Fiber Bragg gratings as transient thermal gradient sensors

We experimentally subject a fiber Bragg grating to an unknown, variable temperature gradient. We use the full-spectral response of the grating to determine the magnitude of the gradient over the length of the grating via the full width at quarter maximum bandwidth. The experimental bandwidth and spe...

Full description

Saved in:
Bibliographic Details
Published inOptical engineering Vol. 55; no. 11; p. 114102
Main Authors Hackney, Drew A, Peters, Kara J, Black, Richard J, Costa, Joannes M, Moslehi, Behzad
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.11.2016
Subjects
Online AccessGet full text
ISSN0091-3286
1560-2303
DOI10.1117/1.OE.55.11.114102

Cover

Abstract We experimentally subject a fiber Bragg grating to an unknown, variable temperature gradient. We use the full-spectral response of the grating to determine the magnitude of the gradient over the length of the grating via the full width at quarter maximum bandwidth. The experimental bandwidth and spectrum deformation were compared with a numerical model consisting of an analytical heat transfer model, a finite element analysis model, and the transfer matrix (T-matrix) method. The numerical model showed excellent agreement with the experimental results when the T-matrix method was modified to include the slope of the gradient in addition to the magnitude of the gradient.
AbstractList We experimentally subject a fiber Bragg grating to an unknown, variable temperature gradient. We use the full-spectral response of the grating to determine the magnitude of the gradient over the length of the grating via the full width at quarter maximum bandwidth. The experimental bandwidth and spectrum deformation were compared with a numerical model consisting of an analytical heat transfer model, a finite element analysis model, and the transfer matrix (T-matrix) method. The numerical model showed excellent agreement with the experimental results when the T-matrix method was modified to include the slope of the gradient in addition to the magnitude of the gradient.
Author Costa, Joannes M
Hackney, Drew A
Moslehi, Behzad
Black, Richard J
Peters, Kara J
Author_xml – sequence: 1
  givenname: Drew A
  surname: Hackney
  fullname: Hackney, Drew A
  organization: aNorth Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, North Carolina 27695, United States
– sequence: 2
  givenname: Kara J
  surname: Peters
  fullname: Peters, Kara J
  email: kjpeters@ncsu.edu
  organization: aNorth Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, North Carolina 27695, United States
– sequence: 3
  givenname: Richard J
  surname: Black
  fullname: Black, Richard J
  email: kjpeters@ncsu.edu
  organization: bIntelligent Fiber Optic Systems Corporation, 2363 Calle Del Mundo, Santa Clara, California 95054, United States
– sequence: 4
  givenname: Joannes M
  surname: Costa
  fullname: Costa, Joannes M
  organization: bIntelligent Fiber Optic Systems Corporation, 2363 Calle Del Mundo, Santa Clara, California 95054, United States
– sequence: 5
  givenname: Behzad
  surname: Moslehi
  fullname: Moslehi, Behzad
  organization: bIntelligent Fiber Optic Systems Corporation, 2363 Calle Del Mundo, Santa Clara, California 95054, United States
BookMark eNp9kNtKAzEQhoNUsK0-gHf7Arvm0KSNd7W2KhTqRb0OaQ5ryja7JPFCn960FYR6gIFhDt_PPzMAPd96A8A1ghVCaHyDqtW8ojQXOUYI4jPQR5TBEhNIeqAPIUclwRN2AQYxbiGEmE8mfXC7cBsTirsg67qog0zO17GQsUhB-uiMT0V6NWEnm_1UHxrR-NiGeAnOrWyiufrKQ_CymK9nj-Vy9fA0my5LRRhKpSXKEiw1oZhsMJQEK66s0RpqRCFVbDyinCGjNCNMcohHVmOuOcHMbJhVZAjGR10V2hiDsUK5lI22Pnt0jUBQ7F8gkFjNBaW5EMcXZBKdkF1wOxne_2XWRyZ2zoht-xZ8Pu577cN1p8yhNw3JqcY83y9-jDtts2z1m-zfPj4BDTiJww
CitedBy_id crossref_primary_10_3390_s20185111
crossref_primary_10_1109_TIM_2023_3276511
Cites_doi 10.1364/OL.19.002027
10.1063/1.124085
10.1117/12.2057942
10.1088/0964-1726/10/2/321
10.1177/1099636207064457
10.1109/68.769730
10.1117/12.862227
10.1117/1.1382642
10.1117/12.672853
10.1364/AO.26.003474
10.1177/1045389X11414220
10.1109/JLT.2004.833281
10.1016/S0266-3538(01)00037-9
ContentType Journal Article
Copyright 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.OE.55.11.114102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1560-2303
EndPage 114102
ExternalDocumentID 10_1117_1_OE_55_11_114102
GrantInformation_xml – fundername: Intelligent Fiber Optic Systems Inc. (IFOS)
  grantid: NNX11CI02P; NNX12CB01C
GroupedDBID 02
0R
123
29N
AAPBV
ABFLS
ABPTK
ABTRL
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
FQ0
HZ
M4W
M4X
NU.
O9-
P2P
RNS
SPBNH
TAE
TWZ
UCJ
UT2
WH7
X
-~X
.DC
0R~
4.4
AAYXX
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
P-S
XJE
~02
ID FETCH-LOGICAL-c361t-f3cf32ad3523b20a32c9cfedd0d1505c6745961ecd636a9024fd29d9326eb6fc3
ISSN 0091-3286
IngestDate Tue Jul 01 02:47:08 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri May 31 16:22:07 EDT 2019
Fri Jan 15 20:10:29 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords temperature gradient
transfer matrix method
fiber Bragg grating
full spectrum
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-f3cf32ad3523b20a32c9cfedd0d1505c6745961ecd636a9024fd29d9326eb6fc3
PageCount 1
ParticipantIDs spie_journals_10_1117_1_OE_55_11_114102
crossref_citationtrail_10_1117_1_OE_55_11_114102
crossref_primary_10_1117_1_OE_55_11_114102
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Optical engineering
PublicationTitleAlternate Opt. Eng
PublicationYear 2016
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References Leviton, D. B.; Frey, J. F. 2006; 6273
Rogers, J. A. 1999; 74
Kuang, K. S. C. 2001; 10
Kuang, K. S. C. 2001; 61
Yamada, M.; Sakuda, K. 1987; 26
Minakuchi, S.; Okabe, Y.; Takeda, N. 2007; 9
Prabhugoud, M.; Peters, K. 2004; 22
Black, R. J.; Moslehi, B. 2010; 7817
Eggleton, B. J. 1999; 11
Hill, P. C.; Eggleton, B. J. 1994; 11
Hackney, D.; Peters, K. 2011; 22
Chen, Z. 2001; 40
Black, R. J. 2014; 9062
Black, R. J. 2016; 55
Lauzon, J. 1994; 19
r2
r3
r4
r5
r6
r7
r8
Touloukian (r17) 1977
Little (r9) 2013
Hackney (r15) 2015
r20
r12
r11
Costa (r10) 2012
r14
Bejan (r16) 1993
r13
r18
r19
r1
References_xml – volume: 19
  start-page: 2027
  issn: 0146-9592
  year: 1994
  end-page: 2029
  article-title: Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.002027
– volume: 74
  start-page: 3131
  issn: 0003-6951
  year: 1999
  end-page: 3133
  article-title: Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124085
– volume: 9062
  start-page: 906204
  year: 2014
  article-title: Fiber optic temperature profiling for thermal protection heat shields
  publication-title: Proc. SPIE
  doi: 10.1117/12.2057942
– volume: 10
  start-page: 338
  issn: 0964-1726
  year: 2001
  end-page: 346
  article-title: Residual strain measurement and impact response of optical fiber Bragg grating sensors in fibre metal laminates
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/2/321
– volume: 9
  start-page: 9
  year: 2007
  end-page: 33
  article-title: Real-time detection of debonding between honeycomb core and facesheet using a small diameter FBG sensor embedded in adhesive layer
  publication-title: J. Sandwich Struct. Mater.
  doi: 10.1177/1099636207064457
– volume: 11
  start-page: 854
  issn: 1041-1135
  year: 1999
  end-page: 856
  article-title: Electrically tunable power efficient dispersion compensating fiber Bragg grating
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.769730
– volume: 55
  start-page: 114101
  issue: 11
  year: 2016
  article-title: Fiber optic temperature profiling for TPS heat shields
  publication-title: Opt. Eng.
  doi: 10.1117/12.2057942
– volume: 7817
  start-page: 78170L
  year: 2010
  article-title: Advanced end-to-end fiber optic sensing systems for demanding environments
  publication-title: Proc. SPIE
  doi: 10.1117/12.862227
– volume: 40
  start-page: 1156
  year: 2001
  end-page: 1157
  article-title: Tunable chirped fiber Bragg gratings by a distributed heater
  publication-title: Opt. Eng.
  doi: 10.1117/1.1382642
– volume: 11
  start-page: 854
  issn: 1041-1135
  year: 1994
  end-page: 856
  article-title: Electrically tunable power efficient dispersion compensating fiber Bragg grating
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.769730
– volume: 6273
  start-page: 62732K
  issn: 0277-786X
  year: 2006
  article-title: Temperature-dependent absolute refractive index measurements of synthetic fused silica
  publication-title: Proc. SPIE
  doi: 10.1117/12.672853
– volume: 26
  start-page: 3474
  issn: 0003-6935
  year: 1987
  end-page: 3478
  article-title: Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.003474
– volume: 22
  start-page: 1305
  issn: 1045-389X
  year: 2011
  end-page: 1316
  article-title: Damage identification after impact in sandwich composites through embedded fiber Bragg sensors
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X11414220
– volume: 22
  start-page: 2302
  issn: 0733-8724
  year: 2004
  end-page: 2309
  article-title: Modified transfer matrix formulation for Bragg grating strain sensors
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2004.833281
– volume: 61
  start-page: 1379
  issn: 0266-3538
  year: 2001
  end-page: 1387
  article-title: Embedded fibre Bragg grating sensors in advanced composite materials
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(01)00037-9
– ident: r4
  doi: 10.1177/1099636207064457
– ident: r5
  doi: 10.1177/1045389X11414220
– ident: r14
  doi: 10.1063/1.124085
– ident: r2
  doi: 10.1088/0964-1726/10/2/321
– ident: r20
  doi: 10.1117/12.672853
– ident: r7
  doi: 10.1117/12.2057942
– ident: r12
  doi: 10.1117/1.1382642
– ident: r3
  doi: 10.1016/S0266-3538(01)00037-9
– year: 2015
  ident: r15
  article-title: Characterization of fiber Bragg gratings as thermal sensors in complex environments
– year: 1977
  ident: r17
– ident: r18
  doi: 10.1364/AO.26.003474
– ident: r19
  doi: 10.1109/JLT.2004.833281
– ident: r11
  doi: 10.1364/OL.19.002027
– ident: r6
  doi: 10.1117/12.862227
– ident: r8
  doi: 10.1117/12.2057942
– year: 2012
  ident: r10
  article-title: Advances in high temperature fiber optic sensors for turbine engine applications
– ident: r13
  doi: 10.1109/68.769730
– year: 1993
  ident: r16
– ident: r1
  doi: 10.1109/68.769730
– year: 2013
  ident: r9
  article-title: The Mars Science Laboratory (MSL) entry, descent and landing instrumentation (MEDLI): hardware performance and data reconstruction
SSID ssj0002988
Score 2.1780431
Snippet We experimentally subject a fiber Bragg grating to an unknown, variable temperature gradient. We use the full-spectral response of the grating to determine the...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 114102
Title Fiber Bragg gratings as transient thermal gradient sensors
URI http://www.dx.doi.org/10.1117/1.OE.55.11.114102
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1560-2303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002988
  issn: 0091-3286
  databaseCode: ADMLS
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9swUGQpg_VhbN3G2m7FD4PBgj1bjuR4b6FJKNmyDNqOvhlFHyWsJCZyKPTX7yQrttMv1r0I--4sbN_5dCffB0KfuEwkrBrgqSai63clJn5KFAy4RxVXVIU2UXjyk56cd8cX5KLVOm1ELa2LWcBv7s0r-R-uAgz4arJkn8DZalIAwDHwF0bgMIz_xOORCfcA9rDLy46p-WBbcDJt-j4stEl0NGYlaN4rgxUWoMFtXbo_OM4mneblfrasSxPWeon_ceFgg5W87vSDWpUWrrvad7ZinXGFsDuCjZT9Bup46WzV8ZKBetedSdDcdIioy75rKNI08mPsqlg7RVrW290ITNRQi5GJJsUPaGyb8x9MhwEhcBrUtNvVsW-tWlUsYenFJFmUTYcZIXCSlVM8QzsYVH3YRjv9weTHabVA47RXLtDuGdzPbpjk65372DJX2jqfy4b5cfYKvXR-g9cvheA1asnFHtptVJPcQ89tNC_XAP891-uSWr9B36yYeFZMvI2YeEx7lZh4Tky8jZh4TkzeovPR8Oz4xHctM3we06jwVcxVjJkAszqe4ZDFmKdcSSFCAZY_4TTpkpRGkgsaU5aCgaYEToUx4qVJ-4rfofZiuZDvkQd-ZMyTnggTcDlVAp51omiY8pQQzqNQ7qNw82Yy7urJm7YmV9mDHNlHX6pL8rKYymPEn83rztz3ph-jnGxTVvibeX6b2MIcs34NRnfQuVAHT7nNQ_Si_kA-oHaxWsuPYKcWsyMnd38BcJaH3Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+Bragg+gratings+as+transient+thermal+gradient+sensors&rft.jtitle=Optical+engineering&rft.au=Hackney%2C+Drew+A.&rft.au=Peters%2C+Kara+J.&rft.au=Black%2C+Richard+J.&rft.au=Costa%2C+Joannes+M.&rft.date=2016-11-01&rft.issn=0091-3286&rft.volume=55&rft.issue=11&rft.spage=114102&rft_id=info:doi/10.1117%2F1.OE.55.11.114102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_OE_55_11_114102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon