A Systematic Review and Evaluation of Sustainable AI Algorithms and Techniques in Healthcare

Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare secto...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 139547 - 139582
Main Authors Ibrahim Alzoubi, Yehia, Topcu, Ahmet E., Elbasi, Ersin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3596189

Cover

Abstract Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare sector to support more sustainable practices, focusing on reducing energy use while maintaining high standards in diagnostic accuracy and patient outcomes. AI algorithms and tools are categorized into three groups: explicit AI algorithms for sustainability for energy efficiency (e.g., Federated Learning, Hybrid Quantum-Classical Optimization, Modified Lempel-Ziv-Welch (mLZW)), traditional AI algorithms for sustainable healthcare (e.g., Bidirectional Long Short-Term Memory (Bi-LSTM), Backpropagation Neural Networks (BPNNs), Convolutional Neural Networks (CNNs)), and sustainable AI techniques (e.g., Adaptive Sampling, AutoML for Model Compression (AMC)) that support low-power computing (e.g., edge computing, neuromorphic hardware, adaptive sampling). A comprehensive performance analysis is presented across five dimensions: energy consumption, latency, accuracy, complexity, and cost. The review highlights mLZW as promising for energy efficiency, complexity, and cost, OFA for low-latency deployment, and Hybrid Quantum Classical Optimization for diagnostic accuracy. We propose an integration framework for deploying these methods in resource-constrained healthcare environments, identifying open research challenges and future directions. This work provides a foundational guide for researchers and sector practitioners to build energy-aware, high-performance AI systems in healthcare.
AbstractList Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of Artificial Intelligence (AI) in healthcare. This systematic review paper categorizes and classifies AI algorithms and tools in the healthcare sector to support more sustainable practices, focusing on reducing energy use while maintaining high standards in diagnostic accuracy and patient outcomes. AI algorithms and tools are categorized into three groups: explicit AI algorithms for sustainability for energy efficiency (e.g., Federated Learning, Hybrid Quantum-Classical Optimization, Modified Lempel-Ziv-Welch (mLZW)), traditional AI algorithms for sustainable healthcare (e.g., Bidirectional Long Short-Term Memory (Bi-LSTM), Backpropagation Neural Networks (BPNNs), Convolutional Neural Networks (CNNs)), and sustainable AI techniques (e.g., Adaptive Sampling, AutoML for Model Compression (AMC)) that support low-power computing (e.g., edge computing, neuromorphic hardware, adaptive sampling). A comprehensive performance analysis is presented across five dimensions: energy consumption, latency, accuracy, complexity, and cost. The review highlights mLZW as promising for energy efficiency, complexity, and cost, OFA for low-latency deployment, and Hybrid Quantum Classical Optimization for diagnostic accuracy. We propose an integration framework for deploying these methods in resource-constrained healthcare environments, identifying open research challenges and future directions. This work provides a foundational guide for researchers and sector practitioners to build energy-aware, high-performance AI systems in healthcare.
Author Elbasi, Ersin
Ibrahim Alzoubi, Yehia
Topcu, Ahmet E.
Author_xml – sequence: 1
  givenname: Yehia
  orcidid: 0000-0003-4329-4072
  surname: Ibrahim Alzoubi
  fullname: Ibrahim Alzoubi, Yehia
  organization: College of Business Administration, American University of the Middle East, Egaila, Kuwait
– sequence: 2
  givenname: Ahmet E.
  orcidid: 0000-0003-1929-5358
  surname: Topcu
  fullname: Topcu, Ahmet E.
  email: ahmet.topcu@aum.edu.kw
  organization: College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
– sequence: 3
  givenname: Ersin
  orcidid: 0000-0002-8603-1435
  surname: Elbasi
  fullname: Elbasi, Ersin
  email: ersin.elbasi@aum.edu.kw
  organization: College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
BookMark eNplkV9r2zAUxcXoYF3XT7A9CPacTP8sW48mZGugMGi6t4G4lq8bB0fKJLsl335KXbbR3ReJwz2_q3v0nlz44JGQj5wtOWfmS71arbfbpWCiWMrCaF6ZN-RScG0WspD64p_7O3Kd0p7lqrJUlJfkZ023pzTiAcbe0Tt87PGJgm_p-hGGKYvB09DR7ZRG6D00A9J6Q-vhIcR-3B3Sc-89up3vf02YaO_pDcIw7hxE_EDedjAkvH45r8iPr-v71c3i9vu3zaq-XTip-bjoqkqpgrkOwHQFsA65qYo2v7IB1blKNqoVTcm4w6YVRpRGYtXKShssWgAmr8hm5rYB9vYY-wPEkw3Q22chxAcLMe83oHWsdEoJ0KI1yvDS8DxRaM2k4VAKzCw1syZ_hNMTDMMfIGf2HLgF5zAlew7cvgSebZ9n2zGGcxCj3Ycp-ry1lUKVXClVqtwl5y4XQ0oRu__Y82e-Zn-aXT0i_nXkkkJL-Ruujpp9
CODEN IAECCG
Cites_doi 10.1109/ACCESS.2024.3516500
10.4018/979-8-3693-1243-8.ch005
10.51594/imsrj.v4i4.1052
10.1145/3560265
10.3389/fpubh.2024.1440049
10.52783/tjjpt.v44.i3.330
10.1016/j.jjimei.2023.100170
10.12659/MSM.934475
10.4103/ijcm.ijcm_abstract422
10.1109/ASSIC60049.2024.10508007
10.1016/j.clscn.2024.100156
10.1016/j.techsoc.2023.102443
10.1016/j.jclepro.2024.143090
10.1186/s12992-020-00584-1
10.1016/j.jii.2024.100702
10.1007/s41649-024-00295-4
10.1007/s00330-023-10123-2
10.1016/j.socscimed.2022.114782
10.1201/9781003546382-15
10.22437/jiituj.v9i1.38665
10.1007/978-981-97-9555-0_4
10.62754/joe.v4i1.6333
10.1109/ACCESS.2021.3137364
10.1016/B978-0-443-21598-8.00014-2
10.1007/s10479-022-04713-4
10.1016/j.scs.2021.103050
10.48185/jaai.v5i2.1053
10.1007/s44196-024-00631-4
10.2196/28036
10.1007/s10668-023-04254-1
10.1377/hlthaff.2020.01247
10.1016/j.jclepro.2023.139541
10.1186/s13677-022-00353-y
10.1016/j.radi.2023.09.006
10.4018/979-8-3693-1243-8.ch009
10.1007/978-3-031-83793-7_25
10.32604/cmc.2025.063803
10.30574/wjarr.2024.23.3.2611
10.1016/j.suscom.2023.100867
10.30574/msabp.2024.12.2.0048
10.1177/20539517241232630
10.1002/hpm.3662
10.1007/s00521-024-09815-7
10.1111/bioe.13018
10.3390/healthcare12020125
10.1108/JEIM-10-2023-0559
10.1111/imj.16549
10.1016/j.jclepro.2022.134120
10.1109/AFRICON55910.2023.10293707
10.1109/JIOT.2024.3399234
10.1016/B978-0-443-28822-7.00017-9
10.1016/j.nexus.2022.100167
10.1016/j.jclepro.2019.118596
10.1080/00207543.2023.2188101
10.1016/j.diii.2024.06.002
10.3389/frai.2023.1227091
10.1016/j.jclepro.2024.141413
10.1142/S273759942550015X
10.4018/979-8-3373-0690-2.ch004
10.20473/jisebi.9.2.161-180
10.1002/hpm.3447
10.1177/10398562241230816
10.1016/j.healthpol.2024.105053
10.3390/su13168952
10.1016/S2542-5196(20)30271-0
10.4018/979-8-3693-9735-0.ch011
10.2478/cait-2023-0001
10.1016/j.jacr.2023.11.011
10.1007/s44163-024-00149-w
10.37394/232015.2023.19.111
10.3390/healthcare13030324
10.3390/bioengineering10121435
10.1016/j.modpat.2024.100686
10.1080/11287462.2024.2322208
10.1109/JPROC.2024.3437365
10.1109/ACCESS.2023.3317174
10.4018/979-8-3693-1243-8.ch006
10.1142/9789819807024_0055
10.4018/979-8-3693-3661-8.ch015
10.1145/3724420
10.3390/su16219145
10.4018/979-8-3693-1243-8.ch008
10.3390/su15010420
10.1109/3ict64318.2024.10824571
10.3390/diagnostics13243625
10.1016/j.jclepro.2019.118225
10.1609/aaai.v34i09.7123
10.1016/B978-0-443-23724-9.00009-8
10.1109/ACCESS.2024.3360705
10.1016/j.ucl.2023.08.001
10.1108/SBR-07-2024-0249
10.48084/etasr.9133
10.3390/bioengineering11040337
10.1080/11287462.2021.1997428
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3596189
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 139582
ExternalDocumentID oai_doaj_org_article_c07c442a62d9491791f5a2660391a72e
10.1109/access.2025.3596189
10_1109_ACCESS_2025_3596189
11113263
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-f884450cfaa9f5a0fe1985d000ba4fc83b4d2b701cebd292793e8d3869e5daa03
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:34 EDT 2025
Sun Sep 07 11:20:48 EDT 2025
Wed Oct 08 03:32:50 EDT 2025
Wed Oct 01 05:38:21 EDT 2025
Wed Aug 20 06:20:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f884450cfaa9f5a0fe1985d000ba4fc83b4d2b701cebd292793e8d3869e5daa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4329-4072
0000-0002-8603-1435
0000-0003-1929-5358
OpenAccessLink https://doaj.org/article/c07c442a62d9491791f5a2660391a72e
PQID 3247144474
PQPubID 4845423
PageCount 36
ParticipantIDs unpaywall_primary_10_1109_access_2025_3596189
doaj_primary_oai_doaj_org_article_c07c442a62d9491791f5a2660391a72e
ieee_primary_11113263
proquest_journals_3247144474
crossref_primary_10_1109_ACCESS_2025_3596189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Yadav (ref23) 2024; 14
Al-Balushi (ref69) 2025
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref16) 2025
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Agrawal (ref79) 2024; 1
Patterson (ref12) 2021
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref15
ref14
ref97
ref96
ref11
ref10
ref98
ref17
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref7
  doi: 10.1109/ACCESS.2024.3516500
– ident: ref61
  doi: 10.4018/979-8-3693-1243-8.ch005
– ident: ref18
  doi: 10.51594/imsrj.v4i4.1052
– ident: ref78
  doi: 10.1145/3560265
– ident: ref77
  doi: 10.3389/fpubh.2024.1440049
– ident: ref80
  doi: 10.52783/tjjpt.v44.i3.330
– ident: ref46
  doi: 10.1016/j.jjimei.2023.100170
– ident: ref20
  doi: 10.12659/MSM.934475
– ident: ref87
  doi: 10.4103/ijcm.ijcm_abstract422
– ident: ref59
  doi: 10.1109/ASSIC60049.2024.10508007
– ident: ref40
  doi: 10.1016/j.clscn.2024.100156
– ident: ref6
  doi: 10.1016/j.techsoc.2023.102443
– ident: ref8
  doi: 10.1016/j.jclepro.2024.143090
– ident: ref50
  doi: 10.1186/s12992-020-00584-1
– ident: ref45
  doi: 10.1016/j.jii.2024.100702
– ident: ref53
  doi: 10.1007/s41649-024-00295-4
– ident: ref9
  doi: 10.1007/s00330-023-10123-2
– ident: ref21
  doi: 10.1016/j.socscimed.2022.114782
– ident: ref68
  doi: 10.1201/9781003546382-15
– ident: ref11
  doi: 10.22437/jiituj.v9i1.38665
– ident: ref55
  doi: 10.1007/978-981-97-9555-0_4
– ident: ref83
  doi: 10.62754/joe.v4i1.6333
– ident: ref2
  doi: 10.1109/ACCESS.2021.3137364
– volume: 1
  start-page: 26
  issue: 1
  year: 2024
  ident: ref79
  article-title: Advances and challenges in enhancing cancer diagnosis with green artificial intelligence deep learning models: A comprehensive study
  publication-title: Int. J. Techno-informatics Eng.
– ident: ref30
  doi: 10.1016/B978-0-443-21598-8.00014-2
– ident: ref52
  doi: 10.1007/s10479-022-04713-4
– ident: ref47
  doi: 10.1016/j.scs.2021.103050
– ident: ref13
  doi: 10.48185/jaai.v5i2.1053
– ident: ref90
  doi: 10.1007/s44196-024-00631-4
– ident: ref88
  doi: 10.2196/28036
– ident: ref54
  doi: 10.1007/s10668-023-04254-1
– ident: ref4
  doi: 10.1377/hlthaff.2020.01247
– ident: ref14
  doi: 10.1016/j.jclepro.2023.139541
– ident: ref38
  doi: 10.1186/s13677-022-00353-y
– ident: ref41
  doi: 10.1016/j.radi.2023.09.006
– ident: ref62
  doi: 10.4018/979-8-3693-1243-8.ch009
– ident: ref3
  doi: 10.1007/978-3-031-83793-7_25
– volume: 14
  start-page: 49
  issue: 5
  year: 2024
  ident: ref23
  article-title: Machine learning algorithms: Optimizing efficiency in AI applications
  publication-title: Int. J. Eng. Manage. Res.
– ident: ref29
  doi: 10.32604/cmc.2025.063803
– ident: ref33
  doi: 10.30574/wjarr.2024.23.3.2611
– ident: ref92
  doi: 10.1016/j.suscom.2023.100867
– ident: ref86
  doi: 10.30574/msabp.2024.12.2.0048
– ident: ref25
  doi: 10.1177/20539517241232630
– ident: ref71
  doi: 10.1002/hpm.3662
– ident: ref51
  doi: 10.1007/s00521-024-09815-7
– ident: ref72
  doi: 10.1111/bioe.13018
– ident: ref24
  doi: 10.3390/healthcare12020125
– ident: ref70
  doi: 10.1108/JEIM-10-2023-0559
– ident: ref17
  doi: 10.1111/imj.16549
– ident: ref44
  doi: 10.1016/j.jclepro.2022.134120
– ident: ref57
  doi: 10.1109/AFRICON55910.2023.10293707
– ident: ref56
  doi: 10.1109/JIOT.2024.3399234
– ident: ref48
  doi: 10.1016/B978-0-443-28822-7.00017-9
– ident: ref42
  doi: 10.1016/j.nexus.2022.100167
– ident: ref93
  doi: 10.1016/j.jclepro.2019.118596
– ident: ref1
  doi: 10.1080/00207543.2023.2188101
– ident: ref22
  doi: 10.1016/j.diii.2024.06.002
– ident: ref76
  doi: 10.3389/frai.2023.1227091
– year: 2021
  ident: ref12
  article-title: Carbon emissions and large neural network training
  publication-title: arXiv:2104.10350
– ident: ref32
  doi: 10.1016/j.jclepro.2024.141413
– ident: ref10
  doi: 10.1142/S273759942550015X
– ident: ref65
  doi: 10.4018/979-8-3373-0690-2.ch004
– ident: ref84
  doi: 10.20473/jisebi.9.2.161-180
– ident: ref15
  doi: 10.1002/hpm.3447
– ident: ref27
  doi: 10.1177/10398562241230816
– ident: ref35
  doi: 10.1016/j.healthpol.2024.105053
– ident: ref19
  doi: 10.3390/su13168952
– ident: ref5
  doi: 10.1016/S2542-5196(20)30271-0
– ident: ref64
  doi: 10.4018/979-8-3693-9735-0.ch011
– ident: ref39
  doi: 10.2478/cait-2023-0001
– ident: ref85
  doi: 10.1016/j.jacr.2023.11.011
– ident: ref31
  doi: 10.1007/s44163-024-00149-w
– ident: ref81
  doi: 10.37394/232015.2023.19.111
– ident: ref36
  doi: 10.3390/healthcare13030324
– ident: ref75
  doi: 10.3390/bioengineering10121435
– ident: ref26
  doi: 10.1016/j.modpat.2024.100686
– ident: ref66
  doi: 10.1080/11287462.2024.2322208
– ident: ref97
  doi: 10.1109/JPROC.2024.3437365
– ident: ref96
  doi: 10.1109/ACCESS.2023.3317174
– ident: ref63
  doi: 10.4018/979-8-3693-1243-8.ch006
– volume-title: Why Achieving Sustainable Health Systems Means Moving Past Political Cycles To Reach Long-term Commitments
  year: 2025
  ident: ref16
– ident: ref89
  doi: 10.1142/9789819807024_0055
– ident: ref37
  doi: 10.4018/979-8-3693-3661-8.ch015
– ident: ref34
  doi: 10.1145/3724420
– ident: ref94
  doi: 10.3390/su16219145
– ident: ref60
  doi: 10.4018/979-8-3693-1243-8.ch008
– ident: ref74
  doi: 10.3390/su15010420
– ident: ref58
  doi: 10.1109/3ict64318.2024.10824571
– ident: ref73
  doi: 10.3390/diagnostics13243625
– ident: ref95
  doi: 10.1016/j.jclepro.2019.118225
– ident: ref91
  doi: 10.1609/aaai.v34i09.7123
– ident: ref49
  doi: 10.1016/B978-0-443-23724-9.00009-8
– ident: ref98
  doi: 10.1109/ACCESS.2024.3360705
– ident: ref43
  doi: 10.1016/j.ucl.2023.08.001
– year: 2025
  ident: ref69
  article-title: Unlocking sustainable performance in the health-care sector: The dynamic Nexus of artificial intelligence, green innovation and green knowledge sharing
  publication-title: Soc. Bus. Rev.
  doi: 10.1108/SBR-07-2024-0249
– ident: ref82
  doi: 10.48084/etasr.9133
– ident: ref28
  doi: 10.3390/bioengineering11040337
– ident: ref67
  doi: 10.1080/11287462.2021.1997428
SSID ssj0000816957
Score 2.3368392
Snippet Concerns regarding energy use, environmental effects, and long-term sustainability have been highlighted in recent years by the expanding application of...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 139547
SubjectTerms Accuracy
Adaptive sampling
Algorithms
Artificial intelligence
Artificial neural networks
Back propagation networks
Complexity
Computational modeling
Edge computing
Energy consumption
Energy efficiency
Energy management
Federated learning
green AI
Hardware
Health care
healthcare
Machine learning
Medical services
Neural networks
Optimization
Sustainability
Sustainable AI
Sustainable development
Systematic review
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKl7aHPqkaCpUPPTaL7dhxfAwr0LZSuQASh0qWny1im0VsVhX8emzHG9hWlXqLIsse-xvLM_bMNwB88lxx5hQureC6pMSIUmGmS4Y9d15j71LI_7eTenZOv16wi5ysnnJhnHMp-MxN4md6y7cLs4pXZQc41UWvqy2wxZt6SNYaL1RiBQnBeGYWwkgctNNpmETwAQmbVCyWNhEbp08i6c9VVTYMzKer7lrd_lbz-aOz5vglOFlLOYSYXE1WvZ6Yuz8IHP97Gq_Ai2x1wnZQk9fgievegOePuAjfgu8tPB1ZneHwZABVZ-HRyAcOFx6ePiRcwfYLbOc_FjeX_c9fy9T2bM0Iu4SXHZyNsWU74Pz46Gw6K3PphdJUNe5L3zSUMmS8UsIzhbzDomE2rLJW1Jum0tQSzRE2TlsiSNjlrrFVUwvHrFKoege2u0Xn3gMY7GJkCRLBE-XU8dBjOBC9YpUzBFdMFeDzGhJ5PTBsyOSZICEHBGVEUGYEC3AYYRubRnrs9CMsscy7TRrEDaVE1cQKKiIDa5hEMEUiHb7ixBVgJ8LyMF5GpAB7ay2QeS8vZTA5eXA7g_QFKEfN-EtWlQpcbsi6-49hPoBnsdlwk7MHtvubldsPtk2vPyadvgfnVvUN
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage0A8wIAhMrbJDzzi4p9x_BiqTR0SE9JWaUhIlu3YbKKk05pqgr8eO0mzFiQEeYoiOznfnePvZN93ALwJ0kjhDUGVkhZx6hQyRFgkSJA-WBJ8e-T_41k-nfEPl-Ky59lOuTCb-_cEq3emLRsY4zgqxkyk8iTqIdjJ4x0egZ3Z2afycyofR3KFWLsR-fovPbfWnpaiv6-psgUvH63qG_PjzsznGyvNydMuhXvZEhSmAybfxqvGjt3P3-gb_3EQu-BJjzhh2bnIM_DA18_B4w0ewhfgSwnPB0Zn2G0XQFNX8HjgAoeLAM_vk61geQrL-dfF7XVz9X3Ztr1Ys8Eu4XUNp8O5sj0wOzm-mExRX3YBOZaTBoWi4FxgF4xRQRgcPFGFqOK_0xoeXMEsr6iVmDhvK6ponOG-qFiRKy8qYzB7CUb1ovavAIyYGFcUqxiFSu5lfGNcDIMRzDtKmDAZeLs2iL7p2DV0G5VgpcvJJLqgTkrTvdIy8D4ZbWiaqLHbB1HZup9p2mHpOKcmp5XiKrGvxkFEGJKo8I2kPgN7yeT334tXxLAsAwdrH9D9PF7qCDdlDDmj9BlAg1_8IWtn4C1Z9_-z_QEYNbcrfxghTmOPetf-BQFg9Z4
  priority: 102
  providerName: Unpaywall
Title A Systematic Review and Evaluation of Sustainable AI Algorithms and Techniques in Healthcare
URI https://ieeexplore.ieee.org/document/11113263
https://www.proquest.com/docview/3247144474
https://doi.org/10.1109/access.2025.3596189
https://doaj.org/article/c07c442a62d9491791f5a2660391a72e
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1Kemh7CP1Iqdtk0aHHupFkybKO7pKwLTQUkoUUCkK2pDaw9YbshtB_35HsdXbJoZf6aIQ8fiNp3gjpDcD7oKyS3rLcadXkgrc6t0w2uWRB-dCw4NOR_69n5WwuvlzKy61SX_FMWC8P3AN33FLVCsFtyZ0WOoppBmkxqkRlc6u4j6svrfRWMpXW4IqVWqpBZohRfVxPp_hHmBBy-bGQsc6J3glFSbF_KLGywzaf3HbX9s-dXSy2As_pc9gfGCOpe0tfwCPfvYRnWzqCr-BHTc5HRWbSb_cT2zlyMmp5k2Ug5_eXpUj9mdSLn8ubq_Wv36vU9mKj5roiVx2ZjefCDmB-enIxneVD2YS8LUq2zkNVCSFpG6zViBUNnulKOgSlsSK0VdEIxxtFWesbxzXHGeorV1Sl9tJZS4vXsNctO_8GCHJa6jjVmEUq4RX2iMEsWFn4lrNC2gw-bBA01706hklZBdWmB9xEwM0AeAafIspj0yhtnV6gw83gcPMvh2dwEH10_z18kIMWGRxunGaGebgySBcVpoxofQb56MgHttpUnHLH1rf_w9Z38DT22W_ZHMLe-ubWHyGJWTeTNF4n6b7hBB7Pz77V3_8Cm9jsdw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQO5VVEaAEfOJJt7NhxfAyrVlto99Kt1AOS5fgBFUu26maF6K-v7WTTLgiJWxQ58djfWJ6xZ74B-OC44swqnBrB65QSLVKFWZ0y7Lh1NXY2hvyfTovJOf18wS76ZPWYC2OtjcFndhQe412-WehVOCo7wLEuepE_hEeMUsq6dK3hSCXUkBCM99xCOBMH1Xjsh-G9QMJGOQvFTcTG_hNp-vu6Khsm5vaquVK_f6n5_N5uc_QUpms5uyCTH6NVW4_0zR8Ujv89kGew09udqOoU5Tk8sM0LeHKPjfAlfK3Q2cDrjLpLA6Qagw4HRnC0cOjsLuUKVceomn9bXF-2338uY9vZmhN2iS4bNBmiy3bh_OhwNp6kffGFVOcFblNXln6GM-2UEo6pzFksSmb8LNeKOl3mNTWk5hnWtjZEEL_ObWnyshCWGaWy_BVsNYvGvgbkLePMkEx4X5RTy_0f_ZboFMutJjhnKoGPa0jkVcexIaNvkgnZISgDgrJHMIFPAbahaSDIji_8FMt-vUmdcU0pUQUxgorAweoH4Y2RQIivOLEJ7AZY7vrrEUlgf60Fsl_NS-mNTu4dTy99AumgGX_JqmKJyw1Z3_yjm_ewPZmdnsiT4-mXPXgcPunOdfZhq71e2bfe0mnrd1G_bwHf9Pha
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELage0A8wIAhMrbJDzzi4p9x_BiqTR0SE9JWaUhIlu3YbKKk05pqgr8eO0mzFiQEeYoiOznfnePvZN93ALwJ0kjhDUGVkhZx6hQyRFgkSJA-WBJ8e-T_41k-nfEPl-Ky59lOuTCb-_cEq3emLRsY4zgqxkyk8iTqIdjJ4x0egZ3Z2afycyofR3KFWLsR-fovPbfWnpaiv6-psgUvH63qG_PjzsznGyvNydMuhXvZEhSmAybfxqvGjt3P3-gb_3EQu-BJjzhh2bnIM_DA18_B4w0ewhfgSwnPB0Zn2G0XQFNX8HjgAoeLAM_vk61geQrL-dfF7XVz9X3Ztr1Ys8Eu4XUNp8O5sj0wOzm-mExRX3YBOZaTBoWi4FxgF4xRQRgcPFGFqOK_0xoeXMEsr6iVmDhvK6ponOG-qFiRKy8qYzB7CUb1ovavAIyYGFcUqxiFSu5lfGNcDIMRzDtKmDAZeLs2iL7p2DV0G5VgpcvJJLqgTkrTvdIy8D4ZbWiaqLHbB1HZup9p2mHpOKcmp5XiKrGvxkFEGJKo8I2kPgN7yeT334tXxLAsAwdrH9D9PF7qCDdlDDmj9BlAg1_8IWtn4C1Z9_-z_QEYNbcrfxghTmOPetf-BQFg9Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review+and+Evaluation+of+Sustainable+AI+Algorithms+and+Techniques+in+Healthcare&rft.jtitle=IEEE+access&rft.au=Ibrahim+Alzoubi%2C+Yehia&rft.au=Topcu%2C+Ahmet+E.&rft.au=Elbasi%2C+Ersin&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=139547&rft.epage=139582&rft_id=info:doi/10.1109%2FACCESS.2025.3596189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3596189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon