3D CT Slice Image-Based Algorithm for Non-Wet Defect Inspection in Solder Joints

This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict def...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 153234 - 153243
Main Authors Lee, Sung Ju, Lee, Sang Hwa, Cho, Nam Ik
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3604431

Cover

Abstract This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict defective slices. These slice-level predictions are then aggregated to determine the volume-level defect status through a slice-counting strategy. To accommodate varying defect characteristics across semiconductor packages, we introduce an adjustable defect count threshold and validate its impact on detection performance. Experiments show that the method achieves perfect recall with zero false positives under optimal settings and maintains a stable range across thresholds, outperforming traditional unsupervised and feature-based baselines. The proposed approach is lightweight, adaptable, and requires no retraining to adjust sensitivity, making it well-suited for deployment in real-world inspection pipelines. This work demonstrates the practical synergy of 3D imaging and machine learning in enhancing reliability and efficiency in semiconductor manufacturing. Our codes and data are released at here.
AbstractList This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict defective slices. These slice-level predictions are then aggregated to determine the volume-level defect status through a slice-counting strategy. To accommodate varying defect characteristics across semiconductor packages, we introduce an adjustable defect count threshold and validate its impact on detection performance. Experiments show that the method achieves perfect recall with zero false positives under optimal settings and maintains a stable range across thresholds, outperforming traditional unsupervised and feature-based baselines. The proposed approach is lightweight, adaptable, and requires no retraining to adjust sensitivity, making it well-suited for deployment in real-world inspection pipelines. This work demonstrates the practical synergy of 3D imaging and machine learning in enhancing reliability and efficiency in semiconductor manufacturing. Our codes and data are released at here.
Author Cho, Nam Ik
Lee, Sung Ju
Lee, Sang Hwa
Author_xml – sequence: 1
  givenname: Sung Ju
  orcidid: 0009-0003-0269-5483
  surname: Lee
  fullname: Lee, Sung Ju
  organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Sang Hwa
  orcidid: 0000-0002-4959-5194
  surname: Lee
  fullname: Lee, Sang Hwa
  organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea
– sequence: 3
  givenname: Nam Ik
  orcidid: 0000-0001-5297-4649
  surname: Cho
  fullname: Cho, Nam Ik
  email: nicho@snu.ac.kr
  organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea
BookMark eNplkU1v1DAQhiNUJErpL4CDJc5Z4u_4uKQFFlWAtEUcrbE9XrLKxoudVdV_T0oqQDCXGY3mfTTzzvPqbEwjVtVL2qwobcybddddb7cr1jC54qoRgtMn1TmjytRccnX2V_2suixl38zRzi2pz6sv_Ip0t2Q79B7J5gA7rN9CwUDWwy7lfvp-IDFl8imN9TecyBVG9BPZjOU45z6NpB_JNg0BM_mY-nEqL6qnEYaCl4_5ovr67vq2-1DffH6_6dY3teeKTnVsRfDzDtBGKrWT0UvpjFccWFA6GGUcRBo0MzECQwAw6FoUgXPvnND8otos3JBgb4-5P0C-twl6-6uR8s5Cnno_oFVMcacjaC1AcM-caRugPoqAXLvWzCyxsE7jEe7vYBh-A2ljH0y24D2WYh9Mto8mz7LXi-yY048Tlsnu0ymP89WWM6GllKJV8xRfpnxOpWSM_7GXB_7LfrWoekT8o6BUSMEN_wk3zZYa
CODEN IAECCG
Cites_doi 10.1016/j.aei.2019.101004
10.1109/TCPMT.2020.3047089
10.1109/EPTC.2004.1396648
10.1109/TCYB.2020.3033798
10.1109/CVPR.2016.90
10.23919/SPA.2019.8936659
10.1109/ICCVW.2017.373
10.1007/s40747-021-00600-w
10.1109/ICINFA.2009.5205058
10.1109/TSM.2013.2261566
10.1007/s00170-018-3022-6
10.1088/1674-4926/33/5/056001
10.1109/ectc.2011.5898673
10.1109/TIM.2022.3168897
10.1016/j.aei.2019.100933
10.1007/s00138-021-01218-1
10.1016/j.eswa.2021.115673
10.1109/TIM.2023.3277935
10.1109/TCPMT.2018.2812815
10.1109/TCPMT.2011.2168531
10.1109/TCPMT.2018.2789453
10.1109/TCPMT.2019.2952393
10.1016/j.jmapro.2020.07.021
10.1109/ACCESS.2025.3547847
10.1016/S0031-3203(98)00103-4
10.1109/CVPR.2005.177
10.1109/ICCV.2017.324
10.1109/TII.2006.877265
10.3390/app10134598
10.1109/TASE.2010.2043097
10.1109/ACCESS.2025.3564906
10.1109/TCPMT.2021.3136823
10.1108/SSMT-08-2016-0016
10.1109/ACCESS.2024.3495540
10.1117/1.JEI.29.4.041013
10.1016/j.neuroimage.2017.04.041
10.1109/TSM.2019.2911062
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3604431
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 153243
ExternalDocumentID oai_doaj_org_article_6263b7fa774a43c2b980a1cf4de37b89
10.1109/access.2025.3604431
10_1109_ACCESS_2025_3604431
11145439
Genre orig-research
GrantInformation_xml – fundername: Technology Innovation Program (ATC+ Program, 25-nm X-Ray Inspection System for Semiconductor Backend Process) by the Ministry of Trade, Industry and Energy (MOTIE, South Korea)
  grantid: 20014131
  funderid: 10.13039/501100003052
– fundername: BK21 FOUR Program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2025
  funderid: 10.13039/501100006730
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-f84dc169a8f157b5fc55b9c63a2d67d969baf1d729ffa2eaaa9eb8e4d33cbb473
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Mon Oct 13 19:20:33 EDT 2025
Sun Sep 07 11:22:08 EDT 2025
Wed Oct 08 07:40:14 EDT 2025
Thu Oct 16 04:31:27 EDT 2025
Wed Oct 15 14:20:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f84dc169a8f157b5fc55b9c63a2d67d969baf1d729ffa2eaaa9eb8e4d33cbb473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-0269-5483
0000-0002-4959-5194
0000-0001-5297-4649
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3604431
PQID 3247555486
PQPubID 4845423
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_access_2025_3604431
doaj_primary_oai_doaj_org_article_6263b7fa774a43c2b980a1cf4de37b89
ieee_primary_11145439
proquest_journals_3247555486
crossref_primary_10_1109_ACCESS_2025_3604431
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Shengale (ref15) 2021
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Yun (ref34) 2020; 27
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.aei.2019.101004
– ident: ref19
  doi: 10.1109/TCPMT.2020.3047089
– ident: ref32
  doi: 10.1109/EPTC.2004.1396648
– ident: ref25
  doi: 10.1109/TCYB.2020.3033798
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref7
  doi: 10.23919/SPA.2019.8936659
– ident: ref31
  doi: 10.1109/ICCVW.2017.373
– volume: 27
  start-page: 35
  issue: 3
  year: 2020
  ident: ref34
  article-title: A study on the nonwet defective factors of the SMT process
  publication-title: J. Microelectron. Packag. Soc.
– ident: ref26
  doi: 10.1007/s40747-021-00600-w
– ident: ref3
  doi: 10.1109/ICINFA.2009.5205058
– ident: ref4
  doi: 10.1109/TSM.2013.2261566
– ident: ref12
  doi: 10.1007/s00170-018-3022-6
– ident: ref33
  doi: 10.1088/1674-4926/33/5/056001
– ident: ref36
  doi: 10.1109/ectc.2011.5898673
– ident: ref20
  doi: 10.1109/TIM.2022.3168897
– ident: ref27
  doi: 10.1016/j.aei.2019.100933
– ident: ref29
  doi: 10.1007/s00138-021-01218-1
– ident: ref16
  doi: 10.1016/j.eswa.2021.115673
– ident: ref1
  doi: 10.1109/TIM.2023.3277935
– ident: ref5
  doi: 10.1109/TCPMT.2018.2812815
– ident: ref10
  doi: 10.1109/TCPMT.2011.2168531
– year: 2021
  ident: ref15
  article-title: Detection and classification of surface mount technology (SMT) defects at automated optical inspection (AOI) using residual neural network
– ident: ref13
  doi: 10.1109/TCPMT.2018.2789453
– ident: ref17
  doi: 10.1109/TCPMT.2019.2952393
– ident: ref24
  doi: 10.1016/j.jmapro.2020.07.021
– ident: ref2
  doi: 10.1109/ACCESS.2025.3547847
– ident: ref8
  doi: 10.1016/S0031-3203(98)00103-4
– ident: ref37
  doi: 10.1109/CVPR.2005.177
– ident: ref39
  doi: 10.1109/ICCV.2017.324
– ident: ref9
  doi: 10.1109/TII.2006.877265
– ident: ref14
  doi: 10.3390/app10134598
– ident: ref35
  doi: 10.1109/TASE.2010.2043097
– ident: ref23
  doi: 10.1109/ACCESS.2025.3564906
– ident: ref21
  doi: 10.1109/TCPMT.2021.3136823
– ident: ref11
  doi: 10.1108/SSMT-08-2016-0016
– ident: ref22
  doi: 10.1109/ACCESS.2024.3495540
– ident: ref28
  doi: 10.1117/1.JEI.29.4.041013
– ident: ref30
  doi: 10.1016/j.neuroimage.2017.04.041
– ident: ref6
  doi: 10.1109/TSM.2019.2911062
SSID ssj0000816957
Score 2.3367229
Snippet This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 153234
SubjectTerms 3D CT slice image
Computed tomography
Defects
Feature extraction
Inspection
Machine learning
non-wet defect inspection
Pipelines
semiconductor chip
Semiconductors
Sensitivity
solder joint
Soldered joints
Soldering
Solders
Solid modeling
Supervised learning
Three-dimensional displays
Training
X-ray imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLoVD1VIQ29LKB451SeLv47IUARKoEqBys_xJkRYHlaCq_77jJMCuOHDhkkMUJeM3tudN5HmD0I5IKQorFIHJkgjEa06UhwtPpSwyNCrKUpx8cioOL9jxJb9caPVVzoQN8sADcLtFLcXJZIGmWEZ947SqbO0TC5FKp_rSvUrphWSq34NVLTSXo8xQXend6WwGI4KEsOHfqagYo_VSKOoV-8cWK0ts8-19vrX__tr5fCHwHLxH70bGiKeDpR_Qm5jX0dqCjuBH9JPu49k5PpvDqsdHN7BFkD2ITgFP51ctZP-_bzBwU3zaZvIrdng_ljMc-CgPZZZtxtcZn7WlXzc-bq9zd7eBLg5-nM8OydgqgXgq6o4kxYKHIVuVai4dT55zp72gtglCBi20s6kOwKRTsk201uroVGSBUu8ck3QTreQ2xy2EAxCAEGTwUgnGg7O8iTVgL5hn1GoxQd8eUDO3gyKG6TOJSpsBZFNANiPIE7RXkH18tMhZ9zfAyWZ0snnJyRO0Ufzy9D3I4jhQqQnafnCUGdfenQGKKDmwJAWmkkfnPbPV9g0pl2z99Bq2fkar5Z3Db5pttNL9uY9fgLh07ms_R_8D-KjmSw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG-EF_VBUDGegumDj_a43X4_HgcESLyYAJG3TT_14rFLYC8G_nqnu72T05j4stlsmnTa37Tz62xnBqGPIsYgjFAElCUSsNecKAcPHlNYpC9VkCk4-fNUnFyysyt-lYPVu1iYEEJ3-SwM02v3L983bpFcZfuwLhkHC7qBNqQSfbDWyqGSKkhoLnNmoWKk98eTCQwCzoAlH1IxYowWa9anS9Kfq6qsEcyni_rG3P808_kjW3O8haZLKfsrJj-Gi9YO3cMfCRz_exjb6EVmnXjcq8lL9CTUr9DzR7kIX6Mv9BBPLvD5HHYOfHoN2ww5AAvn8Xj-rbmdtd-vMfBbPG1q8jW0-DCkeyD4tO5DNZsaz2p83qSa3_ismdXt3Q66PD66mJyQXG6BOCqKlkTFvIM5NCoWXFoeHedWO0FN6YX0WmhrYuGBjcdoymCM0cGqwDylzlom6Ru0WTd1eIuwBxLhvfQOYGLcW8PLUDDDBHOMGi0G6NMShuqmz6pRdaeRka561KqEWpVRG6CDBNWqaUqJ3X2Aaa3yCqtSWh0rowE-axh1pdVqZAoXmQ9UWqUHaCdB8bu_jMIA7S6Rr_L6vauAZkoOTEuBqGSlDX_JarqilmuyvvtHN-_Rs9Ss997sos32dhH2gM-09kOnx78AdlbwJA
  priority: 102
  providerName: IEEE
Title 3D CT Slice Image-Based Algorithm for Non-Wet Defect Inspection in Solder Joints
URI https://ieeexplore.ieee.org/document/11145439
https://www.proquest.com/docview/3247555486
https://doi.org/10.1109/access.2025.3604431
https://doaj.org/article/6263b7fa774a43c2b980a1cf4de37b89
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6h9IA4UB5FpI9oDxzZEHvfxzRt1VYiqtRGlJO1T4hI7apxVMGvZ9Z2SwISgosP1lpez8zufOvd7xuE3okYgzBCEQiWSCBfc6IcXHhMtEifqyATOfnjVJzO2Pk1v-50thMXZn3_PhvpD6YpGwjruJwPqRgxljjTW4ID8O6hrdn0Yvw5lY_LhCa02Yjc-8uTG7mnkejvaqpswMunq_LWfL83i8VapjnZbincy0agMB0w-TZc1Xbofvwm3_iPH_ECPe8QJx63IfISPQnlK_RsTYfwNbqgR3hyhS8XMGvgsxuYYsghZDePx4sv1d28_nqDAdviaVWST6HGRyGdAcFnZUvTrEo8L_Fllep94_NqXtbLHTQ7Ob6anJKu1AJxVGQ1iYp5B0Y0KmZcWh4d51Y7QU3uhfRaaGti5gGJx2jyYIzRwarAPKXOWibpG9QrqzK8RdgDgPBeeieVYNxbw_OQMcMEc4waLfro_YMTittWUaNoViIjXYwnEwi7Ihmq6AzVR4fJUY9Nkxx2cwMMXHSjq0iSOlZGA1jWMOpyq9XIZC4yH6i0SvfRTnLzr_fBKpADFOuj_Qe_F93YXRYAMSUHlKWgq-QxFv7oa-vUjb7u_mf7fdSr71bhAGBNbQfN74BBw0AcdKH9E1BU8lE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQeeBY1UGAPHHEae9_HNKVKShshNRW9rfYJEaldtY4Q_HpmbSc0ICQulmXZ2tn9Zne-He_MIPSOxxi44TIDZYkZ2GuWSQcXFlNYpC9kECk4-WzKxxf05JJddsHqTSxMCKE5fBb66bb5l-8rt0yusgOYl5SBBb2PHjBKKWvDtdYulVRDQjHR5RbKB-pgOBpBN2AXWLA-4QNKSb5hf5o0_V1dlQ2Kub0sr82P72axuGNtjh-j6UrO9pDJt_6ytn33848Ujv_dkSfoUcc78bBVlKfoXiifoZ072Qifo0_kCI9m-HwBaweeXMFCkx2CjfN4uPhS3czrr1cYGC6eVmX2OdT4KKSTIHhStsGaVYnnJT6vUtVvfFLNy_p2F10cf5iNxllXcCFzhOd1FiX1DsbQyJgzYVl0jFnlODGF58IrrqyJuQc-HqMpgjFGBSsD9YQ4a6kgL9BWWZVhD2EPNMJ74Z2QnDJvDStCTg3l1FFiFO-h9ysY9HWbV0M3-5GB0i1qOqGmO9R66DBBtX41JcVuHsCw6m6O6ZRYx4pogNEaSlxhlRyY3EXqAxFWqh7aTVD8bq9DoYf2V8jrbgbfaiCaggHXkiBqttaGv2Q1TVnLDVlf_qOZt2h7PDs71aeT6cdX6GH6pPXl7KOt-mYZXgO7qe2bRqd_AS2283E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQekAceBYRKMgHjjhk1-9jmlK1lYgqtRHltPKTRqTeqtkIwa9nvLstCUgILntY2drZmbHnG9nzDUJvRYxBGKEIOEskEK85UQ4ePOaySF-qIHNx8seZOJqzkwt-0fNs51qYzfP7Yqzfm7ZtIORxJR9RMWYs10zvCA7Ae4B25rPTyefcPq4QmtD2IPLVX2ZuxZ6Wor_vqbIFL--v07X5_s0slxuR5vBRV8K9agkK8wWTr6N1Y0fux2_0jf_4E4_Rwx5x4knnIk_QvZCeogcbPITP0Ck9wNNzfLaEXQMfX8EWQ_Yhunk8WX6pbxbN5RUGbItndSKfQoMPQr4Dgo9TV6ZZJ7xI-KzO_b7xSb1IzWoXzQ8_nE-PSN9qgTgqioZExbwDJRoVCy4tj45zq52gpvRCei20NbHwgMRjNGUwxuhgVWCeUmctk_Q5GqQ6hRcIewAQ3kvvpBKMe2t4GQpmmGCOUaPFEL27NUJ13TFqVG0mMtbVZDoFt6uyoqpeUUO0nw11NzTTYbcvQMFVv7qqTKljZTSAZQ2jrrRajU3hIvOBSqv0EO1mM__6HmSBHKDYEO3d2r3q1-6qAogpOaAsBaKSO1_4Q9bOqFuyvvzP8Xto0Nysw2uANY1907vzTwVF8Fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+CT+Slice+Image-Based+Algorithm+for+Non-Wet+Defect+Inspection+in+Solder+Joints&rft.jtitle=IEEE+access&rft.au=Lee%2C+Sung+Ju&rft.au=Lee%2C+Sang+Hwa&rft.au=Cho%2C+Nam+Ik&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=153234&rft.epage=153243&rft_id=info:doi/10.1109%2FACCESS.2025.3604431&rft.externalDocID=11145439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon