Development of ML FPGA Filter for Particle Identification and Tracking in Real Time

Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophistic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 70; no. 6; pp. 960 - 965
Main Authors Barbosa, F., Belfore, L., Branson, N., Dickover, C., Fanelli, C., Furletov, D., Furletov, S., Jokhovets, L., Lawrence, D., Romanov, D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9499
1558-1578
1558-1578
DOI10.1109/TNS.2023.3259436

Cover

Abstract Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is <inline-formula> <tex-math notation="LaTeX">3.3~\mu \text{s} </tex-math></inline-formula>.
AbstractList Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is [Formula Omitted].
Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern field programmable gate array (FPGA) boards allows us to add more sophisticated algorithms for real-time data processing. Many tasks could be solved using modern ML algorithms which are naturally suited for FPGA architectures. The FPGA-based ML algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich datasets for event selection. Work has started to evaluate an FPGA-based ML algorithm for a real-time particle identification and tracking with transition radiation detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology (GEMTRD). GlueX trigger latency is <inline-formula> <tex-math notation="LaTeX">3.3~\mu \text{s} </tex-math></inline-formula>.
Real-time data processing is a frontier field in experimental particle physics. Machine Learning methods are widely used and have proven to be very powerful in particle physics. The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing. Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures. The FPGA-based machine learning algorithm provides an extremely low, sub-microsecond, latency decision and makes information-rich data sets for event selection. We report work has started to evaluate an FPGA based Machine Learning (ML) algorithm for a real-time particle identification and tracking with Transition Radiation Detector (TRD) and e/m calorimeter. The first target is the GlueX experiment, with a plan to build a TRD based on GEM technology. GlueX trigger latency is 3.3 μs.
Author Lawrence, D.
Dickover, C.
Fanelli, C.
Barbosa, F.
Branson, N.
Jokhovets, L.
Romanov, D.
Furletov, S.
Belfore, L.
Furletov, D.
Author_xml – sequence: 1
  givenname: F.
  surname: Barbosa
  fullname: Barbosa, F.
  organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
– sequence: 2
  givenname: L.
  surname: Belfore
  fullname: Belfore, L.
  organization: Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA
– sequence: 3
  givenname: N.
  surname: Branson
  fullname: Branson, N.
  organization: Department of Computing, Mathematics and Physics, Messiah University, Mechanicsburg, PA, USA
– sequence: 4
  givenname: C.
  surname: Dickover
  fullname: Dickover, C.
  organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
– sequence: 5
  givenname: C.
  orcidid: 0000-0002-1985-1329
  surname: Fanelli
  fullname: Fanelli, C.
  organization: College of William and Mary, Williamsburg, VA, USA
– sequence: 6
  givenname: D.
  surname: Furletov
  fullname: Furletov, D.
  organization: College of William and Mary, Williamsburg, VA, USA
– sequence: 7
  givenname: S.
  orcidid: 0000-0002-7178-8929
  surname: Furletov
  fullname: Furletov, S.
  email: furletov@jlab.org
  organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
– sequence: 8
  givenname: L.
  orcidid: 0000-0002-3504-4295
  surname: Jokhovets
  fullname: Jokhovets, L.
  organization: Jülich Research Centre, Systeme der Elektronik (ZEA-2), Forschungszentrum Jülich, Jülich, Germany
– sequence: 9
  givenname: D.
  orcidid: 0000-0003-0502-0847
  surname: Lawrence
  fullname: Lawrence, D.
  organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
– sequence: 10
  givenname: D.
  surname: Romanov
  fullname: Romanov, D.
  organization: Thomas Jefferson National Accelerator Facility, Newport News, VA, USA
BackLink https://www.osti.gov/servlets/purl/1970496$$D View this record in Osti.gov
BookMark eNptkcFP2zAUh60JJArszmEHa5zT2XGc2EcElCEVqKA7W47zPAyp3dnupv73Sxc0oYqT9aTve_r5947RgQ8eEDqjZEopkd-W90_TkpRsykouK1Z_QhPKuSgob8QBmhBCRSErKY_QcUovw1hxwifo6Qp-Qx_WK_AZB4vv5ni2uLnAM9dniNiGiBc6Zmd6wLfdADnrjM4ueKx9h5dRm1fnf2Ln8SPoHi_dCk7RodV9gs9v7wn6MbteXn4v5g83t5cX88KwmubC1o0RWpYdl4YIaA1rG8atZp0EM4xc1KB52dq2sYa2bSVa01rTSU1lxaVmJ4iOezd-rbd_dN-rdXQrHbeKErVrRWWf1K4V9dbK4HwdnZCyU8m4DObZBO_BZEVlQyq5g85HaB3Drw2krF7CJvrhL6oUZV01nNFqoOqRMjGkFMGqYdu_anLUrv-fYbjMfgayJ-7H_kD5MioOAN7hpJFUSPYXIFWZeA
CODEN IETNAE
CitedBy_id crossref_primary_10_1007_s41781_024_00113_4
Cites_doi 10.1016/j.nima.2019.162356
10.1016/j.nima.2020.164807
10.1016/j.nima.2019.163375
10.1051/epjconf/201715000003
10.1162/neco_a_01217
10.1007/s41781-019-0027-2
10.1007/978-3-030-70679-1_5
10.1088/1748-0221/13/07/P07027
10.1088/1748-0221/17/06/C06009
10.1051/epjconf/202024501022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
CorporateAuthor Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
CorporateAuthor_xml – name: Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1109/TNS.2023.3259436
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-1578
EndPage 965
ExternalDocumentID oai:osti.gov:1970468
1970496
10_1109_TNS_2023_3259436
10079189
Genre orig-research
GrantInformation_xml – fundername: Jefferson
  grantid: JSA/DOE CONTRACT - DE-AC05-06OR23177
  funderid: 10.13039/100000015
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
OIOZB
OTOTI
RIG
ZA5
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-f67c8a92d59c08ebc3b735fa3d9ecebc586ea52bfb7fc1bb48bcbfcd9a19459a3
IEDL.DBID RIE
ISSN 0018-9499
1558-1578
IngestDate Wed Oct 29 12:18:31 EDT 2025
Mon Apr 01 04:54:59 EDT 2024
Mon Jun 30 08:33:44 EDT 2025
Wed Oct 01 01:37:20 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 02:25:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f67c8a92d59c08ebc3b735fa3d9ecebc586ea52bfb7fc1bb48bcbfcd9a19459a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
AC05-06OR23177
JLAB-PHY-22-3711; DOE/OR/23177-5606
ORCID 0000-0002-7178-8929
0000-0003-0502-0847
0000-0002-3504-4295
0000-0002-1985-1329
0000000235044295
0000000305020847
0000000271788929
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1970468
PQID 2826475314
PQPubID 85457
PageCount 6
ParticipantIDs osti_scitechconnect_1970496
crossref_citationtrail_10_1109_TNS_2023_3259436
proquest_journals_2826475314
unpaywall_primary_10_1109_tns_2023_3259436
crossref_primary_10_1109_TNS_2023_3259436
ieee_primary_10079189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
barbosa (ref1) 2022
ref17
ref16
bernauer (ref2) 2022
ref8
ref7
(ref10) 2022
ref4
ref3
ref6
ref5
(ref12) 2022
ju (ref11) 2020
(ref13) 2022
(ref9) 2022
References_xml – ident: ref4
  doi: 10.1016/j.nima.2019.162356
– ident: ref17
  doi: 10.1016/j.nima.2020.164807
– start-page: 1
  year: 2022
  ident: ref1
  article-title: Development of ML FPGA filter for particle identification and tracking in real time
  publication-title: Proc 2nd Workshop Artif Intell Electron Ion Collider (AIEIC)
– ident: ref5
  doi: 10.1016/j.nima.2019.163375
– ident: ref14
  doi: 10.1051/epjconf/201715000003
– year: 2022
  ident: ref12
  publication-title: Graph Neural Networks for Particle Track Reconstruction
– ident: ref16
  doi: 10.1162/neco_a_01217
– ident: ref8
  doi: 10.1007/s41781-019-0027-2
– year: 2022
  ident: ref9
  publication-title: TrackML Particle Tracking Challenge
– year: 2022
  ident: ref2
  article-title: Scientific computing plan for the ECCE detector at the electron ion collider
  publication-title: arXiv 2205 08607
– ident: ref15
  doi: 10.1007/978-3-030-70679-1_5
– ident: ref7
  doi: 10.1088/1748-0221/13/07/P07027
– year: 2022
  ident: ref13
  publication-title: DeepMind
– year: 2022
  ident: ref10
  publication-title: HEP Advanced Tracking Algorithms At the Exascale (Project Exa TrkX)
– year: 2020
  ident: ref11
  article-title: Graph neural networks for particle reconstruction in high energy physics detectors
  publication-title: arXiv 2003 11603
– ident: ref3
  doi: 10.1088/1748-0221/17/06/C06009
– ident: ref6
  doi: 10.1051/epjconf/202024501022
SSID ssj0014505
Score 2.4029808
Snippet Real-time data processing is a frontier field in experimental particle physics. Machine learning (ML) methods are widely used and have proven to be very...
Real-time data processing is a frontier field in experimental particle physics. Machine Learning methods are widely used and have proven to be very powerful in...
SourceID unpaywall
osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 960
SubjectTerms Algorithms
Data processing
Detectors
Field programmable gate array (FPGA)
Field programmable gate arrays
Fitting
FPGA
GEMTRD
Graph neural networks
HLS4ML
Ionization
Latency
Machine learning
machine learning (ML)
neural network
Particle physics
Pattern recognition
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Radiation detectors
Real time
Recurrent neural networks
Tracking
transition radiation detector (TRD) based on GEM technology (GEMTRD)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69GHbwz5blrUbgu1lAye2JVnSY-iWlbGFsDbQPQl9WBAWnLI6lPav78kfXbrBxl5sBCcs-37y_U463QG8FcYwEWSa5JymCVJqnxhuHF5SLyn1IZRNlO-sOF6wz2f8bAfe9GdhYljlGsHdxFTapV0t1-NMCfTi5D3YLTgS7gHsLmbzyff2H4vTlTVVItEwoj-EAOw3I1M1rquYkTunI4osnzVpmH8Zn6aaCt7i4-7wy_ub6txcXZrVasvUTB_Dh36QbYTJj9GmtiN3_Vv-xn-8xRN41FFNMmmx8RR2yuoZPNxKQPgcTrZihsg6kK9fyHT-aUKmy7iJTpDQknmHLdIe6Q3dGh8xlSdo6FxcaifLinxDxknigZI9WEw_nh4dJ12ZhcTRIquTUAgnjco9Vy6VpXXUCsqDoV6VDptcFqXhuQ1WBJdZy6R1NjivTKYYV4buw6BaV-ULIKa0onDIhGVhmfFG2tx4RoVnjJWMuiGM---vXZeDPJbCWOnGF0mVPp2d6Kgx3WlsCO9ue5y3-Tf-IrsXVbollwqVSTWEg6gMjZwiJsZ1MYLI1bpRiMJeh73qdTd_LzQ6ogVDTy5jQ3h_C4c_RoD4ujOCl_8jfAAPYrONOzuEQf1zU75ChlPb1x3CbwCAi_Vv
  priority: 102
  providerName: Unpaywall
Title Development of ML FPGA Filter for Particle Identification and Tracking in Real Time
URI https://ieeexplore.ieee.org/document/10079189
https://www.proquest.com/docview/2826475314
https://www.osti.gov/servlets/purl/1970496
https://www.osti.gov/biblio/1970468
UnpaywallVersion submittedVersion
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-1578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014505
  issn: 0018-9499
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH9i4wA7jK8hysbkAxeQkia1HdvHalqZEFQVW6VxsvwpTVTpxFJN8NfznKRdBwJxyYdkKy9-z_LvfQO8FcYwEWWRjTgtMoTUPjPcOLwUXlLqYwxtlO-0Opuzj5f8sk9Wb3NhQght8FnI02Pry_dLt0qmsmHy6KtSqh3YEbLqkrU2LgPGi75dAe5g_OjaJ1mo4cX0PE9twnOKYJ-11ZjvzqC2qQrelril7sHMR6v62vy4NYvF1okzeQLTNa1doMm3fNXY3P38rYzjf__MU9jvsScZd8LyDB6E-jnsbVUkfAHnW0FEZBnJ509kMvswJpOr5FUniHDJrBc20uX4xt7oR0ztCZ58LtneyVVNviAEJSnD5ADmk9OLk7Os77uQOVqVTRYr4aRRI8-VK2SwjlpBeTTUq-DwlcsqGD6y0YroSmuZtM5G55UpFePK0JewWy_r8AqICVZUDqGxrCwz3kg7Mp5R4RljgVE3gOGaE9r1RclTb4yFbpWTQmnknU680z3vBvBuM-O6K8jxj7EHad23xnVLPoDDxG2NICNVynUppMg1ulQC9SWcdbQWAt1v6BuNmmnFULUr2QDebwTjDwqa-uYeBa__QsEhPE7DupizI9htvq_CG0Q3jT1upfoYHs6ns_HXXwq39n0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CcRgcGB-bKBvgAxeQkia1ndjHaaIU6KqJddJulj-liSqdWCoEfz3PiVs6EIhLPiRbefF7ln_vG-B1rTWrgyiyEadFhpDaZZpri5fCCUpdCL6L8p1Vkwv28ZJfpmT1LhfGe98Fn_k8Pna-fLe0q2gqG0aPviyFvAv3OGOM9-laG6cB40VqWIB7GD-79koWcjifneexUXhOEe6zrh7zr1Ooa6uCtyVuqltAc3fVXOvv3_RisXXmjPdgtqa2DzX5kq9ak9sfvxVy_O_feQQPE_okx724PIY7vnkCD7ZqEj6F860wIrIM5HRKxmfvj8n4KvrVCWJccpbEjfRZviGZ_YhuHMGzz0brO7lqyGcEoSTmmOzDxfjd_GSSpc4LmaVV2Wahqq3QcuS4tIXwxlJTUx40ddJbfOWi8pqPTDB1sKUxTBhrgnVSl5JxqekB7DTLxj8Dor2pK4vgWFSGaaeFGWnHaO2QgZ5RO4DhmhPKprLksTvGQnXqSSEV8k5F3qnEuwG82cy47kty_GPsflz3rXH9kg_gMHJbIcyItXJtDCqyrSpljRoTzjpaC4FKW_pGoW5aMVTuSjaAtxvB-IOCtrm5RcHzv1DwCnYn89Opmn6YfTqE-3FKH4F2BDvt15V_gVinNS87Cf8JU6v4Gg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-69GHbwz5blrUbgu1lAye2JVnSY-iWlbGFsDbQPQl9WBAWnLI6lPav78kfXbrBxl5sBCcs-37y_U463QG8FcYwEWSa5JymCVJqnxhuHF5SLyn1IZRNlO-sOF6wz2f8bAfe9GdhYljlGsHdxFTapV0t1-NMCfTi5D3YLTgS7gHsLmbzyff2H4vTlTVVItEwoj-EAOw3I1M1rquYkTunI4osnzVpmH8Zn6aaCt7i4-7wy_ub6txcXZrVasvUTB_Dh36QbYTJj9GmtiN3_Vv-xn-8xRN41FFNMmmx8RR2yuoZPNxKQPgcTrZihsg6kK9fyHT-aUKmy7iJTpDQknmHLdIe6Q3dGh8xlSdo6FxcaifLinxDxknigZI9WEw_nh4dJ12ZhcTRIquTUAgnjco9Vy6VpXXUCsqDoV6VDptcFqXhuQ1WBJdZy6R1NjivTKYYV4buw6BaV-ULIKa0onDIhGVhmfFG2tx4RoVnjJWMuiGM---vXZeDPJbCWOnGF0mVPp2d6Kgx3WlsCO9ue5y3-Tf-IrsXVbollwqVSTWEg6gMjZwiJsZ1MYLI1bpRiMJeh73qdTd_LzQ6ogVDTy5jQ3h_C4c_RoD4ujOCl_8jfAAPYrONOzuEQf1zU75ChlPb1x3CbwCAi_Vv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+ML+FPGA+Filter+for+Particle+Identification+and+Tracking+in+Real+Time&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Barbosa%2C+F.&rft.au=Belfore%2C+L.&rft.au=Branson%2C+N.&rft.au=Dickover%2C+C.&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=0018-9499&rft.volume=70&rft.issue=6&rft.spage=960&rft.epage=965&rft_id=info:doi/10.1109%2FTNS.2023.3259436&rft.externalDocID=10079189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon