Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review

Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number...

Full description

Saved in:
Bibliographic Details
Published inJournal of cybersecurity and privacy Vol. 2; no. 3; pp. 714 - 730
Main Authors Chowdhury, A M Mahmud, Imtiaz, Masudul Haider
Format Journal Article
LanguageEnglish
Published Washington MDPI AG 08.09.2022
Subjects
Online AccessGet full text
ISSN2624-800X
2624-800X
DOI10.3390/jcp2030036

Cover

Abstract Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were reported to have higher accuracies than their counterparts. This study was thus motivated to present a systematic review of these successes and the reported limitations. Three methods were researched for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning approach for contactless fingerprint recognition. Eight scientific articles were identified that matched all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning approaches need to address for real-world biometric applications.
AbstractList Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have been reported regarding contactless fingerprint processing, including classical image processing, the machine-learning pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were reported to have higher accuracies than their counterparts. This study was thus motivated to present a systematic review of these successes and the reported limitations. Three methods were researched for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning approach for contactless fingerprint recognition. Eight scientific articles were identified that matched all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning approaches need to address for real-world biometric applications.
Author Chowdhury, A M Mahmud
Imtiaz, Masudul Haider
Author_xml – sequence: 1
  givenname: A M Mahmud
  surname: Chowdhury
  fullname: Chowdhury, A M Mahmud
– sequence: 2
  givenname: Masudul Haider
  surname: Imtiaz
  fullname: Imtiaz, Masudul Haider
BookMark eNptkctKBDEQRYMo-Nz4BQ3uhNHKo3s6SxmfMCL4AHchnVQPGcZkTKLizo_wC_0So6Mo4ipJ5dbl1K11suyDR0K2KexxLmF_auYMOABvlsgaa5gYtAC3y7_uq2QrpSkAsKHkNRVr5HwUfNYmzzCl6tj5CcZ5dD5Xl2jCxLvsgq9uUvmoDhHn1Rh19OX19vJ6UF09p4x3OjtT5I8OnzbJSq9nCbe-zg1yfXx0PTodjC9OzkYH44HhDc2DnnGmOe1bURtZuLAXrKOStR3vkQupBcKwLiOBbai21HLe26GuRUdBtC3fIGcLWxv0VBXeOx2fVdBOfRZCnCgdC9UMlURRsqmlbjspmLVdC8wYYLa3vNbWFq-dhdc8hvsHTFlNw0P0hV6xIW3qmkrJigoWKhNDShF7ZVzWH-HkqN1MUVAfK1A_Kygtu39avkH_Eb8DMZuI7Q
CitedBy_id crossref_primary_10_2478_amns_2025_0163
crossref_primary_10_3390_math11051261
crossref_primary_10_3390_s25061824
crossref_primary_10_4258_hir_2023_29_2_152
crossref_primary_10_1109_TBIOM_2024_3403770
crossref_primary_10_1016_j_patcog_2023_109681
crossref_primary_10_3390_s23052411
crossref_primary_10_1016_j_engappai_2025_110493
crossref_primary_10_1109_TBIOM_2024_3377686
crossref_primary_10_3390_jimaging9080158
crossref_primary_10_1109_TIFS_2024_3463957
crossref_primary_10_1109_ACCESS_2025_3527071
crossref_primary_10_1186_s13640_024_00642_3
crossref_primary_10_3390_mti6120107
crossref_primary_10_3390_s23146591
Cites_doi 10.1007/s11277-018-5246-z
10.1109/TIFS.2009.2038758
10.1007/978-3-319-67681-4
10.1016/j.jfds.2017.05.001
10.1002/ima.22234
10.1016/j.ins.2017.02.021
10.1109/TIFS.2021.3076307
10.1142/S0219691313500331
10.1145/3461341
10.1109/ICCIC.2013.6724278
10.1016/j.eswa.2017.05.039
10.1109/ICWAPR.2012.6294770
10.1109/CEC.2016.7744332
10.1007/978-1-84882-385-3_4
10.1109/CVPR.2013.441
10.3390/s22030792
10.1109/TIM.2013.2258248
10.1186/s13640-021-00548-4
10.1007/978-1-4614-7400-5_1
10.1007/11527923_16
10.1007/978-3-642-35289-8_30
10.1587/transinf.2016EDP7256
10.1109/BTAS.2009.5339023
10.1016/j.patcog.2014.05.021
10.1109/OJCS.2021.3119572
10.1109/EIT.2012.6220732
10.6028/NIST.IR.8159
10.1109/CVPRW.2011.5981823
10.1109/CogSIMA49017.2020.9215998
10.1007/978-1-84628-921-7_2
10.1007/978-3-642-30244-2_12
10.1609/aaai.v30i1.10171
10.1016/j.array.2021.100083
10.1109/TIFS.2010.2062177
10.1109/CAIPT.2017.8320684
10.1109/ICPECA53709.2022.9718847
10.1109/TSMC.2015.2423252
10.6028/NIST.IR.7392
10.1109/BTAS.2013.6712736
10.1109/CCDC.2017.7979332
10.1109/ICCVW.2017.107
10.1109/BTAS.2008.4699379
10.1109/ICICA.2014.19
10.1109/ICMIP.2017.65
10.1145/3168776.3168800
10.1109/FSKD.2014.6980965
10.1109/TPAMI.2019.2949299
10.1117/1.3646327
10.1145/1477862.1477871
10.1016/j.patcog.2021.108189
10.1109/THS.2012.6459880
10.21037/atm.2020.02.44
10.1016/j.patcog.2013.06.009
10.1007/978-1-84882-254-2
10.1007/978-3-642-34041-3_27
10.1109/TIP.2017.2788866
10.1117/1.OE.52.10.103103
10.1016/S0969-4765(11)70057-1
10.1109/ICPR.2016.7900094
10.1016/j.compag.2021.106191
10.1016/j.neucom.2015.05.065
10.1007/11608288_47
10.1109/ICCPhot.2012.6215216
10.1155/2012/626148
10.1109/TIFS.2018.2854765
10.1007/978-981-10-3005-5_36
10.1016/j.patcog.2018.05.004
10.1109/ICMEW.2012.95
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/jcp2030036
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2624-800X
EndPage 730
ExternalDocumentID oai_doaj_org_article_9e433959a8b942ddb802cc02dfd35add
10_3390_jcp2030036
GroupedDBID 7WY
8FL
AAYXX
ABUWG
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
GROUPED_DOAJ
M0C
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
3V.
7XB
8FK
AZQEC
K60
K6~
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c361t-f232a31f845c9800ef42b1928b3fe349a4e0753900d61ad1d33fd7a54b104883
IEDL.DBID DOA
ISSN 2624-800X
IngestDate Wed Aug 27 01:31:09 EDT 2025
Mon Jun 30 04:50:16 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Tue Jul 01 00:49:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f232a31f845c9800ef42b1928b3fe349a4e0753900d61ad1d33fd7a54b104883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/9e433959a8b942ddb802cc02dfd35add
PQID 2716551992
PQPubID 5465940
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_9e433959a8b942ddb802cc02dfd35add
proquest_journals_2716551992
crossref_citationtrail_10_3390_jcp2030036
crossref_primary_10_3390_jcp2030036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-08
PublicationDateYYYYMMDD 2022-09-08
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-08
  day: 08
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of cybersecurity and privacy
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Cheng (ref_35) 2018; 102
Kaur (ref_68) 2012; 3
Oduah (ref_5) 2021; 11
ref_14
ref_55
ref_54
Yin (ref_41) 2019; 43
ref_53
ref_52
ref_19
Sundararajan (ref_90) 2018; 51
ref_18
ref_16
Tan (ref_89) 2021; 16
ref_15
Zhong (ref_37) 2016; 2
Sero (ref_58) 2021; 14
ref_59
Libert (ref_17) 2018; 500
Affonso (ref_28) 2017; 85
Liu (ref_44) 2015; 168
Tassis (ref_69) 2021; 186
ref_61
Zhang (ref_79) 2021; 120
Noh (ref_11) 2011; 50
ref_60
Liu (ref_64) 2017; 394
Gragnaniello (ref_76) 2015; 48
ref_25
ref_24
ref_22
ref_66
ref_21
ref_20
Yin (ref_26) 2021; 2
ref_63
ref_62
Lin (ref_12) 2018; 27
ref_27
Lin (ref_83) 2018; 14
ref_72
Choi (ref_2) 2010; 5
ref_70
Paradise (ref_8) 2011; 2011
Bhattacharyya (ref_65) 2009; 2
ref_36
ref_34
ref_78
ref_33
ref_32
ref_31
ref_30
ref_74
Cai (ref_29) 2020; 8
Liu (ref_43) 2014; 47
ref_73
ref_39
ref_38
Labati (ref_56) 2015; 46
Magudeeswaran (ref_75) 2017; 27
Xie (ref_51) 2013; 52
Liu (ref_57) 2013; 62
ref_82
ref_81
ref_80
ref_47
Khalil (ref_67) 2013; 11
ref_46
ref_45
ref_88
ref_87
ref_42
ref_85
ref_40
ref_84
ref_1
ref_3
Priesnitz (ref_10) 2021; 2021
Drahansky (ref_23) 2012; 2012
ref_49
ref_48
Lin (ref_86) 2018; 83
ref_9
Chinnappan (ref_71) 2021; 9
Wang (ref_13) 2010; 5
ref_4
ref_7
ref_6
Hu (ref_77) 2017; 100
References_xml – volume: 102
  start-page: 1917
  year: 2018
  ident: ref_35
  article-title: Image recognition technology based on deep learning
  publication-title: Wirel. Per. Commun.
  doi: 10.1007/s11277-018-5246-z
– ident: ref_78
– volume: 5
  start-page: 52
  year: 2010
  ident: ref_2
  article-title: Mosaicing touchless and mirror-reflected fingerprint images
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2009.2038758
– ident: ref_4
  doi: 10.1007/978-3-319-67681-4
– ident: ref_32
– volume: 2
  start-page: 265
  year: 2016
  ident: ref_37
  article-title: An overview on data representation learning: From traditional feature learning to recent deep learning
  publication-title: J. Financ. Data Sci.
  doi: 10.1016/j.jfds.2017.05.001
– volume: 27
  start-page: 311
  year: 2017
  ident: ref_75
  article-title: A machine learning approach for brain image enhancement and segmentation
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22234
– volume: 394
  start-page: 88
  year: 2017
  ident: ref_64
  article-title: Gesture segmentation based on a two-phase estimation of distribution algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.021
– ident: ref_84
– volume: 16
  start-page: 3299
  year: 2021
  ident: ref_89
  article-title: Minutiae attention network with reciprocal distance loss for contactless to contact-based fingerprint identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3076307
– volume: 11
  start-page: 1350033
  year: 2013
  ident: ref_67
  article-title: Authentication of fingerprint biometrics acquired using a cellphone camera: A review
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S0219691313500331
– volume: 14
  start-page: 1
  year: 2021
  ident: ref_58
  article-title: The study of three-dimensional fingerprint recognition in cultural heritage: Trends and challenges
  publication-title: J. Comput. Cult. Herit.
  doi: 10.1145/3461341
– ident: ref_61
– ident: ref_15
  doi: 10.1109/ICCIC.2013.6724278
– volume: 85
  start-page: 114
  year: 2017
  ident: ref_28
  article-title: Deep learning for biological image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.039
– ident: ref_66
  doi: 10.1109/ICWAPR.2012.6294770
– ident: ref_59
  doi: 10.1109/CEC.2016.7744332
– volume: 500
  start-page: 305
  year: 2018
  ident: ref_17
  article-title: Guidance for evaluating contactless fingerprint acquisition devices
  publication-title: NIST Spec. Publ.
– ident: ref_16
  doi: 10.1007/978-1-84882-385-3_4
– ident: ref_47
  doi: 10.1109/CVPR.2013.441
– ident: ref_62
  doi: 10.3390/s22030792
– volume: 62
  start-page: 2492
  year: 2013
  ident: ref_57
  article-title: Touchless multiview fingerprint acquisition and mosaicking
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2258248
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: An overview of touchless 2D fingerprint recognition
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-021-00548-4
– ident: ref_52
  doi: 10.1007/978-1-4614-7400-5_1
– ident: ref_20
  doi: 10.1007/11527923_16
– ident: ref_36
  doi: 10.1007/978-3-642-35289-8_30
– volume: 100
  start-page: 546
  year: 2017
  ident: ref_77
  article-title: Hybrid Minutiae Descriptor for Narrow Fingerprint Verification
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2016EDP7256
– ident: ref_27
  doi: 10.1109/BTAS.2009.5339023
– volume: 48
  start-page: 1050
  year: 2015
  ident: ref_76
  article-title: Local contrast phase descriptor for fingerprint liveness detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.05.021
– ident: ref_87
– volume: 2
  start-page: 370
  year: 2021
  ident: ref_26
  article-title: A Survey on 2D and 3D Contactless Fingerprint Biometrics: A Taxonomy, Review, and Future Directions
  publication-title: IEEE Open J. Comput. Soc.
  doi: 10.1109/OJCS.2021.3119572
– ident: ref_40
  doi: 10.1109/EIT.2012.6220732
– ident: ref_6
  doi: 10.6028/NIST.IR.8159
– ident: ref_38
– ident: ref_9
  doi: 10.1109/CVPRW.2011.5981823
– ident: ref_50
  doi: 10.1109/CogSIMA49017.2020.9215998
– ident: ref_48
  doi: 10.1007/978-1-84628-921-7_2
– ident: ref_72
– ident: ref_18
  doi: 10.1007/978-3-642-30244-2_12
– ident: ref_85
  doi: 10.1609/aaai.v30i1.10171
– volume: 11
  start-page: 100083
  year: 2021
  ident: ref_5
  article-title: Towards a high-precision contactless fingerprint scanner for biometric authentication
  publication-title: Array
  doi: 10.1016/j.array.2021.100083
– volume: 5
  start-page: 750
  year: 2010
  ident: ref_13
  article-title: Data acquisition and processing of 3-D fingerprints
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2010.2062177
– ident: ref_31
  doi: 10.1109/CAIPT.2017.8320684
– ident: ref_33
  doi: 10.1109/ICPECA53709.2022.9718847
– volume: 46
  start-page: 202
  year: 2015
  ident: ref_56
  article-title: Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2015.2423252
– ident: ref_88
  doi: 10.6028/NIST.IR.7392
– ident: ref_7
  doi: 10.1109/BTAS.2013.6712736
– ident: ref_34
  doi: 10.1109/CCDC.2017.7979332
– ident: ref_53
– ident: ref_30
– volume: 2
  start-page: 13
  year: 2009
  ident: ref_65
  article-title: Biometric authentication: A review
  publication-title: Int. J. u- e-Serv. Sci. Technol.
– ident: ref_81
  doi: 10.1109/ICCVW.2017.107
– ident: ref_60
  doi: 10.1109/BTAS.2008.4699379
– ident: ref_74
  doi: 10.1109/ICICA.2014.19
– ident: ref_3
– ident: ref_14
  doi: 10.1109/ICMIP.2017.65
– ident: ref_49
  doi: 10.1145/3168776.3168800
– ident: ref_82
– ident: ref_80
  doi: 10.1109/FSKD.2014.6980965
– volume: 43
  start-page: 1085
  year: 2019
  ident: ref_41
  article-title: 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2949299
– volume: 50
  start-page: 113202
  year: 2011
  ident: ref_11
  article-title: Touchless sensor capturing five fingerprint images by one rotating camera
  publication-title: Opt. Eng.
  doi: 10.1117/1.3646327
– ident: ref_42
  doi: 10.1145/1477862.1477871
– volume: 120
  start-page: 108189
  year: 2021
  ident: ref_79
  article-title: A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108189
– ident: ref_24
  doi: 10.1109/THS.2012.6459880
– volume: 8
  start-page: 713
  year: 2020
  ident: ref_29
  article-title: A review of the application of deep learning in medical image classification and segmentation
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.02.44
– volume: 47
  start-page: 178
  year: 2014
  ident: ref_43
  article-title: 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.009
– ident: ref_1
  doi: 10.1007/978-1-84882-254-2
– ident: ref_73
  doi: 10.1007/978-3-642-34041-3_27
– ident: ref_39
  doi: 10.1007/978-3-319-67681-4
– volume: 9
  start-page: 4647
  year: 2021
  ident: ref_71
  article-title: Fingerprint Recognition Technology Using Deep Learning: A Review
  publication-title: SSRN Electron. J.
– volume: 27
  start-page: 2008
  year: 2018
  ident: ref_12
  article-title: Matching contactless and contact-based conventional fingerprint images for biometrics identification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2788866
– volume: 52
  start-page: 103103
  year: 2013
  ident: ref_51
  article-title: Real-time three-dimensional fingerprint acquisition via a new photometric stereo means
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.52.10.103103
– volume: 2011
  start-page: 10
  year: 2011
  ident: ref_8
  article-title: Contactless challenges
  publication-title: Biom. Technol. Today
  doi: 10.1016/S0969-4765(11)70057-1
– ident: ref_25
– volume: 3
  start-page: 30
  year: 2012
  ident: ref_68
  article-title: Comparison between YCbCr color space and CIELab color space for skin color segmentation
  publication-title: Int. J. Appl. Inf. Syst.
– ident: ref_21
  doi: 10.1109/ICPR.2016.7900094
– ident: ref_54
– ident: ref_46
– volume: 186
  start-page: 106191
  year: 2021
  ident: ref_69
  article-title: A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106191
– volume: 168
  start-page: 599
  year: 2015
  ident: ref_44
  article-title: Study on novel curvature features for 3D fingerprint recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.065
– ident: ref_19
  doi: 10.1007/11608288_47
– ident: ref_45
  doi: 10.1109/ICCPhot.2012.6215216
– volume: 2012
  start-page: 626148
  year: 2012
  ident: ref_23
  article-title: Influence of skin diseases on fingerprint recognition
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2012/626148
– volume: 14
  start-page: 662
  year: 2018
  ident: ref_83
  article-title: A CNN-based framework for comparison of contactless to contact-based fingerprints
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2854765
– ident: ref_63
  doi: 10.1007/978-981-10-3005-5_36
– volume: 83
  start-page: 314
  year: 2018
  ident: ref_86
  article-title: Contactless and partial 3D fingerprint recognition using multi-view deep representation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.004
– ident: ref_55
  doi: 10.1109/ICMEW.2012.95
– ident: ref_70
– ident: ref_22
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_90
  article-title: Deep learning for biometrics: A survey
  publication-title: ACM Comput. Surv. CSUR
SSID ssj0002793514
Score 2.3680778
SecondaryResourceType review_article
Snippet Contactless fingerprint identification systems have been introduced to address the deficiencies of contact-based fingerprint systems. A number of studies have...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 714
SubjectTerms Algorithms
Biometric identification
Biometrics
contactless fingerprint
Deep learning
Digital cameras
fingerprint analysis
fingerprint recognition
Fingerprinting
Machine learning
Neural networks
Performance evaluation
Sensors
Smartphones
Systematic review
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BuHCh0FKRFpClculhxa7t3diHquKRKKqUCAWQclv5iYRQEkh674_oL-SXMPZ6k0NRr2vvweN5fB6PvwE4EwphKsYJNCQnM8S3NFO9nss0QgfOfc51JKsejavhPf81LadbMG7fwoSyytYnRkdt5ybkyM8pAnuM7lLSn4vnLHSNCrerbQsNlVor2B-RYmwbdmjoqtyBncv--GayzrpQVMeG8JtWlKN7zqcNZynDs__5o1lQVPo88jVvolQk8__HV8cANNiHvYQcyUWz1Qew5WYf4UPblYEkI_0Eo0A4pQzqwHJJBjFrF5J3KzJpa4XmMxIrBci1cwuSGFYfXv_8vSC3a2Jn0twaHMLdoH93NcxS04TMsKpYZR4hkmKFF7w0EtfnPKcaYZzQzDvGpeIOUQKuNrdVoWxhGfO2p0qui2DM7DN0ZvOZOwJCK-lcIQViHoWjhahskXtjKy-s0Jx14Xsro9okQvHQ1-KpxoNFkGe9kWcXvq3nLhoajXdnXQZRr2cE6uv4Yf7yUCdLqqXj-FspldCSU2u1yKkxObXeshK9dReO242qkz0u6432fPn_8FfYpeGBQ7gyEsfQWb38dicIO1b6NOnSG02q1gk
  priority: 102
  providerName: ProQuest
Title Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review
URI https://www.proquest.com/docview/2716551992
https://doaj.org/article/9e433959a8b942ddb802cc02dfd35add
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2624-800X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793514
  issn: 2624-800X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA8yL178L07nCOjFQ1mbpF1y3HRjCBsyJ-xWkiYRhnTDzbsfwk_oJ_ElbbeBghevbUrb9_Lyfi_v5fcQuuESYCr4CTAkIwLAtySQ7bYJFEAHxmzIlCerHo6SwTN7mMbTrVZfriasoAcuBNcShlEqYiG5EoxorXhIsiwk2moag3G61Rfc2FYwNfPpNOFK1As-Ung-bM2yBYEJHXou5o0H8kT9P9Zh71z6h2i_RIW4U3zNEdox-TE6qDou4NIAT9DQkUnJDPS7XOK-35FzG3MrPK7qgOY59lUA-N6YBS7ZU1--Pj47-GlN2oyLjMApmvR7k7tBUDZECDKaRKvAAvyRNLKcxZkApGcsIwogGlfUGsqEZAYQAPxtqJNI6khTanVbxkxFzlDpGarl89ycI0wSYUwkOOAZCXcjnugotJlOLNdcMVpHt5WM0qwkC3c9K15TCBqcPNONPOvoej12UVBk_Dqq60S9HuForf0FUHZaKjv9S9l11KgUlZa2tkwJhHyA-4QgF__xjku0R9wRB5c04g1UW729mysAHivVRLvd3uhx3PRz7Rsiu9hn
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6V9gAX_lEDBSwBBw6r7trejX2oUEsbpbSJUAlSbpZ_KyGUhCYIceMheB1ehidh7PUmBxC3XtdeH8Yz_j6P7W8AXgqNNBVxAgPJywL5LS10v-8Lg9SB81Byk8SqR-Nm-JG_m9bTLfjVvYWJ1yq7NTEt1G5uY458nyKxR3SXkr5ZfCli1ah4utqV0NC5tII7SBJj-WHHmf_-Dbdwy4PTY5zvV5QOTiZvh0WuMlBY1lSrIiCn0KwKgtdWIn3ygVODvEcYFjzjUnOPsMpkWbqm0q5yjAXX1zU3VfR-hsPegB1kHQyDaufoZPz-Yp3koej9rb44bShHNCinrUQqw_H2P9kFxRgrkzz0BhRT7YC_oCHh3eAu3M5ElRy2nnUPtvzsPtzpikCQvCY8gFHUt9IWXW65JIOUJIy5whW56K4mzWckXUwgx94vSBZ0vfz94-ch-bDWkSbtIcVDmFyH9R7B9mw-87tAaCO9r6RAiqWxtRKNq8pgXROEE4azHrzubKRs1i-PZTQ-K9zHRHuqjT178GLdd9Gqdvyz11E09bpHVNpOH-ZXlyoHrpKe42-11MJITp0zoqTWltQFx2oEhx7sdROlcvgv1cZZH_-_-TncHE5G5-r8dHz2BG7R-LYinlaJPdheXX31T5HxrMyz7FcE1DV78h8B8hC9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJc-EcNFLAEHDissmt7N_ahQi1p1FIaVaVIuVn-rYRQEpogxI2H4KV4DZ6EsdebHEDcel17fRjPz2d75huAl0IjTMU4gYbkZYH4lhZ6OPSFQejAeSi5SWTVp5Pm6CN_N62nW_Crq4WJaZWdT0yO2s1tvCMfUAT2GN2lpIOQ0yLORuM3iy9F7CAVX1q7dho6t1lwe4luLBd5nPjv3_A4t9w7HuHev6J0fHjx9qjIHQcKy5pqVQTEF5pVQfDaSoRSPnBqEAMJw4JnXGruMcQyWZauqbSrHGPBDXXNTRUtgeGyN2B7GMtFe7B9cDg5O19f-FC0hJZrnDaUY2Qopy1dKsP1Bp_sgqK9lYkqehMgUx-Bv8JEin3ju3A7g1ay32rZPdjys_twp2sIQbJ_eACnketKW1S_5ZKM04VhvDdckfMuTWk-IylJgYy8X5BM7nr5-8fPffJhzSlN2geLh3BxHdJ7BL3ZfOZ3gNBGel9JgXBL42glGleVwbomCCcMZ3143clI2cxlHltqfFZ4ponyVBt59uHFeu6iZfD456yDKOr1jMi6nT7Mry5VNmIlPcffaqmFkZw6Z0RJrS2pC47VGCj6sNttlMquYKk2ivv4_8PP4SZqtHp_PDl5ArdoLLOID1diF3qrq6_-KYKflXmW1YqAumZF_gOkoxT3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contactless+Fingerprint+Recognition+Using+Deep+Learning%E2%80%94A+Systematic+Review&rft.jtitle=Journal+of+cybersecurity+and+privacy&rft.au=Chowdhury%2C+A+M+Mahmud&rft.au=Imtiaz%2C+Masudul+Haider&rft.date=2022-09-08&rft.issn=2624-800X&rft.eissn=2624-800X&rft.volume=2&rft.issue=3&rft.spage=714&rft.epage=730&rft_id=info:doi/10.3390%2Fjcp2030036&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcp2030036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-800X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-800X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-800X&client=summon