year: 2015 end-page: 14 article-title: Multiple representations and sparse representation for image classification publication-title: Pattern Recogn. Lett. – year: 2018 – volume: 12 start-page: 1 issue: 1–3 year: 2020 end-page: 308 article-title: Computer vision for autonomous vehicles: problems, datasets and state of the art publication-title: Found. Trends® Comput. Graph. Vis. – volume: 44 start-page: 913 issue: 4 year: 2016 end-page: 30 article-title: Expression invariant face recognition using semidecimated DWT, Patch‐LDSMT, feature and score level fusion publication-title: Appl. Intell. – volume: 47 start-page: 2447 issue: 7 year: 2014 end-page: 53 article-title: Face recognition by sparse discriminant analysis via joint L2, 1‐norm minimization publication-title: Pattern Recogn. – volume: 29 start-page: 390 issue: 2 year: 2018 end-page: 403 article-title: Robust sparse linear discriminant analysis publication-title: IEEE Trans. Circ. Syst. Video Technol. – year: 2012 – volume: 3 start-page: 490 year: 2015 end-page: 530 article-title: A survey of sparse representation: algorithms and applications publication-title: IEEE Access – volume: 29 start-page: 3111 issue: 7 year: 2017 end-page: 25 article-title: Discriminative block‐diagonal representation learning for image recognition publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 66 start-page: 129 year: 2017 end-page: 43 article-title: Learning robust and discriminative low‐rank representations for face recognition with occlusion publication-title: Pattern Recogn. – volume: 24 start-page: 513 issue: 3 year: 2014 end-page: 9 article-title: A novel sparse representation method based on virtual samples for face recognition publication-title: Neural Comput. Appl. – volume: 22 start-page: 3234 issue: 8 year: 2013 end-page: 46 article-title: Fast $\ell_ {1} $‐Minimization algorithms for robust face recognition publication-title: IEEE Trans. Image Process. – volume: 32 start-page: 1705 issue: 9 year: 2009 end-page: 20 article-title: WLD: a robust local image descriptor publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 2557 issue: 6 year: 2014 end-page: 68 article-title: Combining LBP difference and feature correlation for texture description publication-title: IEEE Trans. Image Process. – volume: 90 year: 2020 article-title: Multi‐scale patch based representation feature learning for low‐resolution face recognition publication-title: Appl. Soft Comput. – volume: 31 start-page: 210 issue: 2 year: 2008 end-page: 27 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 293 issue: 2 year: 2003 end-page: 302 article-title: Noise compensation in a person verification system using face and multiple speech features publication-title: Pattern Recogn. – volume: 90 start-page: 110 year: 2019 end-page: 24 article-title: Face recognition based on dictionary learning and subspace learning publication-title: Digit. Signal Process. – volume: 506 start-page: 19 year: 2020 end-page: 36 article-title: Cross‐resolution face recognition with pose variations via multilayer locality‐constrained structural orthogonal procrustes regression publication-title: Inf. Sci. – volume: 32 start-page: 2550 issue: 5 year: 2020 end-page: 60 article-title: Hierarchical deep CNN feature set‐based representation learning for robust cross‐resolution face recognition publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 50 start-page: 1687 issue: 6 year: 2020 end-page: 98 article-title: Improved image representation and sparse representation for image classification publication-title: Appl. Intell. – volume: 93 start-page: 283 year: 2019 end-page: 92 article-title: Multi‐resolution dictionary learning for face recognition publication-title: Pattern Recogn. – volume: 98 start-page: 1031 issue: 6 year: 2010 end-page: 44 article-title: Sparse representation for computer vision and pattern recognition publication-title: Proc. IEEE – volume: 44 start-page: 1738 issue: 10 year: 2013 end-page: 46 article-title: Integrating conventional and inverse representation for face recognition publication-title: IEEE Trans. Cybern. – volume: 71 year: 2020 article-title: Discriminative dictionary learning algorithm based on sample diversity and locality of atoms for face recognition publication-title: J. Vis. Commun. Image Represent. – year: 2013 – ident: e_1_2_9_10_1 doi: 10.1016/j.patcog.2011.10.017 – ident: e_1_2_9_12_1 doi: 10.1016/j.patcog.2012.04.012 – ident: e_1_2_9_43_1 doi: 10.1109/jproc.2010.2044470 – ident: e_1_2_9_38_1 doi: 10.1007/s10489‐019‐01612‐3 – ident: e_1_2_9_18_1 doi: 10.1016/j.patcog.2014.01.007 – ident: e_1_2_9_33_1 doi: 10.1016/j.ins.2019.08.004 – ident: e_1_2_9_30_1 doi: 10.1155/2020/8964321 – ident: e_1_2_9_8_1 doi: 10.1016/j.patcog.2016.12.021 – ident: e_1_2_9_11_1 doi: 10.1016/j.patcog.2012.03.007 – ident: e_1_2_9_15_1 doi: 10.1109/tip.2015.2425545 – ident: e_1_2_9_37_1 doi: 10.1016/j.patrec.2015.07.032 – ident: e_1_2_9_22_1 doi: 10.1109/tcsvt.2011.2138790 – ident: e_1_2_9_2_1 – ident: e_1_2_9_45_1 doi: 10.1109/jstsp.2007.910971 – ident: e_1_2_9_36_1 doi: 10.1007/s11042‐020‐08965‐9 – ident: e_1_2_9_31_1 doi: 10.1016/j.patcog.2019.04.027 – ident: e_1_2_9_40_1 doi: 10.1007/s00521‐012‐1252‐3 – ident: e_1_2_9_14_1 doi: 10.1109/access.2015.2430359 – ident: e_1_2_9_9_1 doi: 10.1109/tcsvt.2020.3042178 – ident: e_1_2_9_24_1 doi: 10.1109/tnnls.2015.2508025 – ident: e_1_2_9_35_1 doi: 10.1016/j.patcog.2012.11.003 – ident: e_1_2_9_48_1 doi: 10.1109/tnnls.2017.2712801 – ident: e_1_2_9_3_1 doi: 10.1561/0600000079 – ident: e_1_2_9_42_1 doi: 10.1016/j.neucom.2015.05.070 – ident: e_1_2_9_46_1 doi: 10.1109/tip.2013.2262292 – ident: e_1_2_9_6_1 doi: 10.1109/TPAMI.2009.155 – volume: 44 start-page: 1738 issue: 10 year: 2013 ident: e_1_2_9_39_1 article-title: Integrating conventional and inverse representation for face recognition publication-title: IEEE Trans. Cybern. – ident: e_1_2_9_32_1 doi: 10.1016/j.asoc.2020.106183 – ident: e_1_2_9_29_1 doi: 10.1016/j.dsp.2019.04.006 – ident: e_1_2_9_44_1 doi: 10.1109/ICIT.2013.6505840 – volume-title: International Conference on Machine Learning year: 2013 ident: e_1_2_9_47_1 – ident: e_1_2_9_4_1 doi: 10.1016/j.media.2021.101985 – ident: e_1_2_9_5_1 doi: 10.1109/tip.2014.2316640 – ident: e_1_2_9_28_1 doi: 10.1007/s10489‐021‐02557‐2 – ident: e_1_2_9_41_1 doi: 10.1016/s0031‐3203(02)00031‐6 – ident: e_1_2_9_50_1 doi: 10.1049/cit2.12115 – ident: e_1_2_9_34_1 doi: 10.1007/s10489‐015‐0735‐1 – ident: e_1_2_9_27_1 doi: 10.1016/j.ins.2016.09.059 – ident: e_1_2_9_21_1 doi: 10.1109/tnnls.2012.2197412 – ident: e_1_2_9_19_1 doi: 10.1016/j.patcog.2012.01.003 – ident: e_1_2_9_23_1 doi: 10.1016/j.patcog.2018.03.021 – ident: e_1_2_9_26_1 doi: 10.1016/j.jvcir.2020.102763 – ident: e_1_2_9_13_1 doi: 10.1016/j.patcog.2011.08.022 – ident: e_1_2_9_49_1 doi: 10.1109/tcsvt.2018.2799214 – ident: e_1_2_9_7_1 doi: 10.1109/SIBGRAPI.2012.52 – ident: e_1_2_9_17_1 doi: 10.1016/j.ins.2013.02.051 – ident: e_1_2_9_25_1 doi: 10.1007/s10489‐017‐0956‐6 – ident: e_1_2_9_16_1 doi: 10.1109/tpami.2008.79 – ident: e_1_2_9_20_1 doi: 10.1109/ICCV.2011.6126277  | 
    
| SSID | ssj0001999537 ssib050169717 ssib050729737 ssib052855658  | 
    
| Score | 2.2551367 | 
    
| Snippet | Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been... Abstract Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 116 | 
    
| SubjectTerms | Accuracy Algorithms Classification computer vision Dictionaries Face recognition Feature extraction Formability Image classification image representation Occlusion Pixels Representations Sparsity Teaching methods  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFFBXXFwE9CdVt0udBREVRwUV84S2kyUQX1m7VXdR_7yTbKntZeiklNGEmyXyTmXwDsBepLBE6twHZvjyIdC6CLNRZUGiMkkIYMnLOUbzpJpeP0fVz_DwD3eYujEurbPZEv1GbgXZn5IfCEXflCSn1uHoPXNUoF11tSmiourSCOfIUY7Mwxx0zVgvmTs-7t3f_py6Eh2KRNjylUX6oe0N-4MJL6YRl8gT-E6hzflRW6udL9fuTONYbooslWKwRJDsZq3wZZrBcgaf7ijxUZJ6jsrlPVDJyXfENmTtsZVi--mg_c-H00Ruret_YZ71xCvvwhxF6ZVZp9486p2hQrsLjxfnD2WVQl0wINFmiNEgNeTCxzmh-xIosc1KQA5RybsnwW0Qkh9RonRmRKcJ5HHOrixBTE1qh0KIRa9AqByWuAwuLjk2pXZjEGBXG5lliyWEztlNwjBW2YbcRl6zGzBjSR7SjXDqhSi_UNpw6Sf61cGzW_sPg40XWi0NmAk2qrbsQoehB6sl0OkjYKKLxh7wNW40eZL3EPuX_hGjD3p9upg5l36ttShN5dvXA_dvG9C43YYETuhmnb29Ba_gxwm1CJ8Nip55yvzXq5Qs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QMUVlYCehK7bV9oedVFUUARd0VPIY6KLa7doF11_vZO0XVwPIkgvoaRtmslkvklmvhCyH4mUhSozHtq-zItUFnqpr1JPKoiYDDUaOesoXl6xs350cR_ff8vir_ghpgtuVjPcfG0VvNCmmucrrzPKDtWgDDp2byiZJwssRjTeIgv9q-ujB3umnE0qQsAQNGUWx0nDUDrz8IxNctT9M3hzcZwXYvIuhsNZBOtM0OkyEU3jq8iT5864lB31-YPX8T9_t0KWanxKj6oBtUrmIF8jdzcF-r9AHQNmk62UU3SM4QWoXcqlkD-5WAJqN-vHL7QYfMCQDqoA-XJCERtTI5R9Rx2xNMrXSf_05LZ35tUHMngK7VziJRr9o1ilOPpigXafSXSvkiAwCCsMAKC7q5VKdZgKRJEBZEZJHxLtm1CAAR1ukFY-ymGTUF92TYL1fBZDJLXJUmbQHdSmKwOIBbTJXiMSXlS8G9ztl0cZt_3CXb-0ybGV1rSG5cp2N0avj7xWPZ6GoBNlbLqFwAvwS7rbBUReEbbfD9pku5E1rxX4jYeWJy5jOIe0yf5U_r825cDJ85cqvHd-G7jS1t_euU1a5esYdhD2lHK3HtlfW2EDFg priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvQiiorVKgt6EqLNZvMCL1oUFRTBB96WfcxqoU1LTVH_vbObpKUXQXIJYZIsMzuZb3Z2vhByzGWWRDq3Aca-POA6j4Is1FmgNPBERQaDnEsU7x-Smxd-9xa_LZHzphem4oeYLbg5z_Dfa-fgUlV_IUFQi0bU_ZKdurpQukxWQgQybn4z_jhfYUHsE3vSTObaixA6sIaflOdn89sXIpIn7l9Am6vTYix_vuRgsIhffQC63iDrNXKkF5WpN8kSFFvk9WmMmSlQz03Z9BEVFFNWGAJ1i6wUig9f5aeujD4d0nH_Gwa0X21dL38oolZqpXbPqPcSjYpt8nJ99dy7CepfJQQaI1AapAYzl1hnOC9iiRE5UZj4pIxZDPgWADARNVpnJsok4jsGudUqhNSENpJgwUQ7pFWMCtglNFRdm6JcmMTAlbF5llhM1IztKgaxhDY5atQlxhUjhvCVbJ4Lp1Thldoml06TMwnHYu0vjCbvonYKkUVgUm1dI4TEA_BNptsFxEQcxx-yNuk0dhC1a32KyDG45Ql6d5scz2zz51BOvNn-EBG922fmz_b-I7xP1hhinGoTd4e0yskUDhCjlOrQT8Vf6TPhKA priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Sparse representation scheme with enhanced medium pixel intensity for face recognition | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12247 https://www.proquest.com/docview/3192196200 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12247 https://doaj.org/article/83ed7cf1674a4a4e86fd00e5844b4912  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: ADMLS dateStart: 20200901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: IDLOA dateStart: 20170601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050729737 issn: 2468-6557 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AKRWK dateStart: 20160101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: BENPR dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: AVUZU dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLY2dtgu0yaGVmCVJTghBRLbSexjgXaAaFUNOrGT5djPolIJ1dZq47LfzrOTInphlymSE1lWZL3n6Ps-v5dnQvaFkQW3yieIfSoRVvFEZlYmlQVRVNwhyAWhOBwVZxNxcZPfPDvqK-SENeWBG8MdSQ6utD4kyxu8QBbepSkgbopKqHi-MEuleiam4u4K8p6cl6t6pEId2emCHYYwUrmGQLFQ_xq7fLus5-bht5nN1vlqBJzBB_K-ZYq018zwI3kF9Sb5fjVHJQo01qJc_TdUU5SocAc0bKpSqG9jVJ-GsPnyjs6nf2BGp02q-uKBIkul3tjwjjZ36L7-RCaD_vXJWdIejZBYRJwyKR0qldxKXAe5QQQu0BZ5yZhHgPcAgMLTWSsdlwb5HAPlbZVB6TLPDXhwfIts1Pc1fCY0q1Jf4risyEFUziu0MAoz59OKQW6gQ_ZW5tLzpgKGjpFroXQwqo5G7ZDjYMmnEaFqdexAX-rWl_pfvuyQ3ZUfdPsp_dI8VGxTBX7NHbL_5JsXp3IQ3fbCEH1yfs3i0_b_mPcOeceQ6zTJ3LtkY_FzCV-QqyyqLnnNxBhbOfjaJW96p8PLK7wf90fjb924ZLEd_u1j32Q07v14BIDU7q4 | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lAuqAgQKQUsUS5IS7O293WoKlpaJbSNEKSoN-O1xxAp3SxtopI_x29j7Oy2yiW3ai-rlWWvZsaebzwvgF2p81SYwkWk-4pImkJEeWzyqDQo01JYUnLeUDwfpL0L-eUyuVyDf20ujA-rbM_EcFDbifF35HvCF-4qUmLqQf0n8l2jvHe1baGhm9YKdj-UGGsSO05xfksm3M1-_zPx-z3nJ8fDo17UdBmIDB3eWZRZAv2JyYmkiSZllpZkM2ScO9KVDhHJhrPG5FbkmqARx8KZMsbMxk5odGgFzfsINqSQBRl_G4fHg6_f7m95CH8lImvrospiz4ym_KN3Z2VLmjA0DFhCuZuzqtbzWz0eL-PmoPhOtuBJg1jZp4WIPYU1rJ7Bj-81WcTIQk3MNn-pYmQq4xUyf7nLsPodoguYd9_Prlg9-otjNlqEzE_njNAyc9r4OZoYpkn1HC4ehHgvYL2aVPgSWFx2XUbj4jRBWVpX5KkjA9G6bskx0diBdy25VL2oxKGCB10WyhNVBaJ24NBT8m6Er54dPkyuf6lmM6pcoM2M8wkYmh6klWy3i4TFJP1_zDuw0_JBNVv6Rt0LYAd273iz8lc-BLatGKKO-kMe3rZXL_kWNnvD8zN11h-cvoLHnJDVInR8B9an1zN8TchoWr5pxI_Bz4eW-P9xgCN0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BkcZeJhBM6yhgaTwhZSSO8_XYwSo-BkKCIsSL5djnrVJJI2i18d_v7KRFfUFCeYmik2Pd-XK_s-9-ATgQKk9jXdiAYl8RCF3EQR7pPCg1irSMDQU5lyheXqWnQ3F-n9y3tTmuF6bhh1hsuDnP8N9r5-BYG9sknMKRZOrRlH93B0PZKqxRIA9FB9b6d8OH4esmC8GfxPNmctdhROiBzylKRXH0OsBSUPLc_UuAc31W1erlrxqPlyGsj0GDDfjUgkfWb6y9CStYbcHdTU3JKTJPTzlvJaoYZa34iMztszKs_viDfuZO0mePrB79wzEbNdXr0xdGwJVZpd0YbTnRpNqG4eDn7fFp0P4tIdAUhLIgM5S8JDqnpZEoCsppSblPxrmlmG8RkXJRo3Vu4lwRxONYWF1GmJnIxgotmvgzdKpJhV-ARWVoM5KL0gRFaWyRp5ZyNWPDkmOisAvf5uqSdUOKIf1htiikU6r0Su3CD6fJhYQjsvYPJk-_ZesXMo_RZNq6XghFF9KbTBgiwSJB8494F3pzO8jWu55l7EjcipQcvAsHC9u8OZVDb7Y3ROTx2S33d1_fI7wPH65PBvLX2dXFDnzkhHiaku4edKZPM9wlxDIt99p1-R9Fy-Xo | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QMUVlYCehK7bV9oedVFUUARd0VPIY6KLa7doF11_vZO0XVwPIkgvoaRtmslkvklmvhCyH4mUhSozHtq-zItUFnqpr1JPKoiYDDUaOesoXl6xs350cR_ff8vir_ghpgtuVjPcfG0VvNCmmucrrzPKDtWgDDp2byiZJwssRjTeIgv9q-ujB3umnE0qQsAQNGUWx0nDUDrz8IxNctT9M3hzcZwXYvIuhsNZBOtM0OkyEU3jq8iT5864lB31-YPX8T9_t0KWanxKj6oBtUrmIF8jdzcF-r9AHQNmk62UU3SM4QWoXcqlkD-5WAJqN-vHL7QYfMCQDqoA-XJCERtTI5R9Rx2xNMrXSf_05LZ35tUHMngK7VziJRr9o1ilOPpigXafSXSvkiAwCCsMAKC7q5VKdZgKRJEBZEZJHxLtm1CAAR1ukFY-ymGTUF92TYL1fBZDJLXJUmbQHdSmKwOIBbTJXiMSXlS8G9ztl0cZt_3CXb-0ybGV1rSG5cp2N0avj7xWPZ6GoBNlbLqFwAvwS7rbBUReEbbfD9pku5E1rxX4jYeWJy5jOIe0yf5U_r825cDJ85cqvHd-G7jS1t_euU1a5esYdhD2lHK3HtlfW2EDFg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+representation+scheme+with+enhanced+medium+pixel+intensity+for+face+recognition&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Xuexue+Zhang&rft.au=Yongjun+Zhang&rft.au=Zewei+Wang&rft.au=Wei+Long&rft.date=2024-02-01&rft.pub=Wiley&rft.eissn=2468-2322&rft.volume=9&rft.issue=1&rft.spage=116&rft.epage=127&rft_id=info:doi/10.1049%2Fcit2.12247&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |