A Systematic Review and Evaluation of Sustainable AI Algorithms and Techniques in Healthcare
Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare secto...
Saved in:
| Published in | IEEE access Vol. 13; pp. 139547 - 139582 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3596189 |
Cover
| Abstract | Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare sector to support more sustainable practices, focusing on reducing energy use while maintaining high standards in diagnostic accuracy and patient outcomes. AI algorithms and tools are categorized into three groups: explicit AI algorithms for sustainability for energy efficiency (e.g., Federated Learning, Hybrid Quantum-Classical Optimization, Modified Lempel-Ziv-Welch (mLZW)), traditional AI algorithms for sustainable healthcare (e.g., Bidirectional Long Short-Term Memory (Bi-LSTM), Backpropagation Neural Networks (BPNNs), Convolutional Neural Networks (CNNs)), and sustainable AI techniques (e.g., Adaptive Sampling, AutoML for Model Compression (AMC)) that support low-power computing (e.g., edge computing, neuromorphic hardware, adaptive sampling). A comprehensive performance analysis is presented across five dimensions: energy consumption, latency, accuracy, complexity, and cost. The review highlights mLZW as promising for energy efficiency, complexity, and cost, OFA for low-latency deployment, and Hybrid Quantum Classical Optimization for diagnostic accuracy. We propose an integration framework for deploying these methods in resource-constrained healthcare environments, identifying open research challenges and future directions. This work provides a foundational guide for researchers and sector practitioners to build energy-aware, high-performance AI systems in healthcare. |
|---|---|
| AbstractList | Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare sector to support more sustainable practices, focusing on reducing energy use while maintaining high standards in diagnostic accuracy and patient outcomes. AI algorithms and tools are categorized into three groups: explicit AI algorithms for sustainability for energy efficiency (e.g., Federated Learning, Hybrid Quantum-Classical Optimization, Modified Lempel-Ziv-Welch (mLZW)), traditional AI algorithms for sustainable healthcare (e.g., Bidirectional Long Short-Term Memory (Bi-LSTM), Backpropagation Neural Networks (BPNNs), Convolutional Neural Networks (CNNs)), and sustainable AI techniques (e.g., Adaptive Sampling, AutoML for Model Compression (AMC)) that support low-power computing (e.g., edge computing, neuromorphic hardware, adaptive sampling). A comprehensive performance analysis is presented across five dimensions: energy consumption, latency, accuracy, complexity, and cost. The review highlights mLZW as promising for energy efficiency, complexity, and cost, OFA for low-latency deployment, and Hybrid Quantum Classical Optimization for diagnostic accuracy. We propose an integration framework for deploying these methods in resource-constrained healthcare environments, identifying open research challenges and future directions. This work provides a foundational guide for researchers and sector practitioners to build energy-aware, high-performance AI systems in healthcare. |
| Author | Elbasi, Ersin Ibrahim Alzoubi, Yehia Topcu, Ahmet E. |
| Author_xml | – sequence: 1 givenname: Yehia orcidid: 0000-0003-4329-4072 surname: Ibrahim Alzoubi fullname: Ibrahim Alzoubi, Yehia organization: College of Business Administration, American University of the Middle East, Egaila, Kuwait – sequence: 2 givenname: Ahmet E. orcidid: 0000-0003-1929-5358 surname: Topcu fullname: Topcu, Ahmet E. email: ahmet.topcu@aum.edu.kw organization: College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait – sequence: 3 givenname: Ersin orcidid: 0000-0002-8603-1435 surname: Elbasi fullname: Elbasi, Ersin email: ersin.elbasi@aum.edu.kw organization: College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait |
| BookMark | eNplkV9r2zAUxcXoYF3XT7A9CPacTP8sW48mZGugMGi6t4G4lq8bB0fKJLsl335KXbbR3ReJwz2_q3v0nlz44JGQj5wtOWfmS71arbfbpWCiWMrCaF6ZN-RScG0WspD64p_7O3Kd0p7lqrJUlJfkZ023pzTiAcbe0Tt87PGJgm_p-hGGKYvB09DR7ZRG6D00A9J6Q-vhIcR-3B3Sc-89up3vf02YaO_pDcIw7hxE_EDedjAkvH45r8iPr-v71c3i9vu3zaq-XTip-bjoqkqpgrkOwHQFsA65qYo2v7IB1blKNqoVTcm4w6YVRpRGYtXKShssWgAmr8hm5rYB9vYY-wPEkw3Q22chxAcLMe83oHWsdEoJ0KI1yvDS8DxRaM2k4VAKzCw1syZ_hNMTDMMfIGf2HLgF5zAlew7cvgSebZ9n2zGGcxCj3Ycp-ry1lUKVXClVqtwl5y4XQ0oRu__Y82e-Zn-aXT0i_nXkkkJL-Ruujpp9 |
| CODEN | IAECCG |
| Cites_doi | 10.1109/ACCESS.2024.3516500 10.4018/979-8-3693-1243-8.ch005 10.51594/imsrj.v4i4.1052 10.1145/3560265 10.3389/fpubh.2024.1440049 10.52783/tjjpt.v44.i3.330 10.1016/j.jjimei.2023.100170 10.12659/MSM.934475 10.4103/ijcm.ijcm_abstract422 10.1109/ASSIC60049.2024.10508007 10.1016/j.clscn.2024.100156 10.1016/j.techsoc.2023.102443 10.1016/j.jclepro.2024.143090 10.1186/s12992-020-00584-1 10.1016/j.jii.2024.100702 10.1007/s41649-024-00295-4 10.1007/s00330-023-10123-2 10.1016/j.socscimed.2022.114782 10.1201/9781003546382-15 10.22437/jiituj.v9i1.38665 10.1007/978-981-97-9555-0_4 10.62754/joe.v4i1.6333 10.1109/ACCESS.2021.3137364 10.1016/B978-0-443-21598-8.00014-2 10.1007/s10479-022-04713-4 10.1016/j.scs.2021.103050 10.48185/jaai.v5i2.1053 10.1007/s44196-024-00631-4 10.2196/28036 10.1007/s10668-023-04254-1 10.1377/hlthaff.2020.01247 10.1016/j.jclepro.2023.139541 10.1186/s13677-022-00353-y 10.1016/j.radi.2023.09.006 10.4018/979-8-3693-1243-8.ch009 10.1007/978-3-031-83793-7_25 10.32604/cmc.2025.063803 10.30574/wjarr.2024.23.3.2611 10.1016/j.suscom.2023.100867 10.30574/msabp.2024.12.2.0048 10.1177/20539517241232630 10.1002/hpm.3662 10.1007/s00521-024-09815-7 10.1111/bioe.13018 10.3390/healthcare12020125 10.1108/JEIM-10-2023-0559 10.1111/imj.16549 10.1016/j.jclepro.2022.134120 10.1109/AFRICON55910.2023.10293707 10.1109/JIOT.2024.3399234 10.1016/B978-0-443-28822-7.00017-9 10.1016/j.nexus.2022.100167 10.1016/j.jclepro.2019.118596 10.1080/00207543.2023.2188101 10.1016/j.diii.2024.06.002 10.3389/frai.2023.1227091 10.1016/j.jclepro.2024.141413 10.1142/S273759942550015X 10.4018/979-8-3373-0690-2.ch004 10.20473/jisebi.9.2.161-180 10.1002/hpm.3447 10.1177/10398562241230816 10.1016/j.healthpol.2024.105053 10.3390/su13168952 10.1016/S2542-5196(20)30271-0 10.4018/979-8-3693-9735-0.ch011 10.2478/cait-2023-0001 10.1016/j.jacr.2023.11.011 10.1007/s44163-024-00149-w 10.37394/232015.2023.19.111 10.3390/healthcare13030324 10.3390/bioengineering10121435 10.1016/j.modpat.2024.100686 10.1080/11287462.2024.2322208 10.1109/JPROC.2024.3437365 10.1109/ACCESS.2023.3317174 10.4018/979-8-3693-1243-8.ch006 10.1142/9789819807024_0055 10.4018/979-8-3693-3661-8.ch015 10.1145/3724420 10.3390/su16219145 10.4018/979-8-3693-1243-8.ch008 10.3390/su15010420 10.1109/3ict64318.2024.10824571 10.3390/diagnostics13243625 10.1016/j.jclepro.2019.118225 10.1609/aaai.v34i09.7123 10.1016/B978-0-443-23724-9.00009-8 10.1109/ACCESS.2024.3360705 10.1016/j.ucl.2023.08.001 10.1108/SBR-07-2024-0249 10.48084/etasr.9133 10.3390/bioengineering11040337 10.1080/11287462.2021.1997428 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3596189 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 139582 |
| ExternalDocumentID | oai_doaj_org_article_c07c442a62d9491791f5a2660391a72e 10.1109/access.2025.3596189 10_1109_ACCESS_2025_3596189 11113263 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-f884450cfaa9f5a0fe1985d000ba4fc83b4d2b701cebd292793e8d3869e5daa03 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:34 EDT 2025 Sun Sep 07 11:20:48 EDT 2025 Wed Oct 08 03:32:50 EDT 2025 Wed Oct 01 05:38:21 EDT 2025 Wed Aug 20 06:20:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-f884450cfaa9f5a0fe1985d000ba4fc83b4d2b701cebd292793e8d3869e5daa03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4329-4072 0000-0002-8603-1435 0000-0003-1929-5358 |
| OpenAccessLink | https://doaj.org/article/c07c442a62d9491791f5a2660391a72e |
| PQID | 3247144474 |
| PQPubID | 4845423 |
| PageCount | 36 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2025_3596189 doaj_primary_oai_doaj_org_article_c07c442a62d9491791f5a2660391a72e ieee_primary_11113263 proquest_journals_3247144474 crossref_primary_10_1109_ACCESS_2025_3596189 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Yadav (ref23) 2024; 14 Al-Balushi (ref69) 2025 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref16) 2025 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Agrawal (ref79) 2024; 1 Patterson (ref12) 2021 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref15 ref14 ref97 ref96 ref11 ref10 ref98 ref17 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
| References_xml | – ident: ref7 doi: 10.1109/ACCESS.2024.3516500 – ident: ref61 doi: 10.4018/979-8-3693-1243-8.ch005 – ident: ref18 doi: 10.51594/imsrj.v4i4.1052 – ident: ref78 doi: 10.1145/3560265 – ident: ref77 doi: 10.3389/fpubh.2024.1440049 – ident: ref80 doi: 10.52783/tjjpt.v44.i3.330 – ident: ref46 doi: 10.1016/j.jjimei.2023.100170 – ident: ref20 doi: 10.12659/MSM.934475 – ident: ref87 doi: 10.4103/ijcm.ijcm_abstract422 – ident: ref59 doi: 10.1109/ASSIC60049.2024.10508007 – ident: ref40 doi: 10.1016/j.clscn.2024.100156 – ident: ref6 doi: 10.1016/j.techsoc.2023.102443 – ident: ref8 doi: 10.1016/j.jclepro.2024.143090 – ident: ref50 doi: 10.1186/s12992-020-00584-1 – ident: ref45 doi: 10.1016/j.jii.2024.100702 – ident: ref53 doi: 10.1007/s41649-024-00295-4 – ident: ref9 doi: 10.1007/s00330-023-10123-2 – ident: ref21 doi: 10.1016/j.socscimed.2022.114782 – ident: ref68 doi: 10.1201/9781003546382-15 – ident: ref11 doi: 10.22437/jiituj.v9i1.38665 – ident: ref55 doi: 10.1007/978-981-97-9555-0_4 – ident: ref83 doi: 10.62754/joe.v4i1.6333 – ident: ref2 doi: 10.1109/ACCESS.2021.3137364 – volume: 1 start-page: 26 issue: 1 year: 2024 ident: ref79 article-title: Advances and challenges in enhancing cancer diagnosis with green artificial intelligence deep learning models: A comprehensive study publication-title: Int. J. Techno-informatics Eng. – ident: ref30 doi: 10.1016/B978-0-443-21598-8.00014-2 – ident: ref52 doi: 10.1007/s10479-022-04713-4 – ident: ref47 doi: 10.1016/j.scs.2021.103050 – ident: ref13 doi: 10.48185/jaai.v5i2.1053 – ident: ref90 doi: 10.1007/s44196-024-00631-4 – ident: ref88 doi: 10.2196/28036 – ident: ref54 doi: 10.1007/s10668-023-04254-1 – ident: ref4 doi: 10.1377/hlthaff.2020.01247 – ident: ref14 doi: 10.1016/j.jclepro.2023.139541 – ident: ref38 doi: 10.1186/s13677-022-00353-y – ident: ref41 doi: 10.1016/j.radi.2023.09.006 – ident: ref62 doi: 10.4018/979-8-3693-1243-8.ch009 – ident: ref3 doi: 10.1007/978-3-031-83793-7_25 – volume: 14 start-page: 49 issue: 5 year: 2024 ident: ref23 article-title: Machine learning algorithms: Optimizing efficiency in AI applications publication-title: Int. J. Eng. Manage. Res. – ident: ref29 doi: 10.32604/cmc.2025.063803 – ident: ref33 doi: 10.30574/wjarr.2024.23.3.2611 – ident: ref92 doi: 10.1016/j.suscom.2023.100867 – ident: ref86 doi: 10.30574/msabp.2024.12.2.0048 – ident: ref25 doi: 10.1177/20539517241232630 – ident: ref71 doi: 10.1002/hpm.3662 – ident: ref51 doi: 10.1007/s00521-024-09815-7 – ident: ref72 doi: 10.1111/bioe.13018 – ident: ref24 doi: 10.3390/healthcare12020125 – ident: ref70 doi: 10.1108/JEIM-10-2023-0559 – ident: ref17 doi: 10.1111/imj.16549 – ident: ref44 doi: 10.1016/j.jclepro.2022.134120 – ident: ref57 doi: 10.1109/AFRICON55910.2023.10293707 – ident: ref56 doi: 10.1109/JIOT.2024.3399234 – ident: ref48 doi: 10.1016/B978-0-443-28822-7.00017-9 – ident: ref42 doi: 10.1016/j.nexus.2022.100167 – ident: ref93 doi: 10.1016/j.jclepro.2019.118596 – ident: ref1 doi: 10.1080/00207543.2023.2188101 – ident: ref22 doi: 10.1016/j.diii.2024.06.002 – ident: ref76 doi: 10.3389/frai.2023.1227091 – year: 2021 ident: ref12 article-title: Carbon emissions and large neural network training publication-title: arXiv:2104.10350 – ident: ref32 doi: 10.1016/j.jclepro.2024.141413 – ident: ref10 doi: 10.1142/S273759942550015X – ident: ref65 doi: 10.4018/979-8-3373-0690-2.ch004 – ident: ref84 doi: 10.20473/jisebi.9.2.161-180 – ident: ref15 doi: 10.1002/hpm.3447 – ident: ref27 doi: 10.1177/10398562241230816 – ident: ref35 doi: 10.1016/j.healthpol.2024.105053 – ident: ref19 doi: 10.3390/su13168952 – ident: ref5 doi: 10.1016/S2542-5196(20)30271-0 – ident: ref64 doi: 10.4018/979-8-3693-9735-0.ch011 – ident: ref39 doi: 10.2478/cait-2023-0001 – ident: ref85 doi: 10.1016/j.jacr.2023.11.011 – ident: ref31 doi: 10.1007/s44163-024-00149-w – ident: ref81 doi: 10.37394/232015.2023.19.111 – ident: ref36 doi: 10.3390/healthcare13030324 – ident: ref75 doi: 10.3390/bioengineering10121435 – ident: ref26 doi: 10.1016/j.modpat.2024.100686 – ident: ref66 doi: 10.1080/11287462.2024.2322208 – ident: ref97 doi: 10.1109/JPROC.2024.3437365 – ident: ref96 doi: 10.1109/ACCESS.2023.3317174 – ident: ref63 doi: 10.4018/979-8-3693-1243-8.ch006 – volume-title: Why Achieving Sustainable Health Systems Means Moving Past Political Cycles To Reach Long-term Commitments year: 2025 ident: ref16 – ident: ref89 doi: 10.1142/9789819807024_0055 – ident: ref37 doi: 10.4018/979-8-3693-3661-8.ch015 – ident: ref34 doi: 10.1145/3724420 – ident: ref94 doi: 10.3390/su16219145 – ident: ref60 doi: 10.4018/979-8-3693-1243-8.ch008 – ident: ref74 doi: 10.3390/su15010420 – ident: ref58 doi: 10.1109/3ict64318.2024.10824571 – ident: ref73 doi: 10.3390/diagnostics13243625 – ident: ref95 doi: 10.1016/j.jclepro.2019.118225 – ident: ref91 doi: 10.1609/aaai.v34i09.7123 – ident: ref49 doi: 10.1016/B978-0-443-23724-9.00009-8 – ident: ref98 doi: 10.1109/ACCESS.2024.3360705 – ident: ref43 doi: 10.1016/j.ucl.2023.08.001 – year: 2025 ident: ref69 article-title: Unlocking sustainable performance in the health-care sector: The dynamic Nexus of artificial intelligence, green innovation and green knowledge sharing publication-title: Soc. Bus. Rev. doi: 10.1108/SBR-07-2024-0249 – ident: ref82 doi: 10.48084/etasr.9133 – ident: ref28 doi: 10.3390/bioengineering11040337 – ident: ref67 doi: 10.1080/11287462.2021.1997428 |
| SSID | ssj0000816957 |
| Score | 2.3368392 |
| Snippet | Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 139547 |
| SubjectTerms | Accuracy Adaptive sampling Algorithms Artificial intelligence Artificial neural networks Back propagation networks Complexity Computational modeling Edge computing Energy consumption Energy efficiency Energy management Federated learning green AI Hardware Health care healthcare Machine learning Medical services Neural networks Optimization Sustainability Sustainable AI Sustainable development Systematic review Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKl7aHPqkaCpUPPTaL7dhxfAwr0LZSuQASh0qWny1im0VsVhX8emzHG9hWlXqLIsse-xvLM_bMNwB88lxx5hQureC6pMSIUmGmS4Y9d15j71LI_7eTenZOv16wi5ysnnJhnHMp-MxN4md6y7cLs4pXZQc41UWvqy2wxZt6SNYaL1RiBQnBeGYWwkgctNNpmETwAQmbVCyWNhEbp08i6c9VVTYMzKer7lrd_lbz-aOz5vglOFlLOYSYXE1WvZ6Yuz8IHP97Gq_Ai2x1wnZQk9fgievegOePuAjfgu8tPB1ZneHwZABVZ-HRyAcOFx6ePiRcwfYLbOc_FjeX_c9fy9T2bM0Iu4SXHZyNsWU74Pz46Gw6K3PphdJUNe5L3zSUMmS8UsIzhbzDomE2rLJW1Jum0tQSzRE2TlsiSNjlrrFVUwvHrFKoege2u0Xn3gMY7GJkCRLBE-XU8dBjOBC9YpUzBFdMFeDzGhJ5PTBsyOSZICEHBGVEUGYEC3AYYRubRnrs9CMsscy7TRrEDaVE1cQKKiIDa5hEMEUiHb7ixBVgJ8LyMF5GpAB7ay2QeS8vZTA5eXA7g_QFKEfN-EtWlQpcbsi6-49hPoBnsdlwk7MHtvubldsPtk2vPyadvgfnVvUN priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage0A8wIAhMrbJDzzi4p9x_BiqTR0SE9JWaUhIlu3YbKKk05pqgr8eO0mzFiQEeYoiOznfnePvZN93ALwJ0kjhDUGVkhZx6hQyRFgkSJA-WBJ8e-T_41k-nfEPl-Ky59lOuTCb-_cEq3emLRsY4zgqxkyk8iTqIdjJ4x0egZ3Z2afycyofR3KFWLsR-fovPbfWnpaiv6-psgUvH63qG_PjzsznGyvNydMuhXvZEhSmAybfxqvGjt3P3-gb_3EQu-BJjzhh2bnIM_DA18_B4w0ewhfgSwnPB0Zn2G0XQFNX8HjgAoeLAM_vk61geQrL-dfF7XVz9X3Ztr1Ys8Eu4XUNp8O5sj0wOzm-mExRX3YBOZaTBoWi4FxgF4xRQRgcPFGFqOK_0xoeXMEsr6iVmDhvK6ponOG-qFiRKy8qYzB7CUb1ovavAIyYGFcUqxiFSu5lfGNcDIMRzDtKmDAZeLs2iL7p2DV0G5VgpcvJJLqgTkrTvdIy8D4ZbWiaqLHbB1HZup9p2mHpOKcmp5XiKrGvxkFEGJKo8I2kPgN7yeT334tXxLAsAwdrH9D9PF7qCDdlDDmj9BlAg1_8IWtn4C1Z9_-z_QEYNbcrfxghTmOPetf-BQFg9Z4 priority: 102 providerName: Unpaywall |
| Title | A Systematic Review and Evaluation of Sustainable AI Algorithms and Techniques in Healthcare |
| URI | https://ieeexplore.ieee.org/document/11113263 https://www.proquest.com/docview/3247144474 https://doi.org/10.1109/access.2025.3596189 https://doaj.org/article/c07c442a62d9491791f5a2660391a72e |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1Kemh7CP1Iqdtk0aHHupFkybKO7pKwLTQUkoUUCkK2pDaw9YbshtB_35HsdXbJoZf6aIQ8fiNp3gjpDcD7oKyS3rLcadXkgrc6t0w2uWRB-dCw4NOR_69n5WwuvlzKy61SX_FMWC8P3AN33FLVCsFtyZ0WOoppBmkxqkRlc6u4j6svrfRWMpXW4IqVWqpBZohRfVxPp_hHmBBy-bGQsc6J3glFSbF_KLGywzaf3HbX9s-dXSy2As_pc9gfGCOpe0tfwCPfvYRnWzqCr-BHTc5HRWbSb_cT2zlyMmp5k2Ug5_eXpUj9mdSLn8ubq_Wv36vU9mKj5roiVx2ZjefCDmB-enIxneVD2YS8LUq2zkNVCSFpG6zViBUNnulKOgSlsSK0VdEIxxtFWesbxzXHGeorV1Sl9tJZS4vXsNctO_8GCHJa6jjVmEUq4RX2iMEsWFn4lrNC2gw-bBA01706hklZBdWmB9xEwM0AeAafIspj0yhtnV6gw83gcPMvh2dwEH10_z18kIMWGRxunGaGebgySBcVpoxofQb56MgHttpUnHLH1rf_w9Z38DT22W_ZHMLe-ubWHyGJWTeTNF4n6b7hBB7Pz77V3_8Cm9jsdw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQO5VVEaAEfOJJt7NhxfAyrVlto99Kt1AOS5fgBFUu26maF6K-v7WTTLgiJWxQ58djfWJ6xZ74B-OC44swqnBrB65QSLVKFWZ0y7Lh1NXY2hvyfTovJOf18wS76ZPWYC2OtjcFndhQe412-WehVOCo7wLEuepE_hEeMUsq6dK3hSCXUkBCM99xCOBMH1Xjsh-G9QMJGOQvFTcTG_hNp-vu6Khsm5vaquVK_f6n5_N5uc_QUpms5uyCTH6NVW4_0zR8Ujv89kGew09udqOoU5Tk8sM0LeHKPjfAlfK3Q2cDrjLpLA6Qagw4HRnC0cOjsLuUKVceomn9bXF-2338uY9vZmhN2iS4bNBmiy3bh_OhwNp6kffGFVOcFblNXln6GM-2UEo6pzFksSmb8LNeKOl3mNTWk5hnWtjZEEL_ObWnyshCWGaWy_BVsNYvGvgbkLePMkEx4X5RTy_0f_ZboFMutJjhnKoGPa0jkVcexIaNvkgnZISgDgrJHMIFPAbahaSDIji_8FMt-vUmdcU0pUQUxgorAweoH4Y2RQIivOLEJ7AZY7vrrEUlgf60Fsl_NS-mNTu4dTy99AumgGX_JqmKJyw1Z3_yjm_ewPZmdnsiT4-mXPXgcPunOdfZhq71e2bfe0mnrd1G_bwHf9Pha |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage0A8wIAhMrbJDzzi4p9x_BiqTR0SE9JWaUhIlu3YbKKk05pqgr8eO0mzFiQEeYoiOznfnePvZN93ALwJ0kjhDUGVkhZx6hQyRFgkSJA-WBJ8e-T_41k-nfEPl-Ky59lOuTCb-_cEq3emLRsY4zgqxkyk8iTqIdjJ4x0egZ3Z2afycyofR3KFWLsR-fovPbfWnpaiv6-psgUvH63qG_PjzsznGyvNydMuhXvZEhSmAybfxqvGjt3P3-gb_3EQu-BJjzhh2bnIM_DA18_B4w0ewhfgSwnPB0Zn2G0XQFNX8HjgAoeLAM_vk61geQrL-dfF7XVz9X3Ztr1Ys8Eu4XUNp8O5sj0wOzm-mExRX3YBOZaTBoWi4FxgF4xRQRgcPFGFqOK_0xoeXMEsr6iVmDhvK6ponOG-qFiRKy8qYzB7CUb1ovavAIyYGFcUqxiFSu5lfGNcDIMRzDtKmDAZeLs2iL7p2DV0G5VgpcvJJLqgTkrTvdIy8D4ZbWiaqLHbB1HZup9p2mHpOKcmp5XiKrGvxkFEGJKo8I2kPgN7yeT334tXxLAsAwdrH9D9PF7qCDdlDDmj9BlAg1_8IWtn4C1Z9_-z_QEYNbcrfxghTmOPetf-BQFg9Z4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review+and+Evaluation+of+Sustainable+AI+Algorithms+and+Techniques+in+Healthcare&rft.jtitle=IEEE+access&rft.au=Ibrahim+Alzoubi%2C+Yehia&rft.au=Topcu%2C+Ahmet+E.&rft.au=Elbasi%2C+Ersin&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=139547&rft.epage=139582&rft_id=info:doi/10.1109%2FACCESS.2025.3596189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3596189 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |