Development of ML FPGA Filter for Particle Identification and Tracking in Real Time
Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophistic...
Saved in:
| Published in | IEEE transactions on nuclear science Vol. 70; no. 6; pp. 960 - 965 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9499 1558-1578 1558-1578 |
| DOI | 10.1109/TNS.2023.3259436 |
Cover
| Abstract | Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is <inline-formula> <tex-math notation="LaTeX">3.3~\mu \text{s} </tex-math></inline-formula>. |
|---|---|
| AbstractList | Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is [Formula Omitted]. Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is <inline-formula> <tex-math notation="LaTeX">3.3~\mu \text{s} </tex-math></inline-formula>. Real-time data processing is a frontier field in experimental particle physics. Machine Learning methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing. Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures. The FPGA-based machine learning algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich data sets for event selection. We report work has started to evaluate an FPGA based Machine Learning (ML) algorithm for a real-time particle identification and tracking with Transition Radiation Detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology. GlueX trigger latency is 3.3 μs. |
| Author | Lawrence, D. Dickover, C. Fanelli, C. Barbosa, F. Branson, N. Jokhovets, L. Romanov, D. Furletov, S. Belfore, L. Furletov, D. |
| Author_xml | – sequence: 1 givenname: F. surname: Barbosa fullname: Barbosa, F. organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA – sequence: 2 givenname: L. surname: Belfore fullname: Belfore, L. organization: Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA – sequence: 3 givenname: N. surname: Branson fullname: Branson, N. organization: Department of Computing, Mathematics and Physics, Messiah University, Mechanicsburg, PA, USA – sequence: 4 givenname: C. surname: Dickover fullname: Dickover, C. organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA – sequence: 5 givenname: C. orcidid: 0000-0002-1985-1329 surname: Fanelli fullname: Fanelli, C. organization: College of William and Mary, Williamsburg, VA, USA – sequence: 6 givenname: D. surname: Furletov fullname: Furletov, D. organization: College of William and Mary, Williamsburg, VA, USA – sequence: 7 givenname: S. orcidid: 0000-0002-7178-8929 surname: Furletov fullname: Furletov, S. email: furletov@jlab.org organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA – sequence: 8 givenname: L. orcidid: 0000-0002-3504-4295 surname: Jokhovets fullname: Jokhovets, L. organization: Jülich Research Centre, Systeme der Elektronik (ZEA-2), Forschungszentrum Jülich, Jülich, Germany – sequence: 9 givenname: D. orcidid: 0000-0003-0502-0847 surname: Lawrence fullname: Lawrence, D. organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA – sequence: 10 givenname: D. surname: Romanov fullname: Romanov, D. organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA |
| BackLink | https://www.osti.gov/servlets/purl/1970496$$D View this record in Osti.gov |
| BookMark | eNptkcFP2zAUh60JJArszmEHa5zT2XGc2EcElCEVqKA7W47zPAyp3dnupv73Sxc0oYqT9aTve_r5947RgQ8eEDqjZEopkd-W90_TkpRsykouK1Z_QhPKuSgob8QBmhBCRSErKY_QcUovw1hxwifo6Qp-Qx_WK_AZB4vv5ni2uLnAM9dniNiGiBc6Zmd6wLfdADnrjM4ueKx9h5dRm1fnf2Ln8SPoHi_dCk7RodV9gs9v7wn6MbteXn4v5g83t5cX88KwmubC1o0RWpYdl4YIaA1rG8atZp0EM4xc1KB52dq2sYa2bSVa01rTSU1lxaVmJ4iOezd-rbd_dN-rdXQrHbeKErVrRWWf1K4V9dbK4HwdnZCyU8m4DObZBO_BZEVlQyq5g85HaB3Drw2krF7CJvrhL6oUZV01nNFqoOqRMjGkFMGqYdu_anLUrv-fYbjMfgayJ-7H_kD5MioOAN7hpJFUSPYXIFWZeA |
| CODEN | IETNAE |
| CitedBy_id | crossref_primary_10_1007_s41781_024_00113_4 |
| Cites_doi | 10.1016/j.nima.2019.162356 10.1016/j.nima.2020.164807 10.1016/j.nima.2019.163375 10.1051/epjconf/201715000003 10.1162/neco_a_01217 10.1007/s41781-019-0027-2 10.1007/978-3-030-70679-1_5 10.1088/1748-0221/13/07/P07027 10.1088/1748-0221/17/06/C06009 10.1051/epjconf/202024501022 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| CorporateAuthor | Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States) |
| CorporateAuthor_xml | – name: Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1109/TNS.2023.3259436 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-1578 |
| EndPage | 965 |
| ExternalDocumentID | oai:osti.gov:1970468 1970496 10_1109_TNS_2023_3259436 10079189 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Jefferson grantid: JSA/DOE CONTRACT - DE-AC05-06OR23177 funderid: 10.13039/100000015 |
| GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 OIOZB OTOTI RIG ZA5 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-f67c8a92d59c08ebc3b735fa3d9ecebc586ea52bfb7fc1bb48bcbfcd9a19459a3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9499 1558-1578 |
| IngestDate | Wed Oct 29 12:18:31 EDT 2025 Mon Apr 01 04:54:59 EDT 2024 Mon Jun 30 08:33:44 EDT 2025 Wed Oct 01 01:37:20 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Wed Aug 27 02:25:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-f67c8a92d59c08ebc3b735fa3d9ecebc586ea52bfb7fc1bb48bcbfcd9a19459a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE AC05-06OR23177 JLAB-PHY-22-3711; DOE/OR/23177-5606 |
| ORCID | 0000-0002-7178-8929 0000-0003-0502-0847 0000-0002-3504-4295 0000-0002-1985-1329 0000000235044295 0000000305020847 0000000271788929 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1970468 |
| PQID | 2826475314 |
| PQPubID | 85457 |
| PageCount | 6 |
| ParticipantIDs | osti_scitechconnect_1970496 crossref_citationtrail_10_1109_TNS_2023_3259436 proquest_journals_2826475314 unpaywall_primary_10_1109_tns_2023_3259436 crossref_primary_10_1109_TNS_2023_3259436 ieee_primary_10079189 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on nuclear science |
| PublicationTitleAbbrev | TNS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 ref14 barbosa (ref1) 2022 ref17 ref16 bernauer (ref2) 2022 ref8 ref7 (ref10) 2022 ref4 ref3 ref6 ref5 (ref12) 2022 ju (ref11) 2020 (ref13) 2022 (ref9) 2022 |
| References_xml | – ident: ref4 doi: 10.1016/j.nima.2019.162356 – ident: ref17 doi: 10.1016/j.nima.2020.164807 – start-page: 1 year: 2022 ident: ref1 article-title: Development of ML FPGA filter for particle identification and tracking in real time publication-title: Proc 2nd Workshop Artif Intell Electron Ion Collider (AIEIC) – ident: ref5 doi: 10.1016/j.nima.2019.163375 – ident: ref14 doi: 10.1051/epjconf/201715000003 – year: 2022 ident: ref12 publication-title: Graph Neural Networks for Particle Track Reconstruction – ident: ref16 doi: 10.1162/neco_a_01217 – ident: ref8 doi: 10.1007/s41781-019-0027-2 – year: 2022 ident: ref9 publication-title: TrackML Particle Tracking Challenge – year: 2022 ident: ref2 article-title: Scientific computing plan for the ECCE detector at the electron ion collider publication-title: arXiv 2205 08607 – ident: ref15 doi: 10.1007/978-3-030-70679-1_5 – ident: ref7 doi: 10.1088/1748-0221/13/07/P07027 – year: 2022 ident: ref13 publication-title: DeepMind – year: 2022 ident: ref10 publication-title: HEP Advanced Tracking Algorithms At the Exascale (Project Exa TrkX) – year: 2020 ident: ref11 article-title: Graph neural networks for particle reconstruction in high energy physics detectors publication-title: arXiv 2003 11603 – ident: ref3 doi: 10.1088/1748-0221/17/06/C06009 – ident: ref6 doi: 10.1051/epjconf/202024501022 |
| SSID | ssj0014505 |
| Score | 2.4029808 |
| Snippet | Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very... Real-time data processing is a frontier field in experimental particle physics. Machine Learning methods are widely used and have proven to be very powerful in... |
| SourceID | unpaywall osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 960 |
| SubjectTerms | Algorithms Data processing Detectors Field programmable gate array (FPGA) Field programmable gate arrays Fitting FPGA GEMTRD Graph neural networks HLS4ML Ionization Latency Machine learning machine learning (ML) neural network Particle physics Pattern recognition Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Radiation detectors Real time Recurrent neural networks Tracking transition radiation detector (TRD) based on GEM technology (GEMTRD) |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69GHbwz5blrUbgu1lAye2JVnSY-iWlbGFsDbQPQl9WBAWnLI6lPav78kfXbrBxl5sBCcs-37y_U463QG8FcYwEWSa5JymCVJqnxhuHF5SLyn1IZRNlO-sOF6wz2f8bAfe9GdhYljlGsHdxFTapV0t1-NMCfTi5D3YLTgS7gHsLmbzyff2H4vTlTVVItEwoj-EAOw3I1M1rquYkTunI4osnzVpmH8Zn6aaCt7i4-7wy_ub6txcXZrVasvUTB_Dh36QbYTJj9GmtiN3_Vv-xn-8xRN41FFNMmmx8RR2yuoZPNxKQPgcTrZihsg6kK9fyHT-aUKmy7iJTpDQknmHLdIe6Q3dGh8xlSdo6FxcaifLinxDxknigZI9WEw_nh4dJ12ZhcTRIquTUAgnjco9Vy6VpXXUCsqDoV6VDptcFqXhuQ1WBJdZy6R1NjivTKYYV4buw6BaV-ULIKa0onDIhGVhmfFG2tx4RoVnjJWMuiGM---vXZeDPJbCWOnGF0mVPp2d6Kgx3WlsCO9ue5y3-Tf-IrsXVbollwqVSTWEg6gMjZwiJsZ1MYLI1bpRiMJeh73qdTd_LzQ6ogVDTy5jQ3h_C4c_RoD4ujOCl_8jfAAPYrONOzuEQf1zU75ChlPb1x3CbwCAi_Vv priority: 102 providerName: Unpaywall |
| Title | Development of ML FPGA Filter for Particle Identification and Tracking in Real Time |
| URI | https://ieeexplore.ieee.org/document/10079189 https://www.proquest.com/docview/2826475314 https://www.osti.gov/servlets/purl/1970496 https://www.osti.gov/biblio/1970468 |
| UnpaywallVersion | submittedVersion |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014505 issn: 0018-9499 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH9i4wA7jK8hysbkAxeQkia1HdvHalqZEFQVW6VxsvwpTVTpxFJN8NfznKRdBwJxyYdkKy9-z_LvfQO8FcYwEWWRjTgtMoTUPjPcOLwUXlLqYwxtlO-0Opuzj5f8sk9Wb3NhQght8FnI02Pry_dLt0qmsmHy6KtSqh3YEbLqkrU2LgPGi75dAe5g_OjaJ1mo4cX0PE9twnOKYJ-11ZjvzqC2qQrelril7sHMR6v62vy4NYvF1okzeQLTNa1doMm3fNXY3P38rYzjf__MU9jvsScZd8LyDB6E-jnsbVUkfAHnW0FEZBnJ509kMvswJpOr5FUniHDJrBc20uX4xt7oR0ztCZ58LtneyVVNviAEJSnD5ADmk9OLk7Os77uQOVqVTRYr4aRRI8-VK2SwjlpBeTTUq-DwlcsqGD6y0YroSmuZtM5G55UpFePK0JewWy_r8AqICVZUDqGxrCwz3kg7Mp5R4RljgVE3gOGaE9r1RclTb4yFbpWTQmnknU680z3vBvBuM-O6K8jxj7EHad23xnVLPoDDxG2NICNVynUppMg1ulQC9SWcdbQWAt1v6BuNmmnFULUr2QDebwTjDwqa-uYeBa__QsEhPE7DupizI9htvq_CG0Q3jT1upfoYHs6ns_HXXwq39n0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CcRgcGB-bKBvgAxeQkia1ndjHaaIU6KqJddJulj-liSqdWCoEfz3PiVs6EIhLPiRbefF7ln_vG-B1rTWrgyiyEadFhpDaZZpri5fCCUpdCL6L8p1Vkwv28ZJfpmT1LhfGe98Fn_k8Pna-fLe0q2gqG0aPviyFvAv3OGOM9-laG6cB40VqWIB7GD-79koWcjifneexUXhOEe6zrh7zr1Ooa6uCtyVuqltAc3fVXOvv3_RisXXmjPdgtqa2DzX5kq9ak9sfvxVy_O_feQQPE_okx724PIY7vnkCD7ZqEj6F860wIrIM5HRKxmfvj8n4KvrVCWJccpbEjfRZviGZ_YhuHMGzz0brO7lqyGcEoSTmmOzDxfjd_GSSpc4LmaVV2Wahqq3QcuS4tIXwxlJTUx40ddJbfOWi8pqPTDB1sKUxTBhrgnVSl5JxqekB7DTLxj8Dor2pK4vgWFSGaaeFGWnHaO2QgZ5RO4DhmhPKprLksTvGQnXqSSEV8k5F3qnEuwG82cy47kty_GPsflz3rXH9kg_gMHJbIcyItXJtDCqyrSpljRoTzjpaC4FKW_pGoW5aMVTuSjaAtxvB-IOCtrm5RcHzv1DwCnYn89Opmn6YfTqE-3FKH4F2BDvt15V_gVinNS87Cf8JU6v4Gg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69GHbwz5blrUbgu1lAye2JVnSY-iWlbGFsDbQPQl9WBAWnLI6lPav78kfXbrBxl5sBCcs-37y_U463QG8FcYwEWSa5JymCVJqnxhuHF5SLyn1IZRNlO-sOF6wz2f8bAfe9GdhYljlGsHdxFTapV0t1-NMCfTi5D3YLTgS7gHsLmbzyff2H4vTlTVVItEwoj-EAOw3I1M1rquYkTunI4osnzVpmH8Zn6aaCt7i4-7wy_ub6txcXZrVasvUTB_Dh36QbYTJj9GmtiN3_Vv-xn-8xRN41FFNMmmx8RR2yuoZPNxKQPgcTrZihsg6kK9fyHT-aUKmy7iJTpDQknmHLdIe6Q3dGh8xlSdo6FxcaifLinxDxknigZI9WEw_nh4dJ12ZhcTRIquTUAgnjco9Vy6VpXXUCsqDoV6VDptcFqXhuQ1WBJdZy6R1NjivTKYYV4buw6BaV-ULIKa0onDIhGVhmfFG2tx4RoVnjJWMuiGM---vXZeDPJbCWOnGF0mVPp2d6Kgx3WlsCO9ue5y3-Tf-IrsXVbollwqVSTWEg6gMjZwiJsZ1MYLI1bpRiMJeh73qdTd_LzQ6ogVDTy5jQ3h_C4c_RoD4ujOCl_8jfAAPYrONOzuEQf1zU75ChlPb1x3CbwCAi_Vv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+ML+FPGA+Filter+for+Particle+Identification+and+Tracking+in+Real+Time&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Barbosa%2C+F.&rft.au=Belfore%2C+L.&rft.au=Branson%2C+N.&rft.au=Dickover%2C+C.&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9499&rft.volume=70&rft.issue=6&rft.spage=960&rft.epage=965&rft_id=info:doi/10.1109%2FTNS.2023.3259436&rft.externalDocID=10079189 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |