Sparse representation scheme with enhanced medium pixel intensity for face recognition

Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all traini...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 9; no. 1; pp. 116 - 127
Main Authors Zhang, Xuexue, Zhang, Yongjun, Wang, Zewei, Long, Wei, Gao, Weihao, Zhang, Bob
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.02.2024
Wiley
Subjects
Online AccessGet full text
ISSN2468-2322
2468-6557
2468-2322
DOI10.1049/cit2.12247

Cover

Abstract Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms.
AbstractList Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms.
Abstract Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been widely used in various image classification tasks. Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class‐specific information of the test sample, which is very important for classification. For deformable images such as human faces, pixels at the same location of different images of the same subject usually have different intensities. Therefore, extracting features and correctly classifying such deformable objects is very hard. Moreover, the lighting, attitude and occlusion cause more difficulty. Considering the problems and challenges listed above, a novel image representation and classification algorithm is proposed. First, the authors’ algorithm generates virtual samples by a non‐linear variation method. This method can effectively extract the low‐frequency information of space‐domain features of the original image, which is very useful for representing deformable objects. The combination of the original and virtual samples is more beneficial to improve the classification performance and robustness of the algorithm. Thereby, the authors’ algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme. The weighting coefficients in the score fusion scheme are set entirely automatically. Finally, the algorithm classifies the samples based on the final scores. The experimental results show that our method performs better classification than conventional sparse representation algorithms.
Author Zhang, Xuexue
Zhang, Bob
Gao, Weihao
Zhang, Yongjun
Long, Wei
Wang, Zewei
Author_xml – sequence: 1
  givenname: Xuexue
  orcidid: 0000-0003-1510-3638
  surname: Zhang
  fullname: Zhang, Xuexue
  organization: Guizhou University
– sequence: 2
  givenname: Yongjun
  orcidid: 0000-0002-7534-1219
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zyj6667@126.com
  organization: Guizhou University
– sequence: 3
  givenname: Zewei
  orcidid: 0000-0001-8805-0755
  surname: Wang
  fullname: Wang, Zewei
  organization: Guizhou University
– sequence: 4
  givenname: Wei
  surname: Long
  fullname: Long, Wei
  organization: Guizhou University
– sequence: 5
  givenname: Weihao
  surname: Gao
  fullname: Gao, Weihao
  organization: Guizhou University
– sequence: 6
  givenname: Bob
  orcidid: 0000-0003-2497-9519
  surname: Zhang
  fullname: Zhang, Bob
  organization: Avenida da Universidade
BookMark eNp9kMtKAzEUhoMoWC8bnyDgTqnmMpdkKcVLoeDCyzbE5KRNmSZjMqX27Z06Iq7KWeQQvnzn5D9BhyEGQOiCkhtKCnlrfMduKGNFfYBGrKjEmHHGDv_1x-g85yUhhEopS16P0PtLq1MGnKBNkCF0uvMx4GwWsAK88d0CQ1joYMDiFVi_XuHWf0GDfeggZN9tsYsJO212DhPnwe8EZ-jI6SbD-e95it4e7l8nT-PZ8-N0cjcbG16xelzbot_DCNC21CWj1Uchy5oxJ6h0AMC5sMYIy4UuOWcgnfmgUFvquAYHlp-i6eC1US9Vm_xKp62K2qufi5jmSqfOmwaU4GBr42hVF7ovEJWzhEApiqKfSlnvuh5c69Dq7UY3zZ-QErVLWO0SVj8J9_TlQLcpfq4hd2oZ1yn0n1WcSkZlxQjpqauBMinmnMDtV9IB3vgGtntINZm-suHNNwaFmqE
Cites_doi 10.1016/j.patcog.2011.10.017
10.1016/j.patcog.2012.04.012
10.1109/jproc.2010.2044470
10.1007/s10489‐019‐01612‐3
10.1016/j.patcog.2014.01.007
10.1016/j.ins.2019.08.004
10.1155/2020/8964321
10.1016/j.patcog.2016.12.021
10.1016/j.patcog.2012.03.007
10.1109/tip.2015.2425545
10.1016/j.patrec.2015.07.032
10.1109/tcsvt.2011.2138790
10.1109/jstsp.2007.910971
10.1007/s11042‐020‐08965‐9
10.1016/j.patcog.2019.04.027
10.1007/s00521‐012‐1252‐3
10.1109/access.2015.2430359
10.1109/tcsvt.2020.3042178
10.1109/tnnls.2015.2508025
10.1016/j.patcog.2012.11.003
10.1109/tnnls.2017.2712801
10.1561/0600000079
10.1016/j.neucom.2015.05.070
10.1109/tip.2013.2262292
10.1109/TPAMI.2009.155
10.1016/j.asoc.2020.106183
10.1016/j.dsp.2019.04.006
10.1109/ICIT.2013.6505840
10.1016/j.media.2021.101985
10.1109/tip.2014.2316640
10.1007/s10489‐021‐02557‐2
10.1016/s0031‐3203(02)00031‐6
10.1049/cit2.12115
10.1007/s10489‐015‐0735‐1
10.1016/j.ins.2016.09.059
10.1109/tnnls.2012.2197412
10.1016/j.patcog.2012.01.003
10.1016/j.patcog.2018.03.021
10.1016/j.jvcir.2020.102763
10.1016/j.patcog.2011.08.022
10.1109/tcsvt.2018.2799214
10.1109/SIBGRAPI.2012.52
10.1016/j.ins.2013.02.051
10.1007/s10489‐017‐0956‐6
10.1109/tpami.2008.79
10.1109/ICCV.2011.6126277
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1049/cit2.12247
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 127
ExternalDocumentID oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912
10.1049/cit2.12247
10_1049_cit2_12247
CIT212247
Genre article
GroupedDBID 0R~
0SF
1OC
24P
6I.
AACTN
AAEDW
AAFTH
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
NCXOZ
O9-
OCL
OK1
PIMPY
RIE
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c3627-7d4995c8ead5a5216b495722f819feee338dcc8d38a5332e9fcb1e7d1f3aefed3
IEDL.DBID DOA
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:43:38 EDT 2025
Tue Aug 19 19:18:38 EDT 2025
Wed Aug 13 04:07:50 EDT 2025
Wed Oct 29 21:32:49 EDT 2025
Wed Jan 22 16:15:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3627-7d4995c8ead5a5216b495722f819feee338dcc8d38a5332e9fcb1e7d1f3aefed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7534-1219
0000-0003-2497-9519
0000-0001-8805-0755
0000-0003-1510-3638
OpenAccessLink https://doaj.org/article/83ed7cf1674a4a4e86fd00e5844b4912
PQID 3192196200
PQPubID 6852857
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912
unpaywall_primary_10_1049_cit2_12247
proquest_journals_3192196200
crossref_primary_10_1049_cit2_12247
wiley_primary_10_1049_cit2_12247_CIT212247
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 69
2010; 98
2018; 29
2019; 90
2019; 93
2015; 3
2012
2013; 44
2013; 22
2011
2013; 46
2015; 168
2017; 66
2018; 81
2003; 36
2014; 47
2014; 24
2020; 79
2020; 12
2017; 29
2020; 32
2008; 31
2017; 375
2014; 23
2018; 48
2020; 506
2015; 24
2015; 68
2015; 28
2009; 32
2020; 2020
2022
2020; 50
2020; 71
2013; 238
2020; 90
2018
2011; 21
2022; 52
2013
2007; 1
2012; 45
2012; 23
2016; 44
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Xu Y. (e_1_2_9_39_1) 2013; 44
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
Gong P. (e_1_2_9_47_1) 2013
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 375
  start-page: 171
  year: 2017
  end-page: 82
  article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition
  publication-title: Inf. Sci.
– volume: 81
  start-page: 341
  year: 2018
  end-page: 56
  article-title: Robust, discriminative and comprehensive dictionary learning for face recognition
  publication-title: Pattern Recogn.
– volume: 45
  start-page: 4069
  issue: 12
  year: 2012
  end-page: 79
  article-title: Orthogonal discriminant vector for face recognition across pose
  publication-title: Pattern Recogn.
– volume: 24
  start-page: 2760
  issue: 9
  year: 2015
  end-page: 71
  article-title: Learning a nonnegative sparse graph for linear regression
  publication-title: IEEE Trans. Image Process.
– volume: 69
  start-page: 69
  year: 2021
  end-page: 101985
  article-title: A survey on incorporating domain knowledge into deep learning for medical image analysis
  publication-title: Med. Image Anal.
– volume: 48
  start-page: 156
  issue: 1
  year: 2018
  end-page: 65
  article-title: Robust face recognition via discriminative and common hybrid dictionary learning
  publication-title: Appl. Intell.
– volume: 46
  start-page: 1151
  issue: 4
  year: 2013
  end-page: 8
  article-title: Using the original and ‘symmetrical face’training samples to perform representation based two‐step face recognition
  publication-title: Pattern Recogn.
– volume: 1
  start-page: 606
  issue: 4
  year: 2007
  end-page: 17
  article-title: An interior‐point method for large‐scale $\ell_1 $‐regularized least squares
  publication-title: IEEE J. Sel. Topics Signal Proc.
– year: 2022
  article-title: Application of improved virtual sample and sparse representation in face recognition
  publication-title: CAAI Tran. Intell. Technol.
– volume: 28
  start-page: 278
  issue: 2
  year: 2015
  end-page: 93
  article-title: A locality‐constrained and label embedding dictionary learning algorithm for image classification
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 45
  start-page: 1104
  issue: 3
  year: 2012
  end-page: 18
  article-title: Beyond sparsity: the role of L1‐optimizer in pattern classification
  publication-title: Pattern Recogn.
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  end-page: 27
  article-title: $ L_ {1/2} $ regularization: a thresholding representation theory and a fast solver
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 45
  start-page: 3131
  issue: 9
  year: 2012
  end-page: 40
  article-title: Image warping for face recognition: from local optimality towards global optimization
  publication-title: Pattern Recogn.
– volume: 45
  start-page: 3317
  issue: 9
  year: 2012
  end-page: 27
  article-title: Face recognition in 2D and 2.5 D using ridgelets and photometric stereo
  publication-title: Pattern Recogn.
– volume: 2020
  start-page: 2020
  year: 2020
  end-page: 10
  article-title: A dictionary learning algorithm based on dictionary reconstruction and its application in face recognition
  publication-title: Math. Probl Eng.
– volume: 238
  start-page: 138
  year: 2013
  end-page: 48
  article-title: Using the idea of the sparse representation to perform coarse‐to‐fine face recognition
  publication-title: Inf. Sci.
– volume: 21
  start-page: 1255
  issue: 9
  year: 2011
  end-page: 62
  article-title: A two‐phase test sample sparse representation method for use with face recognition
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 79
  start-page: 23325
  issue: 31
  year: 2020
  end-page: 46
  article-title: Compound dictionary learning based classification method with a novel virtual sample generation Technology for Face Recognition
  publication-title: Multimed. Tool. Appl.
– volume: 168
  start-page: 566
  year: 2015
  end-page: 74
  article-title: Adaptive weighted fusion: a novel fusion approach for image classification
  publication-title: Neurocomputing
– volume: 52
  start-page: 3766
  issue: 4
  year: 2022
  end-page: 80
  article-title: Dictionary learning and face recognition based on sample expansion
  publication-title: Appl. Intell.
– volume: 45
  start-page: 2708
  issue: 7
  year: 2012
  end-page: 18
  article-title: Robust classification using ℓ2, 1‐norm based regression model
  publication-title: Pattern Recogn.
– volume: 68
  start-page: 9
  year: 2015
  end-page: 14
  article-title: Multiple representations and sparse representation for image classification
  publication-title: Pattern Recogn. Lett.
– year: 2018
– volume: 12
  start-page: 1
  issue: 1–3
  year: 2020
  end-page: 308
  article-title: Computer vision for autonomous vehicles: problems, datasets and state of the art
  publication-title: Found. Trends® Comput. Graph. Vis.
– volume: 44
  start-page: 913
  issue: 4
  year: 2016
  end-page: 30
  article-title: Expression invariant face recognition using semidecimated DWT, Patch‐LDSMT, feature and score level fusion
  publication-title: Appl. Intell.
– volume: 47
  start-page: 2447
  issue: 7
  year: 2014
  end-page: 53
  article-title: Face recognition by sparse discriminant analysis via joint L2, 1‐norm minimization
  publication-title: Pattern Recogn.
– volume: 29
  start-page: 390
  issue: 2
  year: 2018
  end-page: 403
  article-title: Robust sparse linear discriminant analysis
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– year: 2012
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
– volume: 29
  start-page: 3111
  issue: 7
  year: 2017
  end-page: 25
  article-title: Discriminative block‐diagonal representation learning for image recognition
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 66
  start-page: 129
  year: 2017
  end-page: 43
  article-title: Learning robust and discriminative low‐rank representations for face recognition with occlusion
  publication-title: Pattern Recogn.
– volume: 24
  start-page: 513
  issue: 3
  year: 2014
  end-page: 9
  article-title: A novel sparse representation method based on virtual samples for face recognition
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 3234
  issue: 8
  year: 2013
  end-page: 46
  article-title: Fast $\ell_ {1} $‐Minimization algorithms for robust face recognition
  publication-title: IEEE Trans. Image Process.
– volume: 32
  start-page: 1705
  issue: 9
  year: 2009
  end-page: 20
  article-title: WLD: a robust local image descriptor
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 2557
  issue: 6
  year: 2014
  end-page: 68
  article-title: Combining LBP difference and feature correlation for texture description
  publication-title: IEEE Trans. Image Process.
– volume: 90
  year: 2020
  article-title: Multi‐scale patch based representation feature learning for low‐resolution face recognition
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 210
  issue: 2
  year: 2008
  end-page: 27
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 293
  issue: 2
  year: 2003
  end-page: 302
  article-title: Noise compensation in a person verification system using face and multiple speech features
  publication-title: Pattern Recogn.
– volume: 90
  start-page: 110
  year: 2019
  end-page: 24
  article-title: Face recognition based on dictionary learning and subspace learning
  publication-title: Digit. Signal Process.
– volume: 506
  start-page: 19
  year: 2020
  end-page: 36
  article-title: Cross‐resolution face recognition with pose variations via multilayer locality‐constrained structural orthogonal procrustes regression
  publication-title: Inf. Sci.
– volume: 32
  start-page: 2550
  issue: 5
  year: 2020
  end-page: 60
  article-title: Hierarchical deep CNN feature set‐based representation learning for robust cross‐resolution face recognition
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 50
  start-page: 1687
  issue: 6
  year: 2020
  end-page: 98
  article-title: Improved image representation and sparse representation for image classification
  publication-title: Appl. Intell.
– volume: 93
  start-page: 283
  year: 2019
  end-page: 92
  article-title: Multi‐resolution dictionary learning for face recognition
  publication-title: Pattern Recogn.
– volume: 98
  start-page: 1031
  issue: 6
  year: 2010
  end-page: 44
  article-title: Sparse representation for computer vision and pattern recognition
  publication-title: Proc. IEEE
– volume: 44
  start-page: 1738
  issue: 10
  year: 2013
  end-page: 46
  article-title: Integrating conventional and inverse representation for face recognition
  publication-title: IEEE Trans. Cybern.
– volume: 71
  year: 2020
  article-title: Discriminative dictionary learning algorithm based on sample diversity and locality of atoms for face recognition
  publication-title: J. Vis. Commun. Image Represent.
– year: 2013
– ident: e_1_2_9_10_1
  doi: 10.1016/j.patcog.2011.10.017
– ident: e_1_2_9_12_1
  doi: 10.1016/j.patcog.2012.04.012
– ident: e_1_2_9_43_1
  doi: 10.1109/jproc.2010.2044470
– ident: e_1_2_9_38_1
  doi: 10.1007/s10489‐019‐01612‐3
– ident: e_1_2_9_18_1
  doi: 10.1016/j.patcog.2014.01.007
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ins.2019.08.004
– ident: e_1_2_9_30_1
  doi: 10.1155/2020/8964321
– ident: e_1_2_9_8_1
  doi: 10.1016/j.patcog.2016.12.021
– ident: e_1_2_9_11_1
  doi: 10.1016/j.patcog.2012.03.007
– ident: e_1_2_9_15_1
  doi: 10.1109/tip.2015.2425545
– ident: e_1_2_9_37_1
  doi: 10.1016/j.patrec.2015.07.032
– ident: e_1_2_9_22_1
  doi: 10.1109/tcsvt.2011.2138790
– ident: e_1_2_9_2_1
– ident: e_1_2_9_45_1
  doi: 10.1109/jstsp.2007.910971
– ident: e_1_2_9_36_1
  doi: 10.1007/s11042‐020‐08965‐9
– ident: e_1_2_9_31_1
  doi: 10.1016/j.patcog.2019.04.027
– ident: e_1_2_9_40_1
  doi: 10.1007/s00521‐012‐1252‐3
– ident: e_1_2_9_14_1
  doi: 10.1109/access.2015.2430359
– ident: e_1_2_9_9_1
  doi: 10.1109/tcsvt.2020.3042178
– ident: e_1_2_9_24_1
  doi: 10.1109/tnnls.2015.2508025
– ident: e_1_2_9_35_1
  doi: 10.1016/j.patcog.2012.11.003
– ident: e_1_2_9_48_1
  doi: 10.1109/tnnls.2017.2712801
– ident: e_1_2_9_3_1
  doi: 10.1561/0600000079
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neucom.2015.05.070
– ident: e_1_2_9_46_1
  doi: 10.1109/tip.2013.2262292
– ident: e_1_2_9_6_1
  doi: 10.1109/TPAMI.2009.155
– volume: 44
  start-page: 1738
  issue: 10
  year: 2013
  ident: e_1_2_9_39_1
  article-title: Integrating conventional and inverse representation for face recognition
  publication-title: IEEE Trans. Cybern.
– ident: e_1_2_9_32_1
  doi: 10.1016/j.asoc.2020.106183
– ident: e_1_2_9_29_1
  doi: 10.1016/j.dsp.2019.04.006
– ident: e_1_2_9_44_1
  doi: 10.1109/ICIT.2013.6505840
– volume-title: International Conference on Machine Learning
  year: 2013
  ident: e_1_2_9_47_1
– ident: e_1_2_9_4_1
  doi: 10.1016/j.media.2021.101985
– ident: e_1_2_9_5_1
  doi: 10.1109/tip.2014.2316640
– ident: e_1_2_9_28_1
  doi: 10.1007/s10489‐021‐02557‐2
– ident: e_1_2_9_41_1
  doi: 10.1016/s0031‐3203(02)00031‐6
– ident: e_1_2_9_50_1
  doi: 10.1049/cit2.12115
– ident: e_1_2_9_34_1
  doi: 10.1007/s10489‐015‐0735‐1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ins.2016.09.059
– ident: e_1_2_9_21_1
  doi: 10.1109/tnnls.2012.2197412
– ident: e_1_2_9_19_1
  doi: 10.1016/j.patcog.2012.01.003
– ident: e_1_2_9_23_1
  doi: 10.1016/j.patcog.2018.03.021
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jvcir.2020.102763
– ident: e_1_2_9_13_1
  doi: 10.1016/j.patcog.2011.08.022
– ident: e_1_2_9_49_1
  doi: 10.1109/tcsvt.2018.2799214
– ident: e_1_2_9_7_1
  doi: 10.1109/SIBGRAPI.2012.52
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ins.2013.02.051
– ident: e_1_2_9_25_1
  doi: 10.1007/s10489‐017‐0956‐6
– ident: e_1_2_9_16_1
  doi: 10.1109/tpami.2008.79
– ident: e_1_2_9_20_1
  doi: 10.1109/ICCV.2011.6126277
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.2551367
Snippet Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has been...
Abstract Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample. It has...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 116
SubjectTerms Accuracy
Algorithms
Classification
computer vision
Dictionaries
Face recognition
Feature extraction
Formability
Image classification
image representation
Occlusion
Pixels
Representations
Sparsity
Teaching methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50PehFFBXXFwE9CdVt0udBREVRwUV84S2kyUQX1m7VXdR_7yTbKntZeiklNGEmyXyTmXwDsBepLBE6twHZvjyIdC6CLNRZUGiMkkIYMnLOUbzpJpeP0fVz_DwD3eYujEurbPZEv1GbgXZn5IfCEXflCSn1uHoPXNUoF11tSmiourSCOfIUY7Mwxx0zVgvmTs-7t3f_py6Eh2KRNjylUX6oe0N-4MJL6YRl8gT-E6hzflRW6udL9fuTONYbooslWKwRJDsZq3wZZrBcgaf7ijxUZJ6jsrlPVDJyXfENmTtsZVi--mg_c-H00Ruret_YZ71xCvvwhxF6ZVZp9486p2hQrsLjxfnD2WVQl0wINFmiNEgNeTCxzmh-xIosc1KQA5RybsnwW0Qkh9RonRmRKcJ5HHOrixBTE1qh0KIRa9AqByWuAwuLjk2pXZjEGBXG5lliyWEztlNwjBW2YbcRl6zGzBjSR7SjXDqhSi_UNpw6Sf61cGzW_sPg40XWi0NmAk2qrbsQoehB6sl0OkjYKKLxh7wNW40eZL3EPuX_hGjD3p9upg5l36ttShN5dvXA_dvG9C43YYETuhmnb29Ba_gxwm1CJ8Nip55yvzXq5Qs
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QMUVlYCehK7bV9oedVFUUARd0VPIY6KLa7doF11_vZO0XVwPIkgvoaRtmslkvklmvhCyH4mUhSozHtq-zItUFnqpr1JPKoiYDDUaOesoXl6xs350cR_ff8vir_ghpgtuVjPcfG0VvNCmmucrrzPKDtWgDDp2byiZJwssRjTeIgv9q-ujB3umnE0qQsAQNGUWx0nDUDrz8IxNctT9M3hzcZwXYvIuhsNZBOtM0OkyEU3jq8iT5864lB31-YPX8T9_t0KWanxKj6oBtUrmIF8jdzcF-r9AHQNmk62UU3SM4QWoXcqlkD-5WAJqN-vHL7QYfMCQDqoA-XJCERtTI5R9Rx2xNMrXSf_05LZ35tUHMngK7VziJRr9o1ilOPpigXafSXSvkiAwCCsMAKC7q5VKdZgKRJEBZEZJHxLtm1CAAR1ukFY-ymGTUF92TYL1fBZDJLXJUmbQHdSmKwOIBbTJXiMSXlS8G9ztl0cZt_3CXb-0ybGV1rSG5cp2N0avj7xWPZ6GoBNlbLqFwAvwS7rbBUReEbbfD9pku5E1rxX4jYeWJy5jOIe0yf5U_r825cDJ85cqvHd-G7jS1t_euU1a5esYdhD2lHK3HtlfW2EDFg
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvQiiorVKgt6EqLNZvMCL1oUFRTBB96WfcxqoU1LTVH_vbObpKUXQXIJYZIsMzuZb3Z2vhByzGWWRDq3Aca-POA6j4Is1FmgNPBERQaDnEsU7x-Smxd-9xa_LZHzphem4oeYLbg5z_Dfa-fgUlV_IUFQi0bU_ZKdurpQukxWQgQybn4z_jhfYUHsE3vSTObaixA6sIaflOdn89sXIpIn7l9Am6vTYix_vuRgsIhffQC63iDrNXKkF5WpN8kSFFvk9WmMmSlQz03Z9BEVFFNWGAJ1i6wUig9f5aeujD4d0nH_Gwa0X21dL38oolZqpXbPqPcSjYpt8nJ99dy7CepfJQQaI1AapAYzl1hnOC9iiRE5UZj4pIxZDPgWADARNVpnJsok4jsGudUqhNSENpJgwUQ7pFWMCtglNFRdm6JcmMTAlbF5llhM1IztKgaxhDY5atQlxhUjhvCVbJ4Lp1Thldoml06TMwnHYu0vjCbvonYKkUVgUm1dI4TEA_BNptsFxEQcxx-yNuk0dhC1a32KyDG45Ql6d5scz2zz51BOvNn-EBG922fmz_b-I7xP1hhinGoTd4e0yskUDhCjlOrQT8Vf6TPhKA
  priority: 102
  providerName: Wiley-Blackwell
Title Sparse representation scheme with enhanced medium pixel intensity for face recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12247
https://www.proquest.com/docview/3192196200
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12247
https://doaj.org/article/83ed7cf1674a4a4e86fd00e5844b4912
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: ADMLS
  dateStart: 20200901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: IDLOA
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050729737
  issn: 2468-6557
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AKRWK
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AVUZU
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFLY2dtgu0yaGVmCVJTghBRLbSexjgXaAaFUNOrGT5djPolIJ1dZq47LfzrOTInphlymSE1lWZL3n6Ps-v5dnQvaFkQW3yieIfSoRVvFEZlYmlQVRVNwhyAWhOBwVZxNxcZPfPDvqK-SENeWBG8MdSQ6utD4kyxu8QBbepSkgbopKqHi-MEuleiam4u4K8p6cl6t6pEId2emCHYYwUrmGQLFQ_xq7fLus5-bht5nN1vlqBJzBB_K-ZYq018zwI3kF9Sb5fjVHJQo01qJc_TdUU5SocAc0bKpSqG9jVJ-GsPnyjs6nf2BGp02q-uKBIkul3tjwjjZ36L7-RCaD_vXJWdIejZBYRJwyKR0qldxKXAe5QQQu0BZ5yZhHgPcAgMLTWSsdlwb5HAPlbZVB6TLPDXhwfIts1Pc1fCY0q1Jf4risyEFUziu0MAoz59OKQW6gQ_ZW5tLzpgKGjpFroXQwqo5G7ZDjYMmnEaFqdexAX-rWl_pfvuyQ3ZUfdPsp_dI8VGxTBX7NHbL_5JsXp3IQ3fbCEH1yfs3i0_b_mPcOeceQ6zTJ3LtkY_FzCV-QqyyqLnnNxBhbOfjaJW96p8PLK7wf90fjb924ZLEd_u1j32Q07v14BIDU7q4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lAuqAgQKQUsUS5IS7O293WoKlpaJbSNEKSoN-O1xxAp3SxtopI_x29j7Oy2yiW3ai-rlWWvZsaebzwvgF2p81SYwkWk-4pImkJEeWzyqDQo01JYUnLeUDwfpL0L-eUyuVyDf20ujA-rbM_EcFDbifF35HvCF-4qUmLqQf0n8l2jvHe1baGhm9YKdj-UGGsSO05xfksm3M1-_zPx-z3nJ8fDo17UdBmIDB3eWZRZAv2JyYmkiSZllpZkM2ScO9KVDhHJhrPG5FbkmqARx8KZMsbMxk5odGgFzfsINqSQBRl_G4fHg6_f7m95CH8lImvrospiz4ym_KN3Z2VLmjA0DFhCuZuzqtbzWz0eL-PmoPhOtuBJg1jZp4WIPYU1rJ7Bj-81WcTIQk3MNn-pYmQq4xUyf7nLsPodoguYd9_Prlg9-otjNlqEzE_njNAyc9r4OZoYpkn1HC4ehHgvYL2aVPgSWFx2XUbj4jRBWVpX5KkjA9G6bskx0diBdy25VL2oxKGCB10WyhNVBaJ24NBT8m6Er54dPkyuf6lmM6pcoM2M8wkYmh6klWy3i4TFJP1_zDuw0_JBNVv6Rt0LYAd273iz8lc-BLatGKKO-kMe3rZXL_kWNnvD8zN11h-cvoLHnJDVInR8B9an1zN8TchoWr5pxI_Bz4eW-P9xgCN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BkcZeJhBM6yhgaTwhZSSO8_XYwSo-BkKCIsSL5djnrVJJI2i18d_v7KRFfUFCeYmik2Pd-XK_s-9-ATgQKk9jXdiAYl8RCF3EQR7pPCg1irSMDQU5lyheXqWnQ3F-n9y3tTmuF6bhh1hsuDnP8N9r5-BYG9sknMKRZOrRlH93B0PZKqxRIA9FB9b6d8OH4esmC8GfxPNmctdhROiBzylKRXH0OsBSUPLc_UuAc31W1erlrxqPlyGsj0GDDfjUgkfWb6y9CStYbcHdTU3JKTJPTzlvJaoYZa34iMztszKs_viDfuZO0mePrB79wzEbNdXr0xdGwJVZpd0YbTnRpNqG4eDn7fFp0P4tIdAUhLIgM5S8JDqnpZEoCsppSblPxrmlmG8RkXJRo3Vu4lwRxONYWF1GmJnIxgotmvgzdKpJhV-ARWVoM5KL0gRFaWyRp5ZyNWPDkmOisAvf5uqSdUOKIf1htiikU6r0Su3CD6fJhYQjsvYPJk-_ZesXMo_RZNq6XghFF9KbTBgiwSJB8494F3pzO8jWu55l7EjcipQcvAsHC9u8OZVDb7Y3ROTx2S33d1_fI7wPH65PBvLX2dXFDnzkhHiaku4edKZPM9wlxDIt99p1-R9Fy-Xo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Hjz5QMUVlYCehK7bV9oedVFUUARd0VPIY6KLa7doF11_vZO0XVwPIkgvoaRtmslkvklmvhCyH4mUhSozHtq-zItUFnqpr1JPKoiYDDUaOesoXl6xs350cR_ff8vir_ghpgtuVjPcfG0VvNCmmucrrzPKDtWgDDp2byiZJwssRjTeIgv9q-ujB3umnE0qQsAQNGUWx0nDUDrz8IxNctT9M3hzcZwXYvIuhsNZBOtM0OkyEU3jq8iT5864lB31-YPX8T9_t0KWanxKj6oBtUrmIF8jdzcF-r9AHQNmk62UU3SM4QWoXcqlkD-5WAJqN-vHL7QYfMCQDqoA-XJCERtTI5R9Rx2xNMrXSf_05LZ35tUHMngK7VziJRr9o1ilOPpigXafSXSvkiAwCCsMAKC7q5VKdZgKRJEBZEZJHxLtm1CAAR1ukFY-ymGTUF92TYL1fBZDJLXJUmbQHdSmKwOIBbTJXiMSXlS8G9ztl0cZt_3CXb-0ybGV1rSG5cp2N0avj7xWPZ6GoBNlbLqFwAvwS7rbBUReEbbfD9pku5E1rxX4jYeWJy5jOIe0yf5U_r825cDJ85cqvHd-G7jS1t_euU1a5esYdhD2lHK3HtlfW2EDFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+representation+scheme+with+enhanced+medium+pixel+intensity+for+face+recognition&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Xuexue+Zhang&rft.au=Yongjun+Zhang&rft.au=Zewei+Wang&rft.au=Wei+Long&rft.date=2024-02-01&rft.pub=Wiley&rft.eissn=2468-2322&rft.volume=9&rft.issue=1&rft.spage=116&rft.epage=127&rft_id=info:doi/10.1049%2Fcit2.12247&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_83ed7cf1674a4a4e86fd00e5844b4912
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon