A Survey of Domain Knowledge Elicitation in Applied Machine Learning

Eliciting knowledge from domain experts can play an important role throughout the machine learning process, from correctly specifying the task to evaluating model results. However, knowledge elicitation is also fraught with challenges. In this work, we consider why and how machine learning researche...

Full description

Saved in:
Bibliographic Details
Published inMultimodal technologies and interaction Vol. 5; no. 12; p. 73
Main Authors Kerrigan, Daniel, Hullman, Jessica, Bertini, Enrico
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2414-4088
2414-4088
DOI10.3390/mti5120073

Cover

Abstract Eliciting knowledge from domain experts can play an important role throughout the machine learning process, from correctly specifying the task to evaluating model results. However, knowledge elicitation is also fraught with challenges. In this work, we consider why and how machine learning researchers elicit knowledge from experts in the model development process. We develop a taxonomy to characterize elicitation approaches according to the elicitation goal, elicitation target, elicitation process, and use of elicited knowledge. We analyze the elicitation trends observed in 28 papers with this taxonomy and identify opportunities for adding rigor to these elicitation approaches. We suggest future directions for research in elicitation for machine learning by highlighting avenues for further exploration and drawing on what we can learn from elicitation research in other fields.
AbstractList Eliciting knowledge from domain experts can play an important role throughout the machine learning process, from correctly specifying the task to evaluating model results. However, knowledge elicitation is also fraught with challenges. In this work, we consider why and how machine learning researchers elicit knowledge from experts in the model development process. We develop a taxonomy to characterize elicitation approaches according to the elicitation goal, elicitation target, elicitation process, and use of elicited knowledge. We analyze the elicitation trends observed in 28 papers with this taxonomy and identify opportunities for adding rigor to these elicitation approaches. We suggest future directions for research in elicitation for machine learning by highlighting avenues for further exploration and drawing on what we can learn from elicitation research in other fields.
Author Kerrigan, Daniel
Hullman, Jessica
Bertini, Enrico
Author_xml – sequence: 1
  givenname: Daniel
  surname: Kerrigan
  fullname: Kerrigan, Daniel
– sequence: 2
  givenname: Jessica
  surname: Hullman
  fullname: Hullman, Jessica
– sequence: 3
  givenname: Enrico
  surname: Bertini
  fullname: Bertini, Enrico
BookMark eNp9kE1PGzEQhi0EUink0l-wEreigL_W9h4joCUiiANwtmbt2eBoYy_eTVH-PUtDS1VVPXnkeebRzPuZ7McUkZAvjJ4JUdHz9RBKxinVYo8ccsnkVFJj9v-oP5FJ368opZxJqqk5JJez4n6Tf-C2SE1xmdYQYnET00uLfonFVRtcGGAIKRZjY9Z1bUBf3IJ7ChGLBUKOIS6PyUEDbY-T9_eIPH67eri4ni7uvs8vZoupE4oN04YKw8B4g4JDzbBBcNroklelLFVJvWpQK1l5QCmU0ViNZOVNpXxZ1wrEEZnvvD7BynY5rCFvbYJgf36kvLSQh-BatMrU3GvusHJeKtkYcEarxkghfQ3Mja7TnWsTO9i-QNv-FjJq3_K0H3mO9MmO7nJ63mA_2FXa5Dgea7li3HBDlR4puqNcTn2fsbG_0hsyhPbf4q9_jfxni1c0WpL-
CitedBy_id crossref_primary_10_1103_PRXLife_3_013005
crossref_primary_10_1111_cgf_14823
crossref_primary_10_1002_sta4_70054
crossref_primary_10_3389_fped_2023_1005579
crossref_primary_10_1145_3580887
crossref_primary_10_1109_TVCG_2023_3326591
crossref_primary_10_3389_fped_2022_1008840
crossref_primary_10_1002_oby_24258
crossref_primary_10_3233_THC_230809
crossref_primary_10_3390_app142411612
crossref_primary_10_1016_j_cie_2022_108120
crossref_primary_10_1016_j_giq_2024_101976
Cites_doi 10.1017/CBO9780511816796.010
10.1198/016214505000000105
10.1097/NNA.0b013e3182942c3c
10.1109/TSMCB.2011.2148197
10.1016/j.media.2021.102062
10.1145/3351095.3372827
10.1016/j.cogpsych.2005.05.004
10.1145/3313831.3376219
10.1145/3359206
10.14778/3157794.3157797
10.1145/3290605.3300830
10.1037//0033-295X.104.2.367
10.1016/j.eswa.2017.01.028
10.1016/j.envsoft.2011.03.003
10.1145/3290605.3300912
10.1093/bioinformatics/bty257
10.1016/S0022-5371(83)90189-5
10.1145/1978942.1978966
10.1007/978-3-030-05297-3
10.1109/TVCG.2018.2864769
10.1016/j.apenergy.2018.10.107
10.1007/BF00994016
10.1109/TVCG.2011.185
10.1023/A:1008193214890
10.1017/S1930297500004940
10.2196/preprints.19612
10.1145/2702123.2702594
10.1080/03610929508831616
10.1016/j.ijar.2013.03.009
10.1109/TAMD.2010.2051030
10.1126/sciadv.aba9338
10.1145/3392878
10.1007/s10994-017-5651-7
10.1145/3290605.3300234
10.1016/S0169-2070(99)00018-7
10.1167/tvst.8.6.40
10.1016/j.artint.2007.09.009
10.1145/2157689.2157693
10.1016/0950-7051(96)01033-7
10.1002/0470033312
10.1001/jamapsychiatry.2017.0298
10.1111/1468-0394.00159
10.1145/3134664
10.31219/osf.io/uvjqh
10.1080/00031305.2018.1518265
10.1017/9781316480748
10.1145/3368555.3384452
10.4338/ACI-2015-11-RA-0161
10.1016/j.future.2022.05.014
10.24963/ijcai.2019/271
10.1007/978-3-319-65052-4
10.1109/TVCG.2017.2743898
10.1207/s15516709cog0502_2
10.1093/oso/9780195064650.001.0001
10.1145/3196709.3196729
10.1162/99608f92.3ab8a587
10.1145/3361118
10.1145/3172944.3172989
10.1145/1719970.1720006
10.1037/a0017201
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/mti5120073
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2414-4088
ExternalDocumentID oai_doaj_org_article_68b2d72ce9cd464f8ac876f8434dba1c
10.3390/mti5120073
10_3390_mti5120073
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
ITC
UNPAY
ID FETCH-LOGICAL-c361t-f0381a8d8e32ab1efeac787529545650d6fe7649dae43687e98e39d896d5bb6a3
IEDL.DBID BENPR
ISSN 2414-4088
IngestDate Fri Oct 03 12:44:00 EDT 2025
Sun Oct 26 03:45:44 EDT 2025
Sun Sep 07 03:42:51 EDT 2025
Thu Oct 16 04:31:25 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f0381a8d8e32ab1efeac787529545650d6fe7649dae43687e98e39d896d5bb6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2612828067?pq-origsite=%requestingapplication%&accountid=15518
PQID 2612828067
PQPubID 2059548
ParticipantIDs doaj_primary_oai_doaj_org_article_68b2d72ce9cd464f8ac876f8434dba1c
unpaywall_primary_10_3390_mti5120073
proquest_journals_2612828067
crossref_citationtrail_10_3390_mti5120073
crossref_primary_10_3390_mti5120073
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Multimodal technologies and interaction
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cartwright (ref_3) 2017; 1
Cai (ref_39) 2019; 3
Mao (ref_37) 2019; 3
ref_57
ref_56
ref_11
ref_55
ref_54
ref_53
ref_52
ref_51
Sundin (ref_7) 2018; 34
Garthwaite (ref_43) 2005; 100
Thomaz (ref_50) 2008; 172
ref_18
ref_17
ref_16
ref_15
Martinelli (ref_29) 1999; 26
ref_61
ref_60
Amershi (ref_48) 2014; 35
Chi (ref_41) 1981; 5
Hu (ref_27) 2019; 235
ref_69
ref_68
ref_23
ref_21
ref_65
ref_62
Griffiths (ref_66) 2005; 51
Bostock (ref_70) 2011; 17
Goldstein (ref_44) 2014; 9
Bowles (ref_12) 2013; 43
(ref_5) 2019; 73
Masegosa (ref_19) 2013; 54
Wagner (ref_46) 2017; 76
Webb (ref_28) 1996; 9
Heckerman (ref_14) 1995; 20
Cakmak (ref_49) 2010; 2
Kehlbeck (ref_25) 2020; 26
Langseth (ref_22) 2003; 4
Griffiths (ref_67) 2009; 116
ref_36
ref_35
ref_34
ref_33
ref_32
Wagner (ref_45) 2001; 18
Ustun (ref_10) 2017; 74
Daee (ref_26) 2017; 106
Bowles (ref_13) 2016; 7
Clark (ref_58) 1983; 22
(ref_59) 2012; 36
ref_47
Sperrle (ref_24) 2019; 25
Hong (ref_38) 2020; 4
ref_42
Ustun (ref_31) 2019; 20
ref_40
ref_1
ref_2
Cano (ref_20) 2011; 41
ref_9
Rowe (ref_63) 1999; 15
Ratner (ref_30) 2017; 11
Hullman (ref_64) 2017; 24
ref_4
ref_6
Madigan (ref_8) 1995; 24
References_xml – ident: ref_1
  doi: 10.1017/CBO9780511816796.010
– volume: 100
  start-page: 680
  year: 2005
  ident: ref_43
  article-title: Statistical methods for eliciting probability distributions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000000105
– volume: 43
  start-page: 355
  year: 2013
  ident: ref_12
  article-title: Conducting research using the electronic health record across multi-hospital systems: Semantic harmonization implications for administrators
  publication-title: J. Nurs. Adm.
  doi: 10.1097/NNA.0b013e3182942c3c
– volume: 41
  start-page: 1382
  year: 2011
  ident: ref_20
  article-title: A Method for Integrating Expert Knowledge When Learning Bayesian Networks From Data
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2011.2148197
– ident: ref_53
  doi: 10.1016/j.media.2021.102062
– ident: ref_11
  doi: 10.1145/3351095.3372827
– volume: 51
  start-page: 334
  year: 2005
  ident: ref_66
  article-title: Structure and strength in causal induction
  publication-title: Cogn. Psychol.
  doi: 10.1016/j.cogpsych.2005.05.004
– ident: ref_35
  doi: 10.1145/3313831.3376219
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_39
  article-title: “Hello AI”: Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-Making
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3359206
– volume: 11
  start-page: 269
  year: 2017
  ident: ref_30
  article-title: Snorkel: Rapid Training Data Creation with Weak Supervision
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3157794.3157797
– ident: ref_34
  doi: 10.1145/3290605.3300830
– ident: ref_65
  doi: 10.1037//0033-295X.104.2.367
– volume: 76
  start-page: 85
  year: 2017
  ident: ref_46
  article-title: Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.028
– ident: ref_42
– volume: 36
  start-page: 35
  year: 2012
  ident: ref_59
  article-title: Probabilistic Uncertainty Specification: Overview, Elaboration Techniques and Their Application to a Mechanistic Model of Carbon Flux
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.03.003
– ident: ref_69
  doi: 10.1145/3290605.3300912
– volume: 34
  start-page: i395
  year: 2018
  ident: ref_7
  article-title: Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty257
– volume: 22
  start-page: 245
  year: 1983
  ident: ref_58
  article-title: Common ground at the understanding of demonstrative reference
  publication-title: J. Verbal Learn. Verbal Behav.
  doi: 10.1016/S0022-5371(83)90189-5
– ident: ref_32
  doi: 10.1145/1978942.1978966
– ident: ref_17
  doi: 10.1007/978-3-030-05297-3
– volume: 25
  start-page: 374
  year: 2019
  ident: ref_24
  article-title: Visual Analytics for Topic Model Optimization based on User-Steerable Speculative Execution
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2018.2864769
– volume: 235
  start-page: 117
  year: 2019
  ident: ref_27
  article-title: Design of machine learning models with domain experts for automated sensor selection for energy fault detection
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.107
– ident: ref_56
– volume: 20
  start-page: 197
  year: 1995
  ident: ref_14
  article-title: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994016
– volume: 17
  start-page: 2301
  year: 2011
  ident: ref_70
  article-title: D3 Data-Driven Documents
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2011.185
– volume: 26
  start-page: 325
  year: 1999
  ident: ref_29
  article-title: Application of Machine Learning in Water Distribution Networks Assisted by Domain Experts
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1023/A:1008193214890
– volume: 9
  start-page: 1
  year: 2014
  ident: ref_44
  article-title: Lay understanding of probability distributions
  publication-title: Judgm. Decis. Mak.
  doi: 10.1017/S1930297500004940
– ident: ref_47
  doi: 10.2196/preprints.19612
– ident: ref_55
  doi: 10.1145/2702123.2702594
– volume: 24
  start-page: 2271
  year: 1995
  ident: ref_8
  article-title: Eliciting prior information to enhance the predictive performance of bayesian graphical models
  publication-title: Commun. Stat.-Theory Methods
  doi: 10.1080/03610929508831616
– volume: 54
  start-page: 1168
  year: 2013
  ident: ref_19
  article-title: An interactive approach for Bayesian network learning using domain/expert knowledge
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.03.009
– volume: 4
  start-page: 339
  year: 2003
  ident: ref_22
  article-title: Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 1001
  year: 2020
  ident: ref_25
  article-title: Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 35
  start-page: 105
  year: 2014
  ident: ref_48
  article-title: Power to the people: The role of humans in interactive machine learning
  publication-title: AI Mag.
– volume: 2
  start-page: 108
  year: 2010
  ident: ref_49
  article-title: Designing interactions for robot active learners
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2010.2051030
– ident: ref_9
  doi: 10.1126/sciadv.aba9338
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3392878
– volume: 106
  start-page: 1599
  year: 2017
  ident: ref_26
  article-title: Knowledge elicitation via sequential probabilistic inference for high-dimensional prediction
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5651-7
– ident: ref_15
  doi: 10.1145/3290605.3300234
– volume: 15
  start-page: 353
  year: 1999
  ident: ref_63
  article-title: The Delphi technique as a forecasting tool: Issues and analysis
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(99)00018-7
– ident: ref_18
  doi: 10.1167/tvst.8.6.40
– volume: 172
  start-page: 716
  year: 2008
  ident: ref_50
  article-title: Teachable robots: Understanding human teaching behavior to build more effective robot learners
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2007.09.009
– ident: ref_4
  doi: 10.1145/2157689.2157693
– volume: 9
  start-page: 253
  year: 1996
  ident: ref_28
  article-title: Integrating machine learning with knowledge acquisition through direct interaction with domain experts
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/0950-7051(96)01033-7
– ident: ref_2
  doi: 10.1002/0470033312
– volume: 74
  start-page: 520
  year: 2017
  ident: ref_10
  article-title: The World Health Organization Adult Attention-Deficit/Hyperactivity Disorder Self-Report Screening Scale for DSM-5
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2017.0298
– ident: ref_21
– volume: 18
  start-page: 76
  year: 2001
  ident: ref_45
  article-title: Selection of knowledge acquisition techniques based upon the problem domain characteristics of production and operations management expert systems
  publication-title: Expert Syst.
  doi: 10.1111/1468-0394.00159
– volume: 1
  start-page: 1
  year: 2017
  ident: ref_3
  article-title: Seeing Sound: Investigating the Effects of Visualizations and Complexity on Crowdsourced Audio Annotations
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3134664
– ident: ref_36
  doi: 10.31219/osf.io/uvjqh
– volume: 73
  start-page: 69
  year: 2019
  ident: ref_5
  article-title: Expert Knowledge Elicitation: Subjective but Scientific
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2018.1518265
– ident: ref_40
  doi: 10.1017/9781316480748
– ident: ref_16
  doi: 10.1145/3368555.3384452
– volume: 7
  start-page: 368
  year: 2016
  ident: ref_13
  article-title: Using Electronic Case Summaries to Elicit Multi-Disciplinary Expert Knowledge about Referrals to Post-Acute Care
  publication-title: Appl. Clin. Inform.
  doi: 10.4338/ACI-2015-11-RA-0161
– ident: ref_33
– ident: ref_54
  doi: 10.1016/j.future.2022.05.014
– ident: ref_23
  doi: 10.24963/ijcai.2019/271
– ident: ref_61
  doi: 10.1007/978-3-319-65052-4
– volume: 24
  start-page: 446
  year: 2017
  ident: ref_64
  article-title: Imagining replications: Graphical prediction & discrete visualizations improve recall & estimation of effect uncertainty
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2017.2743898
– volume: 5
  start-page: 121
  year: 1981
  ident: ref_41
  article-title: Categorization and representation of physics problems by experts and novices
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog0502_2
– ident: ref_62
  doi: 10.1093/oso/9780195064650.001.0001
– ident: ref_6
  doi: 10.1145/3196709.3196729
– ident: ref_68
  doi: 10.1162/99608f92.3ab8a587
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_37
  article-title: How Data ScientistsWork Together with Domain Experts in Scientific Collaborations: To Find the Right Answer or to Ask the Right Question?
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3361118
– ident: ref_52
  doi: 10.1145/3172944.3172989
– ident: ref_60
– ident: ref_51
  doi: 10.1145/1719970.1720006
– volume: 116
  start-page: 661
  year: 2009
  ident: ref_67
  article-title: Theory-based causal induction
  publication-title: Psychol. Rev.
  doi: 10.1037/a0017201
– ident: ref_57
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_31
  article-title: Learning Optimized Risk Scores
  publication-title: J. Mach. Learn. Res.
SSID ssj0002140708
Score 2.3087125
Snippet Eliciting knowledge from domain experts can play an important role throughout the machine learning process, from correctly specifying the task to evaluating...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 73
SubjectTerms Artificial intelligence
Collaboration
Computer science
Crowdsourcing
Decision making
domain expert
domain knowledge
Domains
elicitation
expert knowledge
Interviews
Knowledge acquisition
Machine learning
Researchers
Scientists
Subject specialists
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF734FqtVFuzFQ2iym8fusdqWotSLFnoL-5RCmpaaKv337iabWkH04jWZwzCTmfkmM3wDQBv5CmFFtB39S9Og0MhjKBCeNlBbM4ElKxlvRk_xcBw-TKLJ1qkvuxNW0QNXhuvEhCOZIKGokGEcasKECWBNQhxKzgJhs69P6FYzZXMwMn1D4pOKjxSbvr4zK6amttnB1LcKVBL1f0OXu6t8wdYfLMu2Cs3gEOw7hAi7lWZHYEflx-Cgvr4AXTCegF4XPq-W72oN5xr25jPT4sPH-g8Z7GdT4ei3oXnhwCYclbuTCjpa1ddTMB70X-6HnruJ4AkcB4Wn7WSPEUkURowHSpvEaWKuHNcZbObLWKskDqlkynLLJ4oaSSoJjWXEeczwGWjk81ydA8iDKOFCcM0FDmmiCZYGCyGOeMJ5RFUT3NZ2SmuN7d2KLDWNg7Vp-mXTJrjZyC4qmowfpe6suTcSltq6fGAcnjqHp385vAlatbNSF29vqSVCI3ZInDRBe-PAX1S5-A9VLsEesisu5XZLCzSK5UpdGYxS8Ovyc_wEIl_k5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC50c9CLiS9ck0iDuXiYbKZ7ph8nWfMgKAmCLsTT0M-wuJlddmcT4q-3erZnY0REvE5XQw9V1fVVV_EVwB498JR5GWLp32GCospM09xmAaF20JY53TLenJ3z01Hx8aK8SL05i9RWian4uL2kMboUuB9ztHKQ04Fgg5kL76_TQxIiCYFgWSr5EDZ4iVC8Bxuj88_Db3GgXLd1RUnKMLUfXDVjDG-xNnUvCLVc_fcA5qNlPdO3N3oy-SXWnGyuBqouWorC2GLyfX_ZmH374zcCx__-jS14klAoGa7M5ik88PUz2OwmPJDk8M_haEi-LOfX_pZMAzmaXulxTT51r3DkeDK2ieKb4EICtOSs7c_0JFG3Xr6A0cnx18PTLM1dyCzjeZOFWD3U0knPqDa5D3g5o1-3JUHEfweOBy94oZz2kb9eeIWSyknFXWkM1-wl9Opp7V8BMXkpjLUmGMsKJYJkDvEWNdQIY0rl-_CuU0TVnTjOxphUmJxEpVV3SuvD27XsbEXF8UepD1Gfa4lIn91-mM4vq-SNFZeGOkGtV9YVvAhSW4wKQRascEbntg87nTVUyacXVSRbk7EQLfqwt7aQvxzl9b-JbcNjGhtl2h6ZHeg186XfRaTTmDfJnn8Cymb4lQ
  priority: 102
  providerName: Unpaywall
Title A Survey of Domain Knowledge Elicitation in Applied Machine Learning
URI https://www.proquest.com/docview/2612828067
https://www.mdpi.com/2414-4088/5/12/73/pdf?version=1637768898
https://doaj.org/article/68b2d72ce9cd464f8ac876f8434dba1c
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2414-4088
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140708
  issn: 2414-4088
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2414-4088
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140708
  issn: 2414-4088
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2414-4088
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140708
  issn: 2414-4088
  databaseCode: BENPR
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2414-4088
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140708
  issn: 2414-4088
  databaseCode: 8FG
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60HvTiW6zWEtCLh8Vuso_sQaTVVlEsohb0tOQpQu3W2ir-e5M0WxXE4-4OS5hkJt9kJt8AHOCGwkRRbVP_0gQoWRwwHIpAG6itmSCSOcab625y0YsuH-KHOeiWd2FsWWXpE52jloWwZ-RHluqK2jRgejJ8DWzXKJtdLVtoMN9aQR47irF5WMCWGasCC6129-Z2duqCTTyRNuiUp5SYeP_oZfxs9jybsPq1MzkC_1-oc3EyGLLPD9bv_9iAOquw7JEjak6neg3m1GAdVsquDMgb6QacNdHdZPSuPlGh0VnxYkJ_dFWenKF2_1l4Wm5kPngQiq5dTaVCnm71aRN6nfb96UXgeyUEgiThONA248eopIpgxkOljUM1tujSeAazNWSiVZpEmWTKcs6nKjOSmaRZImPOE0a2oDIoBmobEA_jlAvBNRckylJNiTQYCXPMU87jTFXhsNRTXo7Y9rPo5yagsDrNv3Vahf2Z7HBKn_GnVMuqeyZhKa_di2L0lHsLyhPKsUyxUJmQURJpyoTx5JpGJJKchaIKtXKycm-Hb_n3qqnCwWwC_xnKzv9_2YUlbItaXD1LDSrj0UTtGVQy5nWYp53zul9wdRfbm6de96b5-AWwI-V8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RONBLW_pQ09JiqfTQw4qsvQ_7gCpogkJDoqoFidvWTxQp7KYhKcqf62_reOMNICFuXHdHljUznodn_A3ALm1byix3vvRvMEERaSRprCOHobaTmhlZI94MhlnvLPl-np6vwb_mLYxvq2xsYm2oTaX9Hfmeh7rivgyYf538ifzUKF9dbUZoyDBawezXEGPhYUffLq4xhbvaP-6gvD9TetQ9_daLwpSBSLMsnkXO18okN9wyKlVsHZoi1OK6AIbRTttkzuZZIoy0Hq09twIpheEiM6lSmWS47hPYSFgiMPnbOOwOf_xc3fJQzF_yNl_iojIm2nuXsxH6WF8gu-MJ64EBd6LczXk5kYtrOR7fcnhHL-BZiFTJwVK1tmDNli_heTMFggSj8Ao6B-TXfPrXLkjlSKe6lKOS9JubOtIdj3SAASf4IwS9ZFD3cFoS4F0vXsPZo3DtDayXVWnfAlFxmiutlVPa89BxZjAmo4qqXKlU2BZ8afhUNDv28zPGBSYwnqfFDU9b8GlFO1nCddxLdejZvaLwENv1h2p6UYQTW2RcUZNTbYU2SZY4LjV6DsdR0EbJWLdguxFWEc79VXGjpS3YXQnwga28e3iVHdjsnQ5OipPjYf89PKW-oabupdmG9dl0bj9gRDRTH4PaEfj92Jr-HyFyHxY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgEXylMEWrBEOXBYJWvvru0DQm3T0BJaIUGl3rZ-VpHS3ZAmVPlr_DrGG29KJdRbr7sjyxqP5-1vALZpz1HmhA-lf4sBiswTRVOTeHS1vTLMqgbx5ui4ODjJvp7mp2vwp30LE9oqW53YKGpbm5Aj7waoKxHKgLzrY1vE9_7g8-RXEiZIhUprO05jKSJDt7jC8O3y02Efz_oDpYP9n3sHSZwwkBhWpLPEhzqZElY4RpVOnUc1hBLcFL_Q0-nZwjteZNIqF5DauZNIKa2Qhc21LhTDde_BfR5Q3MMr9cGXVX6HYuTCe2KJiMqY7HUvZiO0rqE0dsMGNqMCbvi3D-fVRC2u1Hj8j6kbPIHH0UclO0uhegprrnoGG-38BxLVwXPo75Af8-lvtyC1J_36Qo0qMmxzdGR_PDIRAJzgj-jukqOme9ORCOx6_gJO7oRnL2G9qiv3CohOc66N0V4blknuBbPojVFNNdc6l64DH1s-le2Ow-SMcYmhS-Bpec3TDrxf0U6WQB3_pdoN7F5RBHDt5kM9PS_jXS0Loanl1DhpbFZkXiiDNsOLjGVWq9R0YLM9rDLe-MvyWj47sL06wFu28vr2Vd7BA5Tv8tvh8fANPKKhk6ZpotmE9dl07rbQFZrpt43METi7ayH_C00ZHLA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC50c9CLiS9ck0iDuXiYbKZ7ph8nWfMgKAmCLsTT0M-wuJlddmcT4q-3erZnY0REvE5XQw9V1fVVV_EVwB498JR5GWLp32GCospM09xmAaF20JY53TLenJ3z01Hx8aK8SL05i9RWian4uL2kMboUuB9ztHKQ04Fgg5kL76_TQxIiCYFgWSr5EDZ4iVC8Bxuj88_Db3GgXLd1RUnKMLUfXDVjDG-xNnUvCLVc_fcA5qNlPdO3N3oy-SXWnGyuBqouWorC2GLyfX_ZmH374zcCx__-jS14klAoGa7M5ik88PUz2OwmPJDk8M_haEi-LOfX_pZMAzmaXulxTT51r3DkeDK2ieKb4EICtOSs7c_0JFG3Xr6A0cnx18PTLM1dyCzjeZOFWD3U0knPqDa5D3g5o1-3JUHEfweOBy94oZz2kb9eeIWSyknFXWkM1-wl9Opp7V8BMXkpjLUmGMsKJYJkDvEWNdQIY0rl-_CuU0TVnTjOxphUmJxEpVV3SuvD27XsbEXF8UepD1Gfa4lIn91-mM4vq-SNFZeGOkGtV9YVvAhSW4wKQRascEbntg87nTVUyacXVSRbk7EQLfqwt7aQvxzl9b-JbcNjGhtl2h6ZHeg186XfRaTTmDfJnn8Cymb4lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Domain+Knowledge+Elicitation+in+Applied+Machine+Learning&rft.jtitle=Multimodal+technologies+and+interaction&rft.au=Kerrigan%2C+Daniel&rft.au=Hullman%2C+Jessica&rft.au=Bertini%2C+Enrico&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2414-4088&rft.volume=5&rft.issue=12&rft.spage=73&rft_id=info:doi/10.3390%2Fmti5120073&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2414-4088&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2414-4088&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2414-4088&client=summon