3D CT Slice Image-Based Algorithm for Non-Wet Defect Inspection in Solder Joints
This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict def...
Saved in:
| Published in | IEEE access Vol. 13; pp. 153234 - 153243 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3604431 |
Cover
| Abstract | This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict defective slices. These slice-level predictions are then aggregated to determine the volume-level defect status through a slice-counting strategy. To accommodate varying defect characteristics across semiconductor packages, we introduce an adjustable defect count threshold and validate its impact on detection performance. Experiments show that the method achieves perfect recall with zero false positives under optimal settings and maintains a stable range across thresholds, outperforming traditional unsupervised and feature-based baselines. The proposed approach is lightweight, adaptable, and requires no retraining to adjust sensitivity, making it well-suited for deployment in real-world inspection pipelines. This work demonstrates the practical synergy of 3D imaging and machine learning in enhancing reliability and efficiency in semiconductor manufacturing. Our codes and data are released at here. |
|---|---|
| AbstractList | This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised learning. The proposed method leverages a slice-level ResNet18 classifier combined with a tunable classification confidence parameter to predict defective slices. These slice-level predictions are then aggregated to determine the volume-level defect status through a slice-counting strategy. To accommodate varying defect characteristics across semiconductor packages, we introduce an adjustable defect count threshold and validate its impact on detection performance. Experiments show that the method achieves perfect recall with zero false positives under optimal settings and maintains a stable range across thresholds, outperforming traditional unsupervised and feature-based baselines. The proposed approach is lightweight, adaptable, and requires no retraining to adjust sensitivity, making it well-suited for deployment in real-world inspection pipelines. This work demonstrates the practical synergy of 3D imaging and machine learning in enhancing reliability and efficiency in semiconductor manufacturing. Our codes and data are released at here. |
| Author | Cho, Nam Ik Lee, Sung Ju Lee, Sang Hwa |
| Author_xml | – sequence: 1 givenname: Sung Ju orcidid: 0009-0003-0269-5483 surname: Lee fullname: Lee, Sung Ju organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea – sequence: 2 givenname: Sang Hwa orcidid: 0000-0002-4959-5194 surname: Lee fullname: Lee, Sang Hwa organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea – sequence: 3 givenname: Nam Ik orcidid: 0000-0001-5297-4649 surname: Cho fullname: Cho, Nam Ik email: nicho@snu.ac.kr organization: Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul, South Korea |
| BookMark | eNplkU1v1DAQhiNUJErpL4CDJc5Z4u_4uKQFFlWAtEUcrbE9XrLKxoudVdV_T0oqQDCXGY3mfTTzzvPqbEwjVtVL2qwobcybddddb7cr1jC54qoRgtMn1TmjytRccnX2V_2suixl38zRzi2pz6sv_Ip0t2Q79B7J5gA7rN9CwUDWwy7lfvp-IDFl8imN9TecyBVG9BPZjOU45z6NpB_JNg0BM_mY-nEqL6qnEYaCl4_5ovr67vq2-1DffH6_6dY3teeKTnVsRfDzDtBGKrWT0UvpjFccWFA6GGUcRBo0MzECQwAw6FoUgXPvnND8otos3JBgb4-5P0C-twl6-6uR8s5Cnno_oFVMcacjaC1AcM-caRugPoqAXLvWzCyxsE7jEe7vYBh-A2ljH0y24D2WYh9Mto8mz7LXi-yY048Tlsnu0ymP89WWM6GllKJV8xRfpnxOpWSM_7GXB_7LfrWoekT8o6BUSMEN_wk3zZYa |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.aei.2019.101004 10.1109/TCPMT.2020.3047089 10.1109/EPTC.2004.1396648 10.1109/TCYB.2020.3033798 10.1109/CVPR.2016.90 10.23919/SPA.2019.8936659 10.1109/ICCVW.2017.373 10.1007/s40747-021-00600-w 10.1109/ICINFA.2009.5205058 10.1109/TSM.2013.2261566 10.1007/s00170-018-3022-6 10.1088/1674-4926/33/5/056001 10.1109/ectc.2011.5898673 10.1109/TIM.2022.3168897 10.1016/j.aei.2019.100933 10.1007/s00138-021-01218-1 10.1016/j.eswa.2021.115673 10.1109/TIM.2023.3277935 10.1109/TCPMT.2018.2812815 10.1109/TCPMT.2011.2168531 10.1109/TCPMT.2018.2789453 10.1109/TCPMT.2019.2952393 10.1016/j.jmapro.2020.07.021 10.1109/ACCESS.2025.3547847 10.1016/S0031-3203(98)00103-4 10.1109/CVPR.2005.177 10.1109/ICCV.2017.324 10.1109/TII.2006.877265 10.3390/app10134598 10.1109/TASE.2010.2043097 10.1109/ACCESS.2025.3564906 10.1109/TCPMT.2021.3136823 10.1108/SSMT-08-2016-0016 10.1109/ACCESS.2024.3495540 10.1117/1.JEI.29.4.041013 10.1016/j.neuroimage.2017.04.041 10.1109/TSM.2019.2911062 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3604431 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 153243 |
| ExternalDocumentID | oai_doaj_org_article_6263b7fa774a43c2b980a1cf4de37b89 10.1109/access.2025.3604431 10_1109_ACCESS_2025_3604431 11145439 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Technology Innovation Program (ATC+ Program, 25-nm X-Ray Inspection System for Semiconductor Backend Process) by the Ministry of Trade, Industry and Energy (MOTIE, South Korea) grantid: 20014131 funderid: 10.13039/501100003052 – fundername: BK21 FOUR Program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2025 funderid: 10.13039/501100006730 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-f84dc169a8f157b5fc55b9c63a2d67d969baf1d729ffa2eaaa9eb8e4d33cbb473 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Mon Oct 13 19:20:33 EDT 2025 Sun Sep 07 11:22:08 EDT 2025 Wed Oct 08 07:40:14 EDT 2025 Thu Oct 16 04:31:27 EDT 2025 Wed Oct 15 14:20:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-f84dc169a8f157b5fc55b9c63a2d67d969baf1d729ffa2eaaa9eb8e4d33cbb473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0003-0269-5483 0000-0002-4959-5194 0000-0001-5297-4649 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3604431 |
| PQID | 3247555486 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2025_3604431 doaj_primary_oai_doaj_org_article_6263b7fa774a43c2b980a1cf4de37b89 ieee_primary_11145439 proquest_journals_3247555486 crossref_primary_10_1109_ACCESS_2025_3604431 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Shengale (ref15) 2021 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 Yun (ref34) 2020; 27 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1016/j.aei.2019.101004 – ident: ref19 doi: 10.1109/TCPMT.2020.3047089 – ident: ref32 doi: 10.1109/EPTC.2004.1396648 – ident: ref25 doi: 10.1109/TCYB.2020.3033798 – ident: ref38 doi: 10.1109/CVPR.2016.90 – ident: ref7 doi: 10.23919/SPA.2019.8936659 – ident: ref31 doi: 10.1109/ICCVW.2017.373 – volume: 27 start-page: 35 issue: 3 year: 2020 ident: ref34 article-title: A study on the nonwet defective factors of the SMT process publication-title: J. Microelectron. Packag. Soc. – ident: ref26 doi: 10.1007/s40747-021-00600-w – ident: ref3 doi: 10.1109/ICINFA.2009.5205058 – ident: ref4 doi: 10.1109/TSM.2013.2261566 – ident: ref12 doi: 10.1007/s00170-018-3022-6 – ident: ref33 doi: 10.1088/1674-4926/33/5/056001 – ident: ref36 doi: 10.1109/ectc.2011.5898673 – ident: ref20 doi: 10.1109/TIM.2022.3168897 – ident: ref27 doi: 10.1016/j.aei.2019.100933 – ident: ref29 doi: 10.1007/s00138-021-01218-1 – ident: ref16 doi: 10.1016/j.eswa.2021.115673 – ident: ref1 doi: 10.1109/TIM.2023.3277935 – ident: ref5 doi: 10.1109/TCPMT.2018.2812815 – ident: ref10 doi: 10.1109/TCPMT.2011.2168531 – year: 2021 ident: ref15 article-title: Detection and classification of surface mount technology (SMT) defects at automated optical inspection (AOI) using residual neural network – ident: ref13 doi: 10.1109/TCPMT.2018.2789453 – ident: ref17 doi: 10.1109/TCPMT.2019.2952393 – ident: ref24 doi: 10.1016/j.jmapro.2020.07.021 – ident: ref2 doi: 10.1109/ACCESS.2025.3547847 – ident: ref8 doi: 10.1016/S0031-3203(98)00103-4 – ident: ref37 doi: 10.1109/CVPR.2005.177 – ident: ref39 doi: 10.1109/ICCV.2017.324 – ident: ref9 doi: 10.1109/TII.2006.877265 – ident: ref14 doi: 10.3390/app10134598 – ident: ref35 doi: 10.1109/TASE.2010.2043097 – ident: ref23 doi: 10.1109/ACCESS.2025.3564906 – ident: ref21 doi: 10.1109/TCPMT.2021.3136823 – ident: ref11 doi: 10.1108/SSMT-08-2016-0016 – ident: ref22 doi: 10.1109/ACCESS.2024.3495540 – ident: ref28 doi: 10.1117/1.JEI.29.4.041013 – ident: ref30 doi: 10.1016/j.neuroimage.2017.04.041 – ident: ref6 doi: 10.1109/TSM.2019.2911062 |
| SSID | ssj0000816957 |
| Score | 2.3367229 |
| Snippet | This paper presents a robust inspection framework for detecting non-wet defects in semiconductor solder joints using 3D CT slice imaging and supervised... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 153234 |
| SubjectTerms | 3D CT slice image Computed tomography Defects Feature extraction Inspection Machine learning non-wet defect inspection Pipelines semiconductor chip Semiconductors Sensitivity solder joint Soldered joints Soldering Solders Solid modeling Supervised learning Three-dimensional displays Training X-ray imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLoVD1VIQ29LKB451SeLv47IUARKoEqBys_xJkRYHlaCq_77jJMCuOHDhkkMUJeM3tudN5HmD0I5IKQorFIHJkgjEa06UhwtPpSwyNCrKUpx8cioOL9jxJb9caPVVzoQN8sADcLtFLcXJZIGmWEZ947SqbO0TC5FKp_rSvUrphWSq34NVLTSXo8xQXend6WwGI4KEsOHfqagYo_VSKOoV-8cWK0ts8-19vrX__tr5fCHwHLxH70bGiKeDpR_Qm5jX0dqCjuBH9JPu49k5PpvDqsdHN7BFkD2ITgFP51ctZP-_bzBwU3zaZvIrdng_ljMc-CgPZZZtxtcZn7WlXzc-bq9zd7eBLg5-nM8OydgqgXgq6o4kxYKHIVuVai4dT55zp72gtglCBi20s6kOwKRTsk201uroVGSBUu8ck3QTreQ2xy2EAxCAEGTwUgnGg7O8iTVgL5hn1GoxQd8eUDO3gyKG6TOJSpsBZFNANiPIE7RXkH18tMhZ9zfAyWZ0snnJyRO0Ufzy9D3I4jhQqQnafnCUGdfenQGKKDmwJAWmkkfnPbPV9g0pl2z99Bq2fkar5Z3Db5pttNL9uY9fgLh07ms_R_8D-KjmSw priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG-EF_VBUDGegumDj_a43X4_HgcESLyYAJG3TT_14rFLYC8G_nqnu72T05j4stlsmnTa37Tz62xnBqGPIsYgjFAElCUSsNecKAcPHlNYpC9VkCk4-fNUnFyysyt-lYPVu1iYEEJ3-SwM02v3L983bpFcZfuwLhkHC7qBNqQSfbDWyqGSKkhoLnNmoWKk98eTCQwCzoAlH1IxYowWa9anS9Kfq6qsEcyni_rG3P808_kjW3O8haZLKfsrJj-Gi9YO3cMfCRz_exjb6EVmnXjcq8lL9CTUr9DzR7kIX6Mv9BBPLvD5HHYOfHoN2ww5AAvn8Xj-rbmdtd-vMfBbPG1q8jW0-DCkeyD4tO5DNZsaz2p83qSa3_ismdXt3Q66PD66mJyQXG6BOCqKlkTFvIM5NCoWXFoeHedWO0FN6YX0WmhrYuGBjcdoymCM0cGqwDylzlom6Ru0WTd1eIuwBxLhvfQOYGLcW8PLUDDDBHOMGi0G6NMShuqmz6pRdaeRka561KqEWpVRG6CDBNWqaUqJ3X2Aaa3yCqtSWh0rowE-axh1pdVqZAoXmQ9UWqUHaCdB8bu_jMIA7S6Rr_L6vauAZkoOTEuBqGSlDX_JarqilmuyvvtHN-_Rs9Ss997sos32dhH2gM-09kOnx78AdlbwJA priority: 102 providerName: IEEE |
| Title | 3D CT Slice Image-Based Algorithm for Non-Wet Defect Inspection in Solder Joints |
| URI | https://ieeexplore.ieee.org/document/11145439 https://www.proquest.com/docview/3247555486 https://doi.org/10.1109/access.2025.3604431 https://doaj.org/article/6263b7fa774a43c2b980a1cf4de37b89 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6h9IA4UB5FpI9oDxzZEHvfxzRt1VYiqtRGlJO1T4hI7apxVMGvZ9Z2SwISgosP1lpez8zufOvd7xuE3okYgzBCEQiWSCBfc6IcXHhMtEifqyATOfnjVJzO2Pk1v-50thMXZn3_PhvpD6YpGwjruJwPqRgxljjTW4ID8O6hrdn0Yvw5lY_LhCa02Yjc-8uTG7mnkejvaqpswMunq_LWfL83i8VapjnZbincy0agMB0w-TZc1Xbofvwm3_iPH_ECPe8QJx63IfISPQnlK_RsTYfwNbqgR3hyhS8XMGvgsxuYYsghZDePx4sv1d28_nqDAdviaVWST6HGRyGdAcFnZUvTrEo8L_Fllep94_NqXtbLHTQ7Ob6anJKu1AJxVGQ1iYp5B0Y0KmZcWh4d51Y7QU3uhfRaaGti5gGJx2jyYIzRwarAPKXOWibpG9QrqzK8RdgDgPBeeieVYNxbw_OQMcMEc4waLfro_YMTittWUaNoViIjXYwnEwi7Ihmq6AzVR4fJUY9Nkxx2cwMMXHSjq0iSOlZGA1jWMOpyq9XIZC4yH6i0SvfRTnLzr_fBKpADFOuj_Qe_F93YXRYAMSUHlKWgq-QxFv7oa-vUjb7u_mf7fdSr71bhAGBNbQfN74BBw0AcdKH9E1BU8lE |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQeeBY1UGAPHHEae9_HNKVKShshNRW9rfYJEaldtY4Q_HpmbSc0ICQulmXZ2tn9Zne-He_MIPSOxxi44TIDZYkZ2GuWSQcXFlNYpC9kECk4-WzKxxf05JJddsHqTSxMCKE5fBb66bb5l-8rt0yusgOYl5SBBb2PHjBKKWvDtdYulVRDQjHR5RbKB-pgOBpBN2AXWLA-4QNKSb5hf5o0_V1dlQ2Kub0sr82P72axuGNtjh-j6UrO9pDJt_6ytn33848Ujv_dkSfoUcc78bBVlKfoXiifoZ072Qifo0_kCI9m-HwBaweeXMFCkx2CjfN4uPhS3czrr1cYGC6eVmX2OdT4KKSTIHhStsGaVYnnJT6vUtVvfFLNy_p2F10cf5iNxllXcCFzhOd1FiX1DsbQyJgzYVl0jFnlODGF58IrrqyJuQc-HqMpgjFGBSsD9YQ4a6kgL9BWWZVhD2EPNMJ74Z2QnDJvDStCTg3l1FFiFO-h9ysY9HWbV0M3-5GB0i1qOqGmO9R66DBBtX41JcVuHsCw6m6O6ZRYx4pogNEaSlxhlRyY3EXqAxFWqh7aTVD8bq9DoYf2V8jrbgbfaiCaggHXkiBqttaGv2Q1TVnLDVlf_qOZt2h7PDs71aeT6cdX6GH6pPXl7KOt-mYZXgO7qe2bRqd_AS2283E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQekAceBYRKMgHjjhk1-9jmlK1lYgqtRHltPKTRqTeqtkIwa9nvLstCUgILntY2drZmbHnG9nzDUJvRYxBGKEIOEskEK85UQ4ePOaySF-qIHNx8seZOJqzkwt-0fNs51qYzfP7Yqzfm7ZtIORxJR9RMWYs10zvCA7Ae4B25rPTyefcPq4QmtD2IPLVX2ZuxZ6Wor_vqbIFL--v07X5_s0slxuR5vBRV8K9agkK8wWTr6N1Y0fux2_0jf_4E4_Rwx5x4knnIk_QvZCeogcbPITP0Ck9wNNzfLaEXQMfX8EWQ_Yhunk8WX6pbxbN5RUGbItndSKfQoMPQr4Dgo9TV6ZZJ7xI-KzO_b7xSb1IzWoXzQ8_nE-PSN9qgTgqioZExbwDJRoVCy4tj45zq52gpvRCei20NbHwgMRjNGUwxuhgVWCeUmctk_Q5GqQ6hRcIewAQ3kvvpBKMe2t4GQpmmGCOUaPFEL27NUJ13TFqVG0mMtbVZDoFt6uyoqpeUUO0nw11NzTTYbcvQMFVv7qqTKljZTSAZQ2jrrRajU3hIvOBSqv0EO1mM__6HmSBHKDYEO3d2r3q1-6qAogpOaAsBaKSO1_4Q9bOqFuyvvzP8Xto0Nysw2uANY1907vzTwVF8Fs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+CT+Slice+Image-Based+Algorithm+for+Non-Wet+Defect+Inspection+in+Solder+Joints&rft.jtitle=IEEE+access&rft.au=Lee%2C+Sung+Ju&rft.au=Lee%2C+Sang+Hwa&rft.au=Cho%2C+Nam+Ik&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=153234&rft.epage=153243&rft_id=info:doi/10.1109%2FACCESS.2025.3604431&rft.externalDocID=11145439 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |