“Texting & Driving” Detection Using Deep Convolutional Neural Networks
The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 9; no. 15; p. 2962 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app9152962 | 
Cover
| Abstract | The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate. | 
    
|---|---|
| AbstractList | The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as "texting and driving", with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning−convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect "texting and driving" subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers' awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate. According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people were killed and 391,000 were injured in motor vehicle accidents with distracted drivers in 2016 and approximately 481,000 drivers were using their cell phones while they were driving, which is a potential danger to drivers and passengers, as it can cause deaths or injuries on the U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people died and 391,000 were injured in car accidents with distracted drivers in 2016 and approximately 481,000 drivers participated in the use of their cell phones while driving, which represents a potential danger to drivers and passengers, as it can cause deaths or injuries on the roads in the U.S. Therefore, the popularity of mobile devices has had some unplanned and even dangerous consequences, since distracted drivers accounted for only 8.5% of total deaths in 2017 [3], and mobile communications are now linked to a significant increase in distracted driving, which is a serious and growing threat to road safety, causing injuries and loss of life [4]. [...]Cohen’s kappa statistic coefficient is computed to measure the inter-rater agreement of the final models [39]; this metric measures the amount of agreement corrected by the agreement expected by chance, the Kappa coefficient κ is given by (8), where P(o) is the relative observed agreement among raters (identical to accuracy), and P(e) is the hypothetical probability of chance agreement: κ=P(o)-P(e)1-P(e). First Sensor in SmartDrive's New Line of Intelligent Driver-Assist Sensors Recognized for Addressing One of the Deadliest Risks in Commercial Transportation. The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.  | 
    
| Author | Gamboa-Rosales, Nadia Karina Galván-Tejada, Carlos Eric Lozano-Aguilar, Joyce Selene Anaid Gamboa-Rosales, Hamurabi Celaya-Padilla, José María Galván-Tejada, Jorge Issac Velez Rodriguez, Alberto Zanella-Calzada, Laura Alejandra Luna-García, Huizilopoztli  | 
    
| Author_xml | – sequence: 1 givenname: José María orcidid: 0000-0001-6847-3777 surname: Celaya-Padilla fullname: Celaya-Padilla, José María – sequence: 2 givenname: Carlos Eric orcidid: 0000-0002-7635-4687 surname: Galván-Tejada fullname: Galván-Tejada, Carlos Eric – sequence: 3 givenname: Joyce Selene Anaid surname: Lozano-Aguilar fullname: Lozano-Aguilar, Joyce Selene Anaid – sequence: 4 givenname: Laura Alejandra surname: Zanella-Calzada fullname: Zanella-Calzada, Laura Alejandra – sequence: 5 givenname: Huizilopoztli orcidid: 0000-0001-5714-7482 surname: Luna-García fullname: Luna-García, Huizilopoztli – sequence: 6 givenname: Jorge Issac surname: Galván-Tejada fullname: Galván-Tejada, Jorge Issac – sequence: 7 givenname: Nadia Karina surname: Gamboa-Rosales fullname: Gamboa-Rosales, Nadia Karina – sequence: 8 givenname: Alberto surname: Velez Rodriguez fullname: Velez Rodriguez, Alberto – sequence: 9 givenname: Hamurabi orcidid: 0000-0002-9498-6602 surname: Gamboa-Rosales fullname: Gamboa-Rosales, Hamurabi  | 
    
| BookMark | eNp9kMtKxDAUhoMoeN34BAXBhTKaS5u2S5nxMiK60XU4yZxKx9rUJB1154Poy82T2DqiImI25_CfL9_iXyfLta2RkG1GD4TI6SE0Tc4Snku-RNY4TeVAxCxd_rGvki3vp7R7ORMZo2vkfP7yeo1Poaxvo91o5MpZt81f3qIRBjShtHV04_vjCLGJhrae2artY6iiS2zdxwiP1t35TbJSQOVx63NukJuT4-vh2eDi6nQ8PLoYGCFZGBQmTpIi1agzbTidaC3khGfUAOMsMYznGEuTGgDNMClAizjLJ4g6McZwA2KDjBfeiYWpalx5D-5ZWSjVR2DdrQIXSlOhYpDqTlYwmbA4jhPNUt5nKKlMIcXOtb9wtXUDz49QVV9CRlXfqvputaN3FnTj7EOLPqipbV1XhVdccMGEzGjcUXsLyjjrvcPifyX9BZsyQF9wcFBWf315BwGqmFE | 
    
| CitedBy_id | crossref_primary_10_1109_JRFID_2022_3209237 crossref_primary_10_3390_computation12070131 crossref_primary_10_1109_TVT_2024_3427814 crossref_primary_10_1016_j_sysarc_2021_102319 crossref_primary_10_1109_ACCESS_2020_2999829 crossref_primary_10_3103_S1060992X21030103 crossref_primary_10_3390_s21227752 crossref_primary_10_1109_ACCESS_2022_3210985 crossref_primary_10_1007_s42421_020_00030_z crossref_primary_10_54105_ijeer_C1007_051322 crossref_primary_10_1186_s43067_023_00124_y crossref_primary_10_1109_JIOT_2022_3155667 crossref_primary_10_1016_j_jvcir_2021_103135 crossref_primary_10_1177_03611981241253597 crossref_primary_10_3390_app10082944 crossref_primary_10_1016_j_jjimei_2022_100076 crossref_primary_10_3390_app132111898 crossref_primary_10_3390_electronics12132873 crossref_primary_10_3390_app112411600 crossref_primary_10_3390_s22051864 crossref_primary_10_1109_TR_2023_3348951  | 
    
| Cites_doi | 10.1109/CVPR.2016.308 10.1007/s11263-015-0816-y 10.1148/radiology.143.1.7063747 10.1109/ECTICon.2014.6839778 10.1201/b11430 10.1109/MALWARE.2015.7413680 10.1016/j.chb.2015.05.004 10.1049/iet-its.2014.0248 10.1145/2462456.2466711 10.1177/001316447303300309 10.1111/j.1466-8238.2007.00358.x 10.1145/1978942.1979008 10.4108/ICST.PERVASIVEHEALTH2010.8901 10.1016/j.pmedr.2016.09.003 10.1056/NEJMsa1204142 10.1109/MITS.2014.2343262 10.1109/ITSC.2011.6083026 10.1038/nature21056 10.1109/JIOT.2016.2552399 10.1109/TITS.2017.2680468 10.1109/TKDE.2009.191 10.1177/0361198118782758 10.3390/bioengineering5020047  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app9152962 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_1a7b46cf16514445b1721a7be6067a7e 10.3390/app9152962 10_3390_app9152962  | 
    
| GeographicLocations | United States--US Mexico  | 
    
| GeographicLocations_xml | – name: Mexico – name: United States--US  | 
    
| GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 2XV ADTOC IGS IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c361t-fc455f7beb8bc20dbb36d280ca1215c129e46c7caab1e5fab3489deeb5ccc2ca3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Tue Oct 14 18:55:06 EDT 2025 Sun Oct 26 04:08:30 EDT 2025 Mon Jun 30 11:09:04 EDT 2025 Thu Oct 16 04:30:31 EDT 2025 Thu Apr 24 22:51:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c361t-fc455f7beb8bc20dbb36d280ca1215c129e46c7caab1e5fab3489deeb5ccc2ca3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7635-4687 0000-0001-6847-3777 0000-0002-9498-6602 0000-0001-5714-7482  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2323136804?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2323136804 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1a7b46cf16514445b1721a7be6067a7e unpaywall_primary_10_3390_app9152962 proquest_journals_2323136804 crossref_primary_10_3390_app9152962 crossref_citationtrail_10_3390_app9152962  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-00-00 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – year: 2019 text: 2019-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2019 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Li (ref_6) 2018; 2672 ref_14 ref_36 ref_35 ref_12 ref_11 ref_33 Atiquzzaman (ref_7) 2017; 2017 ref_32 Engelbrecht (ref_22) 2015; 9 ref_31 Hanley (ref_38) 1982; 143 Esteva (ref_28) 2017; 542 ref_19 ref_18 ref_16 Skog (ref_13) 2017; 18 (ref_34) 2018; 5 Skog (ref_21) 2014; 6 Fleiss (ref_39) 1973; 33 ref_25 ref_24 ref_23 Klauer (ref_9) 2014; 370 He (ref_15) 2015; 52 Lobo (ref_37) 2008; 17 Bo (ref_17) 2017; 4 ref_20 ref_1 ref_3 ref_2 Gliklich (ref_10) 2016; 4 ref_29 ref_26 ref_8 ref_5 ref_4 Russakovsky (ref_27) 2015; 115 Pan (ref_30) 2010; 22  | 
    
| References_xml | – ident: ref_29 doi: 10.1109/CVPR.2016.308 – volume: 115 start-page: 211 year: 2015 ident: ref_27 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_5 – volume: 143 start-page: 29 year: 1982 ident: ref_38 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – ident: ref_3 – ident: ref_24 – ident: ref_26 – ident: ref_14 doi: 10.1109/ECTICon.2014.6839778 – ident: ref_11 – ident: ref_32 doi: 10.1201/b11430 – ident: ref_35 doi: 10.1109/MALWARE.2015.7413680 – volume: 52 start-page: 115 year: 2015 ident: ref_15 article-title: Mutual interferences of driving and texting performance publication-title: Compute. Hum. Behav. doi: 10.1016/j.chb.2015.05.004 – volume: 9 start-page: 924 year: 2015 ident: ref_22 article-title: Survey of smartphone-based sensing in vehicles for intelligent transportation system applications publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2014.0248 – ident: ref_1 doi: 10.1145/2462456.2466711 – volume: 33 start-page: 613 year: 1973 ident: ref_39 article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability publication-title: Educ. Psychol. Meas. doi: 10.1177/001316447303300309 – ident: ref_18 – ident: ref_23 – volume: 17 start-page: 145 year: 2008 ident: ref_37 article-title: AUC: a misleading measure of the performance of predictive distribution models publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2007.00358.x – ident: ref_8 doi: 10.1145/1978942.1979008 – volume: 2017 start-page: 1 year: 2017 ident: ref_7 article-title: Exploring Distracted Driver Detection Algorithms Using a Driving Simulator Study publication-title: Transp. Res. Board – ident: ref_20 doi: 10.4108/ICST.PERVASIVEHEALTH2010.8901 – volume: 4 start-page: 486 year: 2016 ident: ref_10 article-title: Texting while driving: A study of 1211 U.S. adults with the Distracted Driving Survey publication-title: Prev. Med. Rep. doi: 10.1016/j.pmedr.2016.09.003 – ident: ref_25 – ident: ref_4 – volume: 370 start-page: 54 year: 2014 ident: ref_9 article-title: Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1204142 – ident: ref_31 – ident: ref_33 – ident: ref_2 – ident: ref_12 – volume: 6 start-page: 57 year: 2014 ident: ref_21 article-title: Insurance Telematics: Opportunities and Challenges with the Smartphone Solution publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2014.2343262 – ident: ref_16 doi: 10.1109/ITSC.2011.6083026 – volume: 542 start-page: 115 year: 2017 ident: ref_28 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 4 start-page: 340 year: 2017 ident: ref_17 article-title: Detecting driver’s smartphone usage via nonintrusively sensing driving dynamics publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2552399 – ident: ref_36 – volume: 18 start-page: 2802 year: 2017 ident: ref_13 article-title: Smartphone-based vehicle telematics: A ten-year anniversary publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2680468 – ident: ref_19 – volume: 22 start-page: 1345 year: 2010 ident: ref_30 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 2672 start-page: 55 year: 2018 ident: ref_6 article-title: Driver’s Visual Performance in Rear-End Collision Avoidance Process under the Influence of Cell Phone Use publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.1177/0361198118782758 – volume: 5 start-page: 47 year: 2018 ident: ref_34 article-title: Deep Artificial Neural Networks for the Diagnostic of Caries Using Socioeconomic and Nutritional Features as Determinants: Data from NHANES 2013–2014 publication-title: Bioengineering doi: 10.3390/bioengineering5020047  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.268319 | 
    
| Snippet | The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety... According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people were killed and 391,000 were injured in motor vehicle accidents...  | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 2962 | 
    
| SubjectTerms | Cellular telephones convolutional neural network driver distraction driver’s behavior detection Eye movements Neural networks smart car smart cities smart infotainment Text messaging texting and driving  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si3oQWxWrVRbswR4WN5vsI0dtLcWDpxZ6W5LsLAhlW_pQvPWH6J_rL3GS3dYWRC-elg0DGWYm80iGbwhpSh7xIJPc9SPgLhehcIUAcH2mYqyCMp-D7fJ9DnsD_jQMhlujvkxPWAEPXAjujspI8VBnNMTQznmgTM2Ca4CZdyQjMN7Xi8VWMWV9sKAGuqrAI2VY15v3YEHNI6O_E4EsUP9Odrm_yCfy_U2ORluBpntMjsoM0bkvOKuSPchr5HALN7BGquWJnDm3JWx064T0VsuPPrpapHA60xdzUbBafjodmNtuq9yx3QH4DxOnPc5fS5vDrQxAh_3YjvDZKRl0H_vtnlvOSXA1C-nczTQPggxFomKlfS9VioWpH3taGugIjREdUIKRllJRQMUoxmORAqhAa-1ryc5IJR_ncE6cNM54wIBqjGwcuFCBwgpQahpqQVXE66S1ll2iSxBxM8tilGAxYeScfMu5Tm42tJMCOuNHqgejgg2Fgbu2C2gESWkEyV9GUCeNtQKT8gzOEswVGWVh7CHXzY1Sf2Hl4j9YuSQHmFOJ4pamQSrz6QKuMG-Zq2trol_kM-vU priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAcgBYQCwVFokL0kO7a8Ud8QqWlqnqoOHSlcgq2M6kqVtnVbrYITv0h8Of6Sxgn3qVFCCFximJNFFsztt-zR28AtqzQQlZWpFyjSIVRJjUGMeWZy4kFVVxgm-V7rA5H4uhUnsY6p_OYVklU_LxdpDmR7JSWWT0wAyYH3Cg-mJbV24t4lMQCGpGa8_w2rClJYLwHa6PjD7sfQ0m55cedKGlG5D5cChsWbhr5jW2oVeu_ATHvLOqp_frFjsfXdpuDB_Bp2c8uyeTzzqJxO_7bbxKO_zGQh3A_ItFktwuddbiF9Qbcu6ZPuAHrcebPkzdRnnr7ERxdXX4_oSWdLJLXyf7sPBxJXF3-SPaxafO66qTNQ6B3nCZ7k_oiRjf9LEiBtI8293z-GEYH70_2DtNYkSH1mWJNWnkhZaUdutx5Piydy1TJ86G3QaTCE3ZAobz21jqGFAIuE7kpEZ303nNvsyfQqyc1PoWkzCshM2Se9lCBwjjpiGtaz5Q3zGnRh-2lgwof5cpD1YxxQbQlOLP45cw-vFrZTjuRjj9avQt-XlkEYe22YTI7K-I8LZjVjoZQMUVIUgjpAkWmNiSip63GPmwuo6SIs31eECrNWKbyIfV6axU5f-nKs38zew53CZ-Z7sRnE3rNbIEvCAM17mWM859y1wJU priority: 102 providerName: Unpaywall  | 
    
| Title | “Texting & Driving” Detection Using Deep Convolutional Neural Networks | 
    
| URI | https://www.proquest.com/docview/2323136804 https://www.mdpi.com/2076-3417/9/15/2962/pdf?version=1565657228 https://doaj.org/article/1a7b46cf16514445b1721a7be6067a7e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S59D2UJq0pU5Ts9BQmsNSazX70KGUvNyQgwklhvS0SNrZUDBr13ZSessPaf9cfklHstZJoOS0SAz70Eia-Uaz3wDsaswxrTXGSU4Yo8pUrBRRnEhTMAqqEySf5TvMTkZ4epFerMGw_RfGpVW2e6LfqKuJdTHyT2z5pZBZ0ccv05-xqxrlTlfbEho6lFaoPnuKsXXYSBwzVgc2Do6HZ99WURfHglmI_pKnVDLed-fESrjDx-SBZfIE_g-8zidXzVT__qXH43sGaPACngfPMdpfqnoT1qjZgmf3-AS3YDOs1Hn0MdBJ772E09ubP-e8BbNE9CE6mv1wIYTbm7_RES18HlYT-bwBbtM0Opw012E28sMcdYe_-Fzx-SsYDY7PD0_iUEEhtjITi7i2mKZ1bsgUxib9yhiZVUnRt9qRSli29YSZza3WRhCrzEgsVEVkUmttYrV8DZ1m0tAbiKqixlSSsGzzkFCZ1DA21FZkVgmTYxf22tErbaAXd1UuxiXDDDfS5d1Id-H9Sna6JNX4r9SBU8JKwhFh-47J7LIM66oUOjf8CbXI2PNDTI2DtNxHDMxynVMXdloVlmF1zsu7udSF3ZVaH3mV7cfv8haesh-llpGZHegsZlf0jn2VhenBejH42gvTsOcRP7dGw7P97_8AOqjuUA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lA4IFpApBSwREH0YOH1jn_2UCHatEp_iBBKpd7M7nqMkCInTVKq3vog8Co8TJ-EWWeTthLqrSfL1mjtnR3P385-A7ChMcOk0hjGGWGIKlWhUkRhLE3OUVAVIzVVvt20c4wHJ8nJAvydnYVxZZUzndgo6nJgXY78I1t-KWSaR_hpeBq6rlFud3XWQkP71grlVgMx5g92HNLFOYdw4639Nq_3uzje2-3tdELfZSC0MhWTsLKYJFVmyOTGxlFpjEzLOI-sdsALlu0hYWozq7URxNMyEnNVEpnEWhtbLXncB7CEEhUHf0vbu92v3-ZZHoe6mYtoiosqpYrcvrQSbrMzvmUJm4YBt7zc5bN6qC_Odb9_w-DtPYHH3lMNPk9FawUWqF6FRzfwC1dhxWuGcfDBw1dvPoWDq8vfPVb5TBG8D9qjny5lcXX5J2jTpKn7qoOmToHvaRjsDOpfXvr5ZQ4qpLk0tenjZ3B8L7x8Dov1oKYXEJR5hYkkYdnGIqEyieFYVFuRWiVMhi3YnHGvsB7O3HXV6Bcc1jhOF9ecbsHbOe1wCuLxX6pttwhzCge83TwYjH4U_j8uhM4MT6ESKXuaiIlxITQ_Iw4EM51RC9ZnS1h4bTAurmW3BRvzZb3jU9buHuUNLHd6X46Ko_3u4Ut4yD6cmmaF1mFxMjqjV-wnTcxrL4wBfL9v-f8HeZ0rEg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIvFzQLSAWCgQiYLoIWocO3F8QAi6LP1BFYdW6i21nQmqtMpud7dUvfVB4EV4nD4JY8fZthLqraco0ciJx5P58_gbgFUtpMhqLeJUooiFylWsFGKcclNQFFSnAn2V726-uS-2D7KDBfjbnYVxZZWdTvSKuhpZlyNfJ8vPGc-LRKzXoSziR3_waXwcuw5Sbqe1a6fRisgOnp1S-Db9uNWntX6XpoOvexubcegwEFues1lcW5FltTRoCmPTpDKG51VaJFY70AVLthBFbqXV2jCkKRkuClUhmsxam1rNadw7cFc6FHd3Sn3wbZ7fcXibBUtaRFTOVeJ2pBVz25zpNRvoWwVc82_vnzRjfXaqh8Mrpm7wGB4FHzX63ArVEixgswwPryAXLsNS0AnT6EMArl57AtsX57_3iGNEEb2P-pMjl6y4OP8T9XHmK76ayFco0D2Oo41R8yvIPb3MgYT4i69Knz6F_Vvh5DNYbEYNPoeoKmqRcWSWrKtAoUxmKArVluVWMSNFD9Y67pU2AJm7fhrDkgIax-nyktM9eDunHbfwHf-l-uIWYU7hILf9g9HkZxn-4JJpaWgKNcvJxxQiMy54pmdIIaDUEnuw0i1hGfTAtLyU2h6szpf1hk95cfMob-AeSX35fWt35yU8IOdNtemgFVicTU7wFTlIM_PaS2IEh7ct-v8AaEkorA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAcgBYQCwVFokL0kO7a8Ud8QqWlqnqoOHSlcgq2M6kqVtnVbrYITv0h8Of6Sxgn3qVFCCFximJNFFsztt-zR28AtqzQQlZWpFyjSIVRJjUGMeWZy4kFVVxgm-V7rA5H4uhUnsY6p_OYVklU_LxdpDmR7JSWWT0wAyYH3Cg-mJbV24t4lMQCGpGa8_w2rClJYLwHa6PjD7sfQ0m55cedKGlG5D5cChsWbhr5jW2oVeu_ATHvLOqp_frFjsfXdpuDB_Bp2c8uyeTzzqJxO_7bbxKO_zGQh3A_ItFktwuddbiF9Qbcu6ZPuAHrcebPkzdRnnr7ERxdXX4_oSWdLJLXyf7sPBxJXF3-SPaxafO66qTNQ6B3nCZ7k_oiRjf9LEiBtI8293z-GEYH70_2DtNYkSH1mWJNWnkhZaUdutx5Piydy1TJ86G3QaTCE3ZAobz21jqGFAIuE7kpEZ303nNvsyfQqyc1PoWkzCshM2Se9lCBwjjpiGtaz5Q3zGnRh-2lgwof5cpD1YxxQbQlOLP45cw-vFrZTjuRjj9avQt-XlkEYe22YTI7K-I8LZjVjoZQMUVIUgjpAkWmNiSip63GPmwuo6SIs31eECrNWKbyIfV6axU5f-nKs38zew53CZ-Z7sRnE3rNbIEvCAM17mWM859y1wJU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CTexting+%26+Driving%E2%80%9D+Detection+Using+Deep+Convolutional+Neural+Networks&rft.jtitle=Applied+sciences&rft.au=Celaya-Padilla%2C+Jos%C3%A9+Mar%C3%ADa&rft.au=Galv%C3%A1n-Tejada%2C+Carlos+Eric&rft.au=Joyce+Selene+Anaid+Lozano-Aguilar&rft.au=Zanella-Calzada%2C+Laura+Alejandra&rft.date=2019&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=15&rft_id=info:doi/10.3390%2Fapp9152962&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |