“Texting & Driving” Detection Using Deep Convolutional Neural Networks

The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 9; no. 15; p. 2962
Main Authors Celaya-Padilla, José María, Galván-Tejada, Carlos Eric, Lozano-Aguilar, Joyce Selene Anaid, Zanella-Calzada, Laura Alejandra, Luna-García, Huizilopoztli, Galván-Tejada, Jorge Issac, Gamboa-Rosales, Nadia Karina, Velez Rodriguez, Alberto, Gamboa-Rosales, Hamurabi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2019
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app9152962

Cover

Abstract The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.
AbstractList The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as "texting and driving", with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning−convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect "texting and driving" subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers' awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.
According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people were killed and 391,000 were injured in motor vehicle accidents with distracted drivers in 2016 and approximately 481,000 drivers were using their cell phones while they were driving, which is a potential danger to drivers and passengers, as it can cause deaths or injuries on the U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people died and 391,000 were injured in car accidents with distracted drivers in 2016 and approximately 481,000 drivers participated in the use of their cell phones while driving, which represents a potential danger to drivers and passengers, as it can cause deaths or injuries on the roads in the U.S. Therefore, the popularity of mobile devices has had some unplanned and even dangerous consequences, since distracted drivers accounted for only 8.5% of total deaths in 2017 [3], and mobile communications are now linked to a significant increase in distracted driving, which is a serious and growing threat to road safety, causing injuries and loss of life [4]. [...]Cohen’s kappa statistic coefficient is computed to measure the inter-rater agreement of the final models [39]; this metric measures the amount of agreement corrected by the agreement expected by chance, the Kappa coefficient κ is given by (8), where P(o) is the relative observed agreement among raters (identical to accuracy), and P(e) is the hypothetical probability of chance agreement: κ=P(o)-P(e)1-P(e). First Sensor in SmartDrive's New Line of Intelligent Driver-Assist Sensors Recognized for Addressing One of the Deadliest Risks in Commercial Transportation.
The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety Administration (NHTSA), among the different types of distractions, the use of cellphones is highly related to car accidents, commonly known as “texting and driving”, with around 481,000 drivers distracted by their cellphones while driving, about 3450 people killed and 391,000 injured in car accidents involving distracted drivers in 2016 alone. Therefore, in this research, a novel methodology to detect distracted drivers using their cellphone is proposed. For this, a ceiling mounted wide angle camera coupled to a deep learning–convolutional neural network (CNN) are implemented to detect such distracted drivers. The CNN is constructed by the Inception V3 deep neural network, being trained to detect “texting and driving” subjects. The final CNN was trained and validated on a dataset of 85,401 images, achieving an area under the curve (AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test and a sensitivity value of 0.97 on the blind test. In this research, for the first time, a CNN is used to detect the problem of texting and driving, achieving a significant performance. The proposed methodology can be incorporated into a smart infotainment car, thus helping raise drivers’ awareness of their driving habits and associated risks, thus helping to reduce careless driving and promoting safe driving practices to reduce the accident rate.
Author Gamboa-Rosales, Nadia Karina
Galván-Tejada, Carlos Eric
Lozano-Aguilar, Joyce Selene Anaid
Gamboa-Rosales, Hamurabi
Celaya-Padilla, José María
Galván-Tejada, Jorge Issac
Velez Rodriguez, Alberto
Zanella-Calzada, Laura Alejandra
Luna-García, Huizilopoztli
Author_xml – sequence: 1
  givenname: José María
  orcidid: 0000-0001-6847-3777
  surname: Celaya-Padilla
  fullname: Celaya-Padilla, José María
– sequence: 2
  givenname: Carlos Eric
  orcidid: 0000-0002-7635-4687
  surname: Galván-Tejada
  fullname: Galván-Tejada, Carlos Eric
– sequence: 3
  givenname: Joyce Selene Anaid
  surname: Lozano-Aguilar
  fullname: Lozano-Aguilar, Joyce Selene Anaid
– sequence: 4
  givenname: Laura Alejandra
  surname: Zanella-Calzada
  fullname: Zanella-Calzada, Laura Alejandra
– sequence: 5
  givenname: Huizilopoztli
  orcidid: 0000-0001-5714-7482
  surname: Luna-García
  fullname: Luna-García, Huizilopoztli
– sequence: 6
  givenname: Jorge Issac
  surname: Galván-Tejada
  fullname: Galván-Tejada, Jorge Issac
– sequence: 7
  givenname: Nadia Karina
  surname: Gamboa-Rosales
  fullname: Gamboa-Rosales, Nadia Karina
– sequence: 8
  givenname: Alberto
  surname: Velez Rodriguez
  fullname: Velez Rodriguez, Alberto
– sequence: 9
  givenname: Hamurabi
  orcidid: 0000-0002-9498-6602
  surname: Gamboa-Rosales
  fullname: Gamboa-Rosales, Hamurabi
BookMark eNp9kMtKxDAUhoMoeN34BAXBhTKaS5u2S5nxMiK60XU4yZxKx9rUJB1154Poy82T2DqiImI25_CfL9_iXyfLta2RkG1GD4TI6SE0Tc4Snku-RNY4TeVAxCxd_rGvki3vp7R7ORMZo2vkfP7yeo1Poaxvo91o5MpZt81f3qIRBjShtHV04_vjCLGJhrae2artY6iiS2zdxwiP1t35TbJSQOVx63NukJuT4-vh2eDi6nQ8PLoYGCFZGBQmTpIi1agzbTidaC3khGfUAOMsMYznGEuTGgDNMClAizjLJ4g6McZwA2KDjBfeiYWpalx5D-5ZWSjVR2DdrQIXSlOhYpDqTlYwmbA4jhPNUt5nKKlMIcXOtb9wtXUDz49QVV9CRlXfqvputaN3FnTj7EOLPqipbV1XhVdccMGEzGjcUXsLyjjrvcPifyX9BZsyQF9wcFBWf315BwGqmFE
CitedBy_id crossref_primary_10_1109_JRFID_2022_3209237
crossref_primary_10_3390_computation12070131
crossref_primary_10_1109_TVT_2024_3427814
crossref_primary_10_1016_j_sysarc_2021_102319
crossref_primary_10_1109_ACCESS_2020_2999829
crossref_primary_10_3103_S1060992X21030103
crossref_primary_10_3390_s21227752
crossref_primary_10_1109_ACCESS_2022_3210985
crossref_primary_10_1007_s42421_020_00030_z
crossref_primary_10_54105_ijeer_C1007_051322
crossref_primary_10_1186_s43067_023_00124_y
crossref_primary_10_1109_JIOT_2022_3155667
crossref_primary_10_1016_j_jvcir_2021_103135
crossref_primary_10_1177_03611981241253597
crossref_primary_10_3390_app10082944
crossref_primary_10_1016_j_jjimei_2022_100076
crossref_primary_10_3390_app132111898
crossref_primary_10_3390_electronics12132873
crossref_primary_10_3390_app112411600
crossref_primary_10_3390_s22051864
crossref_primary_10_1109_TR_2023_3348951
Cites_doi 10.1109/CVPR.2016.308
10.1007/s11263-015-0816-y
10.1148/radiology.143.1.7063747
10.1109/ECTICon.2014.6839778
10.1201/b11430
10.1109/MALWARE.2015.7413680
10.1016/j.chb.2015.05.004
10.1049/iet-its.2014.0248
10.1145/2462456.2466711
10.1177/001316447303300309
10.1111/j.1466-8238.2007.00358.x
10.1145/1978942.1979008
10.4108/ICST.PERVASIVEHEALTH2010.8901
10.1016/j.pmedr.2016.09.003
10.1056/NEJMsa1204142
10.1109/MITS.2014.2343262
10.1109/ITSC.2011.6083026
10.1038/nature21056
10.1109/JIOT.2016.2552399
10.1109/TITS.2017.2680468
10.1109/TKDE.2009.191
10.1177/0361198118782758
10.3390/bioengineering5020047
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/app9152962
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1a7b46cf16514445b1721a7be6067a7e
10.3390/app9152962
10_3390_app9152962
GeographicLocations United States--US
Mexico
GeographicLocations_xml – name: Mexico
– name: United States--US
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
2XV
ADTOC
IGS
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c361t-fc455f7beb8bc20dbb36d280ca1215c129e46c7caab1e5fab3489deeb5ccc2ca3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Tue Oct 14 18:55:06 EDT 2025
Sun Oct 26 04:08:30 EDT 2025
Mon Jun 30 11:09:04 EDT 2025
Thu Oct 16 04:30:31 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-fc455f7beb8bc20dbb36d280ca1215c129e46c7caab1e5fab3489deeb5ccc2ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7635-4687
0000-0001-6847-3777
0000-0002-9498-6602
0000-0001-5714-7482
OpenAccessLink https://www.proquest.com/docview/2323136804?pq-origsite=%requestingapplication%&accountid=15518
PQID 2323136804
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1a7b46cf16514445b1721a7be6067a7e
unpaywall_primary_10_3390_app9152962
proquest_journals_2323136804
crossref_primary_10_3390_app9152962
crossref_citationtrail_10_3390_app9152962
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_6) 2018; 2672
ref_14
ref_36
ref_35
ref_12
ref_11
ref_33
Atiquzzaman (ref_7) 2017; 2017
ref_32
Engelbrecht (ref_22) 2015; 9
ref_31
Hanley (ref_38) 1982; 143
Esteva (ref_28) 2017; 542
ref_19
ref_18
ref_16
Skog (ref_13) 2017; 18
(ref_34) 2018; 5
Skog (ref_21) 2014; 6
Fleiss (ref_39) 1973; 33
ref_25
ref_24
ref_23
Klauer (ref_9) 2014; 370
He (ref_15) 2015; 52
Lobo (ref_37) 2008; 17
Bo (ref_17) 2017; 4
ref_20
ref_1
ref_3
ref_2
Gliklich (ref_10) 2016; 4
ref_29
ref_26
ref_8
ref_5
ref_4
Russakovsky (ref_27) 2015; 115
Pan (ref_30) 2010; 22
References_xml – ident: ref_29
  doi: 10.1109/CVPR.2016.308
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_27
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_5
– volume: 143
  start-page: 29
  year: 1982
  ident: ref_38
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: ref_3
– ident: ref_24
– ident: ref_26
– ident: ref_14
  doi: 10.1109/ECTICon.2014.6839778
– ident: ref_11
– ident: ref_32
  doi: 10.1201/b11430
– ident: ref_35
  doi: 10.1109/MALWARE.2015.7413680
– volume: 52
  start-page: 115
  year: 2015
  ident: ref_15
  article-title: Mutual interferences of driving and texting performance
  publication-title: Compute. Hum. Behav.
  doi: 10.1016/j.chb.2015.05.004
– volume: 9
  start-page: 924
  year: 2015
  ident: ref_22
  article-title: Survey of smartphone-based sensing in vehicles for intelligent transportation system applications
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2014.0248
– ident: ref_1
  doi: 10.1145/2462456.2466711
– volume: 33
  start-page: 613
  year: 1973
  ident: ref_39
  article-title: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316447303300309
– ident: ref_18
– ident: ref_23
– volume: 17
  start-page: 145
  year: 2008
  ident: ref_37
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: ref_8
  doi: 10.1145/1978942.1979008
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_7
  article-title: Exploring Distracted Driver Detection Algorithms Using a Driving Simulator Study
  publication-title: Transp. Res. Board
– ident: ref_20
  doi: 10.4108/ICST.PERVASIVEHEALTH2010.8901
– volume: 4
  start-page: 486
  year: 2016
  ident: ref_10
  article-title: Texting while driving: A study of 1211 U.S. adults with the Distracted Driving Survey
  publication-title: Prev. Med. Rep.
  doi: 10.1016/j.pmedr.2016.09.003
– ident: ref_25
– ident: ref_4
– volume: 370
  start-page: 54
  year: 2014
  ident: ref_9
  article-title: Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1204142
– ident: ref_31
– ident: ref_33
– ident: ref_2
– ident: ref_12
– volume: 6
  start-page: 57
  year: 2014
  ident: ref_21
  article-title: Insurance Telematics: Opportunities and Challenges with the Smartphone Solution
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2014.2343262
– ident: ref_16
  doi: 10.1109/ITSC.2011.6083026
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_28
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 4
  start-page: 340
  year: 2017
  ident: ref_17
  article-title: Detecting driver’s smartphone usage via nonintrusively sensing driving dynamics
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2552399
– ident: ref_36
– volume: 18
  start-page: 2802
  year: 2017
  ident: ref_13
  article-title: Smartphone-based vehicle telematics: A ten-year anniversary
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2680468
– ident: ref_19
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref_30
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 2672
  start-page: 55
  year: 2018
  ident: ref_6
  article-title: Driver’s Visual Performance in Rear-End Collision Avoidance Process under the Influence of Cell Phone Use
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.1177/0361198118782758
– volume: 5
  start-page: 47
  year: 2018
  ident: ref_34
  article-title: Deep Artificial Neural Networks for the Diagnostic of Caries Using Socioeconomic and Nutritional Features as Determinants: Data from NHANES 2013–2014
  publication-title: Bioengineering
  doi: 10.3390/bioengineering5020047
SSID ssj0000913810
Score 2.268319
Snippet The effects of distracted driving are one of the main causes of deaths and injuries on U.S. roads. According to the National Highway Traffic Safety...
According to the National Highway Traffic Safety Administration (NHTSA) [2], around 3450 people were killed and 391,000 were injured in motor vehicle accidents...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2962
SubjectTerms Cellular telephones
convolutional neural network
driver distraction
driver’s behavior detection
Eye movements
Neural networks
smart car
smart cities
smart infotainment
Text messaging
texting and driving
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si3oQWxWrVRbswR4WN5vsI0dtLcWDpxZ6W5LsLAhlW_pQvPWH6J_rL3GS3dYWRC-elg0DGWYm80iGbwhpSh7xIJPc9SPgLhehcIUAcH2mYqyCMp-D7fJ9DnsD_jQMhlujvkxPWAEPXAjujspI8VBnNMTQznmgTM2Ca4CZdyQjMN7Xi8VWMWV9sKAGuqrAI2VY15v3YEHNI6O_E4EsUP9Odrm_yCfy_U2ORluBpntMjsoM0bkvOKuSPchr5HALN7BGquWJnDm3JWx064T0VsuPPrpapHA60xdzUbBafjodmNtuq9yx3QH4DxOnPc5fS5vDrQxAh_3YjvDZKRl0H_vtnlvOSXA1C-nczTQPggxFomKlfS9VioWpH3taGugIjREdUIKRllJRQMUoxmORAqhAa-1ryc5IJR_ncE6cNM54wIBqjGwcuFCBwgpQahpqQVXE66S1ll2iSxBxM8tilGAxYeScfMu5Tm42tJMCOuNHqgejgg2Fgbu2C2gESWkEyV9GUCeNtQKT8gzOEswVGWVh7CHXzY1Sf2Hl4j9YuSQHmFOJ4pamQSrz6QKuMG-Zq2trol_kM-vU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAcgBYQCwVFokL0kO7a8Ud8QqWlqnqoOHSlcgq2M6kqVtnVbrYITv0h8Of6Sxgn3qVFCCFximJNFFsztt-zR28AtqzQQlZWpFyjSIVRJjUGMeWZy4kFVVxgm-V7rA5H4uhUnsY6p_OYVklU_LxdpDmR7JSWWT0wAyYH3Cg-mJbV24t4lMQCGpGa8_w2rClJYLwHa6PjD7sfQ0m55cedKGlG5D5cChsWbhr5jW2oVeu_ATHvLOqp_frFjsfXdpuDB_Bp2c8uyeTzzqJxO_7bbxKO_zGQh3A_ItFktwuddbiF9Qbcu6ZPuAHrcebPkzdRnnr7ERxdXX4_oSWdLJLXyf7sPBxJXF3-SPaxafO66qTNQ6B3nCZ7k_oiRjf9LEiBtI8293z-GEYH70_2DtNYkSH1mWJNWnkhZaUdutx5Piydy1TJ86G3QaTCE3ZAobz21jqGFAIuE7kpEZ303nNvsyfQqyc1PoWkzCshM2Se9lCBwjjpiGtaz5Q3zGnRh-2lgwof5cpD1YxxQbQlOLP45cw-vFrZTjuRjj9avQt-XlkEYe22YTI7K-I8LZjVjoZQMUVIUgjpAkWmNiSip63GPmwuo6SIs31eECrNWKbyIfV6axU5f-nKs38zew53CZ-Z7sRnE3rNbIEvCAM17mWM859y1wJU
  priority: 102
  providerName: Unpaywall
Title “Texting & Driving” Detection Using Deep Convolutional Neural Networks
URI https://www.proquest.com/docview/2323136804
https://www.mdpi.com/2076-3417/9/15/2962/pdf?version=1565657228
https://doaj.org/article/1a7b46cf16514445b1721a7be6067a7e
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S59D2UJq0pU5Ts9BQmsNSazX70KGUvNyQgwklhvS0SNrZUDBr13ZSessPaf9cfklHstZJoOS0SAz70Eia-Uaz3wDsaswxrTXGSU4Yo8pUrBRRnEhTMAqqEySf5TvMTkZ4epFerMGw_RfGpVW2e6LfqKuJdTHyT2z5pZBZ0ccv05-xqxrlTlfbEho6lFaoPnuKsXXYSBwzVgc2Do6HZ99WURfHglmI_pKnVDLed-fESrjDx-SBZfIE_g-8zidXzVT__qXH43sGaPACngfPMdpfqnoT1qjZgmf3-AS3YDOs1Hn0MdBJ772E09ubP-e8BbNE9CE6mv1wIYTbm7_RES18HlYT-bwBbtM0Opw012E28sMcdYe_-Fzx-SsYDY7PD0_iUEEhtjITi7i2mKZ1bsgUxib9yhiZVUnRt9qRSli29YSZza3WRhCrzEgsVEVkUmttYrV8DZ1m0tAbiKqixlSSsGzzkFCZ1DA21FZkVgmTYxf22tErbaAXd1UuxiXDDDfS5d1Id-H9Sna6JNX4r9SBU8JKwhFh-47J7LIM66oUOjf8CbXI2PNDTI2DtNxHDMxynVMXdloVlmF1zsu7udSF3ZVaH3mV7cfv8haesh-llpGZHegsZlf0jn2VhenBejH42gvTsOcRP7dGw7P97_8AOqjuUA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lA4IFpApBSwREH0YOH1jn_2UCHatEp_iBBKpd7M7nqMkCInTVKq3vog8Co8TJ-EWWeTthLqrSfL1mjtnR3P385-A7ChMcOk0hjGGWGIKlWhUkRhLE3OUVAVIzVVvt20c4wHJ8nJAvydnYVxZZUzndgo6nJgXY78I1t-KWSaR_hpeBq6rlFud3XWQkP71grlVgMx5g92HNLFOYdw4639Nq_3uzje2-3tdELfZSC0MhWTsLKYJFVmyOTGxlFpjEzLOI-sdsALlu0hYWozq7URxNMyEnNVEpnEWhtbLXncB7CEEhUHf0vbu92v3-ZZHoe6mYtoiosqpYrcvrQSbrMzvmUJm4YBt7zc5bN6qC_Odb9_w-DtPYHH3lMNPk9FawUWqF6FRzfwC1dhxWuGcfDBw1dvPoWDq8vfPVb5TBG8D9qjny5lcXX5J2jTpKn7qoOmToHvaRjsDOpfXvr5ZQ4qpLk0tenjZ3B8L7x8Dov1oKYXEJR5hYkkYdnGIqEyieFYVFuRWiVMhi3YnHGvsB7O3HXV6Bcc1jhOF9ecbsHbOe1wCuLxX6pttwhzCge83TwYjH4U_j8uhM4MT6ESKXuaiIlxITQ_Iw4EM51RC9ZnS1h4bTAurmW3BRvzZb3jU9buHuUNLHd6X46Ko_3u4Ut4yD6cmmaF1mFxMjqjV-wnTcxrL4wBfL9v-f8HeZ0rEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIvFzQLSAWCgQiYLoIWocO3F8QAi6LP1BFYdW6i21nQmqtMpud7dUvfVB4EV4nD4JY8fZthLqraco0ciJx5P58_gbgFUtpMhqLeJUooiFylWsFGKcclNQFFSnAn2V726-uS-2D7KDBfjbnYVxZZWdTvSKuhpZlyNfJ8vPGc-LRKzXoSziR3_waXwcuw5Sbqe1a6fRisgOnp1S-Db9uNWntX6XpoOvexubcegwEFues1lcW5FltTRoCmPTpDKG51VaJFY70AVLthBFbqXV2jCkKRkuClUhmsxam1rNadw7cFc6FHd3Sn3wbZ7fcXibBUtaRFTOVeJ2pBVz25zpNRvoWwVc82_vnzRjfXaqh8Mrpm7wGB4FHzX63ArVEixgswwPryAXLsNS0AnT6EMArl57AtsX57_3iGNEEb2P-pMjl6y4OP8T9XHmK76ayFco0D2Oo41R8yvIPb3MgYT4i69Knz6F_Vvh5DNYbEYNPoeoKmqRcWSWrKtAoUxmKArVluVWMSNFD9Y67pU2AJm7fhrDkgIax-nyktM9eDunHbfwHf-l-uIWYU7hILf9g9HkZxn-4JJpaWgKNcvJxxQiMy54pmdIIaDUEnuw0i1hGfTAtLyU2h6szpf1hk95cfMob-AeSX35fWt35yU8IOdNtemgFVicTU7wFTlIM_PaS2IEh7ct-v8AaEkorA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAcgBYQCwVFokL0kO7a8Ud8QqWlqnqoOHSlcgq2M6kqVtnVbrYITv0h8Of6Sxgn3qVFCCFximJNFFsztt-zR28AtqzQQlZWpFyjSIVRJjUGMeWZy4kFVVxgm-V7rA5H4uhUnsY6p_OYVklU_LxdpDmR7JSWWT0wAyYH3Cg-mJbV24t4lMQCGpGa8_w2rClJYLwHa6PjD7sfQ0m55cedKGlG5D5cChsWbhr5jW2oVeu_ATHvLOqp_frFjsfXdpuDB_Bp2c8uyeTzzqJxO_7bbxKO_zGQh3A_ItFktwuddbiF9Qbcu6ZPuAHrcebPkzdRnnr7ERxdXX4_oSWdLJLXyf7sPBxJXF3-SPaxafO66qTNQ6B3nCZ7k_oiRjf9LEiBtI8293z-GEYH70_2DtNYkSH1mWJNWnkhZaUdutx5Piydy1TJ86G3QaTCE3ZAobz21jqGFAIuE7kpEZ303nNvsyfQqyc1PoWkzCshM2Se9lCBwjjpiGtaz5Q3zGnRh-2lgwof5cpD1YxxQbQlOLP45cw-vFrZTjuRjj9avQt-XlkEYe22YTI7K-I8LZjVjoZQMUVIUgjpAkWmNiSip63GPmwuo6SIs31eECrNWKbyIfV6axU5f-nKs38zew53CZ-Z7sRnE3rNbIEvCAM17mWM859y1wJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CTexting+%26+Driving%E2%80%9D+Detection+Using+Deep+Convolutional+Neural+Networks&rft.jtitle=Applied+sciences&rft.au=Celaya-Padilla%2C+Jos%C3%A9+Mar%C3%ADa&rft.au=Galv%C3%A1n-Tejada%2C+Carlos+Eric&rft.au=Joyce+Selene+Anaid+Lozano-Aguilar&rft.au=Zanella-Calzada%2C+Laura+Alejandra&rft.date=2019&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=15&rft_id=info:doi/10.3390%2Fapp9152962&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon