Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review
Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number...
Saved in:
Published in | Journal of cybersecurity and privacy Vol. 2; no. 3; pp. 714 - 730 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
MDPI AG
08.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2624-800X 2624-800X |
DOI | 10.3390/jcp2030036 |
Cover
Abstract | Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were reported to have higher accuracies than their counterparts. This study was thus motivated to present a systematic review of these successes and the reported limitations. Three methods were researched for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning approach for contactless fingerprint recognition. Eight scientific articles were identified that matched all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning approaches need to address for real-world biometric applications. |
---|---|
AbstractList | Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were reported to have higher accuracies than their counterparts. This study was thus motivated to present a systematic review of these successes and the reported limitations. Three methods were researched for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning approach for contactless fingerprint recognition. Eight scientific articles were identified that matched all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning approaches need to address for real-world biometric applications. |
Author | Chowdhury, A M Mahmud Imtiaz, Masudul Haider |
Author_xml | – sequence: 1 givenname: A M Mahmud surname: Chowdhury fullname: Chowdhury, A M Mahmud – sequence: 2 givenname: Masudul Haider surname: Imtiaz fullname: Imtiaz, Masudul Haider |
BookMark | eNptkctKBDEQRYMo-Nz4BQ3uhNHKo3s6SxmfMCL4AHchnVQPGcZkTKLizo_wC_0So6Mo4ipJ5dbl1K11suyDR0K2KexxLmF_auYMOABvlsgaa5gYtAC3y7_uq2QrpSkAsKHkNRVr5HwUfNYmzzCl6tj5CcZ5dD5Xl2jCxLvsgq9uUvmoDhHn1Rh19OX19vJ6UF09p4x3OjtT5I8OnzbJSq9nCbe-zg1yfXx0PTodjC9OzkYH44HhDc2DnnGmOe1bURtZuLAXrKOStR3vkQupBcKwLiOBbai21HLe26GuRUdBtC3fIGcLWxv0VBXeOx2fVdBOfRZCnCgdC9UMlURRsqmlbjspmLVdC8wYYLa3vNbWFq-dhdc8hvsHTFlNw0P0hV6xIW3qmkrJigoWKhNDShF7ZVzWH-HkqN1MUVAfK1A_Kygtu39avkH_Eb8DMZuI7Q |
CitedBy_id | crossref_primary_10_2478_amns_2025_0163 crossref_primary_10_3390_math11051261 crossref_primary_10_3390_s25061824 crossref_primary_10_4258_hir_2023_29_2_152 crossref_primary_10_1109_TBIOM_2024_3403770 crossref_primary_10_1016_j_patcog_2023_109681 crossref_primary_10_3390_s23052411 crossref_primary_10_1016_j_engappai_2025_110493 crossref_primary_10_1109_TBIOM_2024_3377686 crossref_primary_10_3390_jimaging9080158 crossref_primary_10_1109_TIFS_2024_3463957 crossref_primary_10_1109_ACCESS_2025_3527071 crossref_primary_10_1186_s13640_024_00642_3 crossref_primary_10_3390_mti6120107 crossref_primary_10_3390_s23146591 |
Cites_doi | 10.1007/s11277-018-5246-z 10.1109/TIFS.2009.2038758 10.1007/978-3-319-67681-4 10.1016/j.jfds.2017.05.001 10.1002/ima.22234 10.1016/j.ins.2017.02.021 10.1109/TIFS.2021.3076307 10.1142/S0219691313500331 10.1145/3461341 10.1109/ICCIC.2013.6724278 10.1016/j.eswa.2017.05.039 10.1109/ICWAPR.2012.6294770 10.1109/CEC.2016.7744332 10.1007/978-1-84882-385-3_4 10.1109/CVPR.2013.441 10.3390/s22030792 10.1109/TIM.2013.2258248 10.1186/s13640-021-00548-4 10.1007/978-1-4614-7400-5_1 10.1007/11527923_16 10.1007/978-3-642-35289-8_30 10.1587/transinf.2016EDP7256 10.1109/BTAS.2009.5339023 10.1016/j.patcog.2014.05.021 10.1109/OJCS.2021.3119572 10.1109/EIT.2012.6220732 10.6028/NIST.IR.8159 10.1109/CVPRW.2011.5981823 10.1109/CogSIMA49017.2020.9215998 10.1007/978-1-84628-921-7_2 10.1007/978-3-642-30244-2_12 10.1609/aaai.v30i1.10171 10.1016/j.array.2021.100083 10.1109/TIFS.2010.2062177 10.1109/CAIPT.2017.8320684 10.1109/ICPECA53709.2022.9718847 10.1109/TSMC.2015.2423252 10.6028/NIST.IR.7392 10.1109/BTAS.2013.6712736 10.1109/CCDC.2017.7979332 10.1109/ICCVW.2017.107 10.1109/BTAS.2008.4699379 10.1109/ICICA.2014.19 10.1109/ICMIP.2017.65 10.1145/3168776.3168800 10.1109/FSKD.2014.6980965 10.1109/TPAMI.2019.2949299 10.1117/1.3646327 10.1145/1477862.1477871 10.1016/j.patcog.2021.108189 10.1109/THS.2012.6459880 10.21037/atm.2020.02.44 10.1016/j.patcog.2013.06.009 10.1007/978-1-84882-254-2 10.1007/978-3-642-34041-3_27 10.1109/TIP.2017.2788866 10.1117/1.OE.52.10.103103 10.1016/S0969-4765(11)70057-1 10.1109/ICPR.2016.7900094 10.1016/j.compag.2021.106191 10.1016/j.neucom.2015.05.065 10.1007/11608288_47 10.1109/ICCPhot.2012.6215216 10.1155/2012/626148 10.1109/TIFS.2018.2854765 10.1007/978-981-10-3005-5_36 10.1016/j.patcog.2018.05.004 10.1109/ICMEW.2012.95 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/jcp2030036 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2624-800X |
EndPage | 730 |
ExternalDocumentID | oai_doaj_org_article_9e433959a8b942ddb802cc02dfd35add 10_3390_jcp2030036 |
GroupedDBID | 7WY 8FL AAYXX ABUWG AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ M0C MODMG M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA 3V. 7XB 8FK AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c361t-f232a31f845c9800ef42b1928b3fe349a4e0753900d61ad1d33fd7a54b104883 |
IEDL.DBID | DOA |
ISSN | 2624-800X |
IngestDate | Wed Aug 27 01:31:09 EDT 2025 Mon Jun 30 04:50:16 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Tue Jul 01 00:49:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-f232a31f845c9800ef42b1928b3fe349a4e0753900d61ad1d33fd7a54b104883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/9e433959a8b942ddb802cc02dfd35add |
PQID | 2716551992 |
PQPubID | 5465940 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e433959a8b942ddb802cc02dfd35add proquest_journals_2716551992 crossref_citationtrail_10_3390_jcp2030036 crossref_primary_10_3390_jcp2030036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-08 |
PublicationDateYYYYMMDD | 2022-09-08 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of cybersecurity and privacy |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Cheng (ref_35) 2018; 102 Kaur (ref_68) 2012; 3 Oduah (ref_5) 2021; 11 ref_14 ref_55 ref_54 Yin (ref_41) 2019; 43 ref_53 ref_52 ref_19 Sundararajan (ref_90) 2018; 51 ref_18 ref_16 Tan (ref_89) 2021; 16 ref_15 Zhong (ref_37) 2016; 2 Sero (ref_58) 2021; 14 ref_59 Libert (ref_17) 2018; 500 Affonso (ref_28) 2017; 85 Liu (ref_44) 2015; 168 Tassis (ref_69) 2021; 186 ref_61 Zhang (ref_79) 2021; 120 Noh (ref_11) 2011; 50 ref_60 Liu (ref_64) 2017; 394 Gragnaniello (ref_76) 2015; 48 ref_25 ref_24 ref_22 ref_66 ref_21 ref_20 Yin (ref_26) 2021; 2 ref_63 ref_62 Lin (ref_12) 2018; 27 ref_27 Lin (ref_83) 2018; 14 ref_72 Choi (ref_2) 2010; 5 ref_70 Paradise (ref_8) 2011; 2011 Bhattacharyya (ref_65) 2009; 2 ref_36 ref_34 ref_78 ref_33 ref_32 ref_31 ref_30 ref_74 Cai (ref_29) 2020; 8 Liu (ref_43) 2014; 47 ref_73 ref_39 ref_38 Labati (ref_56) 2015; 46 Magudeeswaran (ref_75) 2017; 27 Xie (ref_51) 2013; 52 Liu (ref_57) 2013; 62 ref_82 ref_81 ref_80 ref_47 Khalil (ref_67) 2013; 11 ref_46 ref_45 ref_88 ref_87 ref_42 ref_85 ref_40 ref_84 ref_1 ref_3 Priesnitz (ref_10) 2021; 2021 Drahansky (ref_23) 2012; 2012 ref_49 ref_48 Lin (ref_86) 2018; 83 ref_9 Chinnappan (ref_71) 2021; 9 Wang (ref_13) 2010; 5 ref_4 ref_7 ref_6 Hu (ref_77) 2017; 100 |
References_xml | – volume: 102 start-page: 1917 year: 2018 ident: ref_35 article-title: Image recognition technology based on deep learning publication-title: Wirel. Per. Commun. doi: 10.1007/s11277-018-5246-z – ident: ref_78 – volume: 5 start-page: 52 year: 2010 ident: ref_2 article-title: Mosaicing touchless and mirror-reflected fingerprint images publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2009.2038758 – ident: ref_4 doi: 10.1007/978-3-319-67681-4 – ident: ref_32 – volume: 2 start-page: 265 year: 2016 ident: ref_37 article-title: An overview on data representation learning: From traditional feature learning to recent deep learning publication-title: J. Financ. Data Sci. doi: 10.1016/j.jfds.2017.05.001 – volume: 27 start-page: 311 year: 2017 ident: ref_75 article-title: A machine learning approach for brain image enhancement and segmentation publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22234 – volume: 394 start-page: 88 year: 2017 ident: ref_64 article-title: Gesture segmentation based on a two-phase estimation of distribution algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.02.021 – ident: ref_84 – volume: 16 start-page: 3299 year: 2021 ident: ref_89 article-title: Minutiae attention network with reciprocal distance loss for contactless to contact-based fingerprint identification publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2021.3076307 – volume: 11 start-page: 1350033 year: 2013 ident: ref_67 article-title: Authentication of fingerprint biometrics acquired using a cellphone camera: A review publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S0219691313500331 – volume: 14 start-page: 1 year: 2021 ident: ref_58 article-title: The study of three-dimensional fingerprint recognition in cultural heritage: Trends and challenges publication-title: J. Comput. Cult. Herit. doi: 10.1145/3461341 – ident: ref_61 – ident: ref_15 doi: 10.1109/ICCIC.2013.6724278 – volume: 85 start-page: 114 year: 2017 ident: ref_28 article-title: Deep learning for biological image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.039 – ident: ref_66 doi: 10.1109/ICWAPR.2012.6294770 – ident: ref_59 doi: 10.1109/CEC.2016.7744332 – volume: 500 start-page: 305 year: 2018 ident: ref_17 article-title: Guidance for evaluating contactless fingerprint acquisition devices publication-title: NIST Spec. Publ. – ident: ref_16 doi: 10.1007/978-1-84882-385-3_4 – ident: ref_47 doi: 10.1109/CVPR.2013.441 – ident: ref_62 doi: 10.3390/s22030792 – volume: 62 start-page: 2492 year: 2013 ident: ref_57 article-title: Touchless multiview fingerprint acquisition and mosaicking publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2258248 – volume: 2021 start-page: 1 year: 2021 ident: ref_10 article-title: An overview of touchless 2D fingerprint recognition publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-021-00548-4 – ident: ref_52 doi: 10.1007/978-1-4614-7400-5_1 – ident: ref_20 doi: 10.1007/11527923_16 – ident: ref_36 doi: 10.1007/978-3-642-35289-8_30 – volume: 100 start-page: 546 year: 2017 ident: ref_77 article-title: Hybrid Minutiae Descriptor for Narrow Fingerprint Verification publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2016EDP7256 – ident: ref_27 doi: 10.1109/BTAS.2009.5339023 – volume: 48 start-page: 1050 year: 2015 ident: ref_76 article-title: Local contrast phase descriptor for fingerprint liveness detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.021 – ident: ref_87 – volume: 2 start-page: 370 year: 2021 ident: ref_26 article-title: A Survey on 2D and 3D Contactless Fingerprint Biometrics: A Taxonomy, Review, and Future Directions publication-title: IEEE Open J. Comput. Soc. doi: 10.1109/OJCS.2021.3119572 – ident: ref_40 doi: 10.1109/EIT.2012.6220732 – ident: ref_6 doi: 10.6028/NIST.IR.8159 – ident: ref_38 – ident: ref_9 doi: 10.1109/CVPRW.2011.5981823 – ident: ref_50 doi: 10.1109/CogSIMA49017.2020.9215998 – ident: ref_48 doi: 10.1007/978-1-84628-921-7_2 – ident: ref_72 – ident: ref_18 doi: 10.1007/978-3-642-30244-2_12 – ident: ref_85 doi: 10.1609/aaai.v30i1.10171 – volume: 11 start-page: 100083 year: 2021 ident: ref_5 article-title: Towards a high-precision contactless fingerprint scanner for biometric authentication publication-title: Array doi: 10.1016/j.array.2021.100083 – volume: 5 start-page: 750 year: 2010 ident: ref_13 article-title: Data acquisition and processing of 3-D fingerprints publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2010.2062177 – ident: ref_31 doi: 10.1109/CAIPT.2017.8320684 – ident: ref_33 doi: 10.1109/ICPECA53709.2022.9718847 – volume: 46 start-page: 202 year: 2015 ident: ref_56 article-title: Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2015.2423252 – ident: ref_88 doi: 10.6028/NIST.IR.7392 – ident: ref_7 doi: 10.1109/BTAS.2013.6712736 – ident: ref_34 doi: 10.1109/CCDC.2017.7979332 – ident: ref_53 – ident: ref_30 – volume: 2 start-page: 13 year: 2009 ident: ref_65 article-title: Biometric authentication: A review publication-title: Int. J. u- e-Serv. Sci. Technol. – ident: ref_81 doi: 10.1109/ICCVW.2017.107 – ident: ref_60 doi: 10.1109/BTAS.2008.4699379 – ident: ref_74 doi: 10.1109/ICICA.2014.19 – ident: ref_3 – ident: ref_14 doi: 10.1109/ICMIP.2017.65 – ident: ref_49 doi: 10.1145/3168776.3168800 – ident: ref_82 – ident: ref_80 doi: 10.1109/FSKD.2014.6980965 – volume: 43 start-page: 1085 year: 2019 ident: ref_41 article-title: 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2949299 – volume: 50 start-page: 113202 year: 2011 ident: ref_11 article-title: Touchless sensor capturing five fingerprint images by one rotating camera publication-title: Opt. Eng. doi: 10.1117/1.3646327 – ident: ref_42 doi: 10.1145/1477862.1477871 – volume: 120 start-page: 108189 year: 2021 ident: ref_79 article-title: A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108189 – ident: ref_24 doi: 10.1109/THS.2012.6459880 – volume: 8 start-page: 713 year: 2020 ident: ref_29 article-title: A review of the application of deep learning in medical image classification and segmentation publication-title: Ann. Transl. Med. doi: 10.21037/atm.2020.02.44 – volume: 47 start-page: 178 year: 2014 ident: ref_43 article-title: 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.06.009 – ident: ref_1 doi: 10.1007/978-1-84882-254-2 – ident: ref_73 doi: 10.1007/978-3-642-34041-3_27 – ident: ref_39 doi: 10.1007/978-3-319-67681-4 – volume: 9 start-page: 4647 year: 2021 ident: ref_71 article-title: Fingerprint Recognition Technology Using Deep Learning: A Review publication-title: SSRN Electron. J. – volume: 27 start-page: 2008 year: 2018 ident: ref_12 article-title: Matching contactless and contact-based conventional fingerprint images for biometrics identification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2788866 – volume: 52 start-page: 103103 year: 2013 ident: ref_51 article-title: Real-time three-dimensional fingerprint acquisition via a new photometric stereo means publication-title: Opt. Eng. doi: 10.1117/1.OE.52.10.103103 – volume: 2011 start-page: 10 year: 2011 ident: ref_8 article-title: Contactless challenges publication-title: Biom. Technol. Today doi: 10.1016/S0969-4765(11)70057-1 – ident: ref_25 – volume: 3 start-page: 30 year: 2012 ident: ref_68 article-title: Comparison between YCbCr color space and CIELab color space for skin color segmentation publication-title: Int. J. Appl. Inf. Syst. – ident: ref_21 doi: 10.1109/ICPR.2016.7900094 – ident: ref_54 – ident: ref_46 – volume: 186 start-page: 106191 year: 2021 ident: ref_69 article-title: A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106191 – volume: 168 start-page: 599 year: 2015 ident: ref_44 article-title: Study on novel curvature features for 3D fingerprint recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.065 – ident: ref_19 doi: 10.1007/11608288_47 – ident: ref_45 doi: 10.1109/ICCPhot.2012.6215216 – volume: 2012 start-page: 626148 year: 2012 ident: ref_23 article-title: Influence of skin diseases on fingerprint recognition publication-title: J. Biomed. Biotechnol. doi: 10.1155/2012/626148 – volume: 14 start-page: 662 year: 2018 ident: ref_83 article-title: A CNN-based framework for comparison of contactless to contact-based fingerprints publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2854765 – ident: ref_63 doi: 10.1007/978-981-10-3005-5_36 – volume: 83 start-page: 314 year: 2018 ident: ref_86 article-title: Contactless and partial 3D fingerprint recognition using multi-view deep representation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.004 – ident: ref_55 doi: 10.1109/ICMEW.2012.95 – ident: ref_70 – ident: ref_22 – volume: 51 start-page: 1 year: 2018 ident: ref_90 article-title: Deep learning for biometrics: A survey publication-title: ACM Comput. Surv. CSUR |
SSID | ssj0002793514 |
Score | 2.3680778 |
SecondaryResourceType | review_article |
Snippet | Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 714 |
SubjectTerms | Algorithms Biometric identification Biometrics contactless fingerprint Deep learning Digital cameras fingerprint analysis fingerprint recognition Fingerprinting Machine learning Neural networks Performance evaluation Sensors Smartphones Systematic review |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BuHCh0FKRFpClculhxa7t3diHquKRKKqUCAWQclv5iYRQEkh674_oL-SXMPZ6k0NRr2vvweN5fB6PvwE4EwphKsYJNCQnM8S3NFO9nss0QgfOfc51JKsejavhPf81LadbMG7fwoSyytYnRkdt5ybkyM8pAnuM7lLSn4vnLHSNCrerbQsNlVor2B-RYmwbdmjoqtyBncv--GayzrpQVMeG8JtWlKN7zqcNZynDs__5o1lQVPo88jVvolQk8__HV8cANNiHvYQcyUWz1Qew5WYf4UPblYEkI_0Eo0A4pQzqwHJJBjFrF5J3KzJpa4XmMxIrBci1cwuSGFYfXv_8vSC3a2Jn0twaHMLdoH93NcxS04TMsKpYZR4hkmKFF7w0EtfnPKcaYZzQzDvGpeIOUQKuNrdVoWxhGfO2p0qui2DM7DN0ZvOZOwJCK-lcIQViHoWjhahskXtjKy-s0Jx14Xsro9okQvHQ1-KpxoNFkGe9kWcXvq3nLhoajXdnXQZRr2cE6uv4Yf7yUCdLqqXj-FspldCSU2u1yKkxObXeshK9dReO242qkz0u6432fPn_8FfYpeGBQ7gyEsfQWb38dicIO1b6NOnSG02q1gk priority: 102 providerName: ProQuest |
Title | Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review |
URI | https://www.proquest.com/docview/2716551992 https://doaj.org/article/9e433959a8b942ddb802cc02dfd35add |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2624-800X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793514 issn: 2624-800X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA8yL178L07nCOjFQ1mbpF1y3HRjCBsyJ-xWkiYRhnTDzbsfwk_oJ_ElbbeBghevbUrb9_Lyfi_v5fcQuuESYCr4CTAkIwLAtySQ7bYJFEAHxmzIlCerHo6SwTN7mMbTrVZfriasoAcuBNcShlEqYiG5EoxorXhIsiwk2moag3G61Rfc2FYwNfPpNOFK1As-Ung-bM2yBYEJHXou5o0H8kT9P9Zh71z6h2i_RIW4U3zNEdox-TE6qDou4NIAT9DQkUnJDPS7XOK-35FzG3MrPK7qgOY59lUA-N6YBS7ZU1--Pj47-GlN2oyLjMApmvR7k7tBUDZECDKaRKvAAvyRNLKcxZkApGcsIwogGlfUGsqEZAYQAPxtqJNI6khTanVbxkxFzlDpGarl89ycI0wSYUwkOOAZCXcjnugotJlOLNdcMVpHt5WM0qwkC3c9K15TCBqcPNONPOvoej12UVBk_Dqq60S9HuForf0FUHZaKjv9S9l11KgUlZa2tkwJhHyA-4QgF__xjku0R9wRB5c04g1UW729mysAHivVRLvd3uhx3PRz7Rsiu9hn |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9gAX_lEDBSwBBw6r7trejX2oUEsbpbSJUAlSbpZ_KyGUhCYIceMheB1ehidh7PUmBxC3XtdeH8Yz_j6P7W8AXgqNNBVxAgPJywL5LS10v-8Lg9SB81Byk8SqR-Nm-JG_m9bTLfjVvYWJ1yq7NTEt1G5uY458nyKxR3SXkr5ZfCli1ah4utqV0NC5tII7SBJj-WHHmf_-Dbdwy4PTY5zvV5QOTiZvh0WuMlBY1lSrIiCn0KwKgtdWIn3ygVODvEcYFjzjUnOPsMpkWbqm0q5yjAXX1zU3VfR-hsPegB1kHQyDaufoZPz-Yp3koej9rb44bShHNCinrUQqw_H2P9kFxRgrkzz0BhRT7YC_oCHh3eAu3M5ElRy2nnUPtvzsPtzpikCQvCY8gFHUt9IWXW65JIOUJIy5whW56K4mzWckXUwgx94vSBZ0vfz94-ch-bDWkSbtIcVDmFyH9R7B9mw-87tAaCO9r6RAiqWxtRKNq8pgXROEE4azHrzubKRs1i-PZTQ-K9zHRHuqjT178GLdd9Gqdvyz11E09bpHVNpOH-ZXlyoHrpKe42-11MJITp0zoqTWltQFx2oEhx7sdROlcvgv1cZZH_-_-TncHE5G5-r8dHz2BG7R-LYinlaJPdheXX31T5HxrMyz7FcE1DV78h8B8hC9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJc-EcNFLAEHDissmt7N_ahQi1p1FIaVaVIuVn-rYRQEpogxI2H4KV4DZ6EsdebHEDcel17fRjPz2d75huAl0IjTMU4gYbkZYH4lhZ6OPSFQejAeSi5SWTVp5Pm6CN_N62nW_Crq4WJaZWdT0yO2s1tvCMfUAT2GN2lpIOQ0yLORuM3iy9F7CAVX1q7dho6t1lwe4luLBd5nPjv3_A4t9w7HuHev6J0fHjx9qjIHQcKy5pqVQTEF5pVQfDaSoRSPnBqEAMJw4JnXGruMcQyWZauqbSrHGPBDXXNTRUtgeGyN2B7GMtFe7B9cDg5O19f-FC0hJZrnDaUY2Qopy1dKsP1Bp_sgqK9lYkqehMgUx-Bv8JEin3ju3A7g1ay32rZPdjys_twp2sIQbJ_eACnketKW1S_5ZKM04VhvDdckfMuTWk-IylJgYy8X5BM7nr5-8fPffJhzSlN2geLh3BxHdJ7BL3ZfOZ3gNBGel9JgXBL42glGleVwbomCCcMZ3143clI2cxlHltqfFZ4ponyVBt59uHFeu6iZfD456yDKOr1jMi6nT7Mry5VNmIlPcffaqmFkZw6Z0RJrS2pC47VGCj6sNttlMquYKk2ivv4_8PP4SZqtHp_PDl5ArdoLLOID1diF3qrq6_-KYKflXmW1YqAumZF_gOkoxT3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+Fingerprint+Recognition+Using+Deep+Learning%E2%80%94A+Systematic+Review&rft.jtitle=Journal+of+cybersecurity+and+privacy&rft.au=Chowdhury%2C+A+M+Mahmud&rft.au=Imtiaz%2C+Masudul+Haider&rft.date=2022-09-08&rft.issn=2624-800X&rft.eissn=2624-800X&rft.volume=2&rft.issue=3&rft.spage=714&rft.epage=730&rft_id=info:doi/10.3390%2Fjcp2030036&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcp2030036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-800X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-800X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-800X&client=summon |