Feature Selection Algorithms as One of the Python Data Analytical Tools
With the current trend of rapidly growing popularity of the Python programming language for machine learning applications, the gap between machine learning engineer needs and existing Python tools increases. Especially, it is noticeable for more classical machine learning fields, namely, feature sel...
Saved in:
| Published in | Future internet Vol. 12; no. 3; p. 54 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-5903 1999-5903 |
| DOI | 10.3390/fi12030054 |
Cover
| Abstract | With the current trend of rapidly growing popularity of the Python programming language for machine learning applications, the gap between machine learning engineer needs and existing Python tools increases. Especially, it is noticeable for more classical machine learning fields, namely, feature selection, as the community attention in the last decade has mainly shifted to neural networks. This paper has two main purposes. First, we perform an overview of existing open-source Python and Python-compatible feature selection libraries, show their problems, if any, and demonstrate the gap between these libraries and the modern state of feature selection field. Then, we present new open-source scikit-learn compatible ITMO FS (Information Technologies, Mechanics and Optics University feature selection) library that is currently under development, explain how its architecture covers modern views on feature selection, and provide some code examples on how to use it with Python and its performance compared with other Python feature selection libraries. |
|---|---|
| AbstractList | With the current trend of rapidly growing popularity of the Python programming language for machine learning applications, the gap between machine learning engineer needs and existing Python tools increases. Especially, it is noticeable for more classical machine learning fields, namely, feature selection, as the community attention in the last decade has mainly shifted to neural networks. This paper has two main purposes. First, we perform an overview of existing open-source Python and Python-compatible feature selection libraries, show their problems, if any, and demonstrate the gap between these libraries and the modern state of feature selection field. Then, we present new open-source scikit-learn compatible ITMO FS (Information Technologies, Mechanics and Optics University feature selection) library that is currently under development, explain how its architecture covers modern views on feature selection, and provide some code examples on how to use it with Python and its performance compared with other Python feature selection libraries. |
| Author | Pilnenskiy, Nikita Smetannikov, Ivan |
| Author_xml | – sequence: 1 givenname: Nikita surname: Pilnenskiy fullname: Pilnenskiy, Nikita – sequence: 2 givenname: Ivan orcidid: 0000-0003-3376-9468 surname: Smetannikov fullname: Smetannikov, Ivan |
| BookMark | eNp9kEtLAzEUhYMo-Nz4CwLulGoymckky-KzIChY1-FO5o6dEic1SZH-e6MVFRHvJpfk5OOcs0s2Bz8gIYecnQqh2VnX84IJxqpyg-xwrfWo0kxs_ti3yUGMc5ZH6ELKeodcXyGkZUD6gA5t6v1Ax-7Jhz7NniOFSO8GpL6jaYb0fpVm-f0CEtDxAG6VeguOTr13cZ9sdeAiHnyee-Tx6nJ6fjO6vbuenI9vR1ZInkaIbYslFNhWsuM1Z0yWndJSVhok1KJRGpqiVjlGUynQtmAd8pIzWbQgZCX2yGTNbT3MzSL0zxBWxkNvPi58eDIQsi-HpsypQemKo5BlLYVS1kJbCYVlA42VmXWyZi2HBaxewbkvIGfmvVLzXWlWH63Vi-BflhiTmftlyDVEUwjFuMweeVaxtcoGH2PAztg-wXuvKUDv_gYf__ryj4s37vuSCA |
| CitedBy_id | crossref_primary_10_1007_s00170_021_06896_9 crossref_primary_10_1016_j_neucom_2023_03_037 crossref_primary_10_3390_app13116394 crossref_primary_10_1109_THMS_2024_3430327 crossref_primary_10_1109_ACCESS_2023_3326412 crossref_primary_10_3390_fi14080229 crossref_primary_10_52675_jhesp_1335249 crossref_primary_10_1093_cybsec_tyac015 crossref_primary_10_3390_computation11050092 crossref_primary_10_3390_s24123784 crossref_primary_10_3390_educsci15030326 crossref_primary_10_1016_j_measen_2023_100901 crossref_primary_10_1109_ACCESS_2023_3318600 crossref_primary_10_1186_s13244_022_01170_2 crossref_primary_10_1097_RLI_0000000000000855 crossref_primary_10_1371_journal_pone_0316174 crossref_primary_10_1007_s10489_021_02550_9 crossref_primary_10_3390_biom12101529 crossref_primary_10_1371_journal_pone_0313890 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1016_j_jhydrol_2021_126506 |
| Cites_doi | 10.1007/978-3-540-87481-2_21 10.1007/978-1-4842-2766-4 10.1145/2806416.2806501 10.1007/s10115-012-0487-8 10.1166/asl.2016.7078 10.6029/smartcr.2014.03.007 10.1016/j.ymeth.2016.08.014 10.1016/j.patcog.2011.06.006 10.1016/j.ins.2014.05.042 10.1093/bioinformatics/btm344 10.1155/2015/198363 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/fi12030054 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1999-5903 |
| ExternalDocumentID | oai_doaj_org_article_4999a8951e36476388ccad538e4babc6 10.3390/fi12030054 10_3390_fi12030054 |
| GeographicLocations | United States--US Arizona |
| GeographicLocations_xml | – name: Arizona – name: United States--US |
| GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PQQKQ PROAC RNS TR2 3V. 7SC 7XB 8AL 8FD 8FK ACUHS JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A ICD IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-eedde4a2ed56f1710064f896659a6a73b89ab278030b58a9c20fe141062da3653 |
| IEDL.DBID | DOA |
| ISSN | 1999-5903 |
| IngestDate | Fri Oct 03 12:45:13 EDT 2025 Sun Oct 26 04:06:58 EDT 2025 Sat Jul 26 00:06:39 EDT 2025 Thu Oct 16 04:30:25 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-eedde4a2ed56f1710064f896659a6a73b89ab278030b58a9c20fe141062da3653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3376-9468 |
| OpenAccessLink | https://doaj.org/article/4999a8951e36476388ccad538e4babc6 |
| PQID | 2380160621 |
| PQPubID | 2032396 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4999a8951e36476388ccad538e4babc6 unpaywall_primary_10_3390_fi12030054 proquest_journals_2380160621 crossref_citationtrail_10_3390_fi12030054 crossref_primary_10_3390_fi12030054 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Future internet |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_7) 2013; 34 Herrera (ref_15) 2014; 282 ref_13 ref_12 Kumar (ref_6) 2014; 4 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_16 (ref_17) 2012; 45 Wang (ref_3) 2016; 111 Li (ref_18) 2017; 50 ref_25 ref_24 ref_23 Saeys (ref_2) 2007; 23 ref_22 ref_21 ref_20 Guyon (ref_8) 2003; 3 ref_1 ref_29 ref_28 ref_27 ref_26 ref_9 ref_5 ref_4 Smetannikov (ref_14) 2016; 22 |
| References_xml | – ident: ref_28 – ident: ref_9 – ident: ref_30 – ident: ref_32 – ident: ref_24 – volume: 50 start-page: 1 year: 2017 ident: ref_18 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – ident: ref_26 – ident: ref_11 – ident: ref_16 doi: 10.1007/978-3-540-87481-2_21 – ident: ref_10 doi: 10.1007/978-1-4842-2766-4 – ident: ref_1 – ident: ref_4 doi: 10.1145/2806416.2806501 – volume: 34 start-page: 483 year: 2013 ident: ref_7 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0487-8 – volume: 22 start-page: 2982 year: 2016 ident: ref_14 article-title: MeLiF: filter ensemble learning algorithm for gene selection publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2016.7078 – ident: ref_23 – volume: 4 start-page: 211 year: 2014 ident: ref_6 article-title: Feature selection: A literature review publication-title: SmartCR doi: 10.6029/smartcr.2014.03.007 – ident: ref_21 – volume: 3 start-page: 1157 year: 2003 ident: ref_8 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 111 start-page: 21 year: 2016 ident: ref_3 article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective publication-title: Methods doi: 10.1016/j.ymeth.2016.08.014 – ident: ref_25 – ident: ref_31 – ident: ref_29 – ident: ref_33 – volume: 45 start-page: 531 year: 2012 ident: ref_17 article-title: An ensemble of filters and classifiers for microarray data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.06.006 – ident: ref_27 – ident: ref_12 – volume: 282 start-page: 111 year: 2014 ident: ref_15 article-title: A review of microarray datasets and applied feature selection methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.042 – volume: 23 start-page: 2507 year: 2007 ident: ref_2 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – ident: ref_5 doi: 10.1155/2015/198363 – ident: ref_13 – ident: ref_19 – ident: ref_22 – ident: ref_20 |
| SSID | ssj0000392667 |
| Score | 2.3354604 |
| Snippet | With the current trend of rapidly growing popularity of the Python programming language for machine learning applications, the gap between machine learning... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 54 |
| SubjectTerms | Algorithms Bioinformatics Datasets Feature selection Internet Libraries Machine learning Neural networks open-source library Optimization Programming languages Python Quality Researchers |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NS-QwFMAfOh7Ug-i6i6OuBPSyh2I_0_QgMrN-Ieys-AHeStoko1DbcaaD-N_7XqYdFcRLDyWU5CV5H-nL7wEcxJ6KVBxLJ8ft4BCvxMkoMycXxpgYg2xpL4X9G_CLu_DyPrpfgEF7F4bSKludaBW1qnI6Iz9E00IwNO57x6Nnh6pG0d_VtoSGbEorqCOLGFuEJZ_IWB1Y6p8Orq7npy4uugOcxzNOaYBdOTSPnu8Ssz38ZJkswP-T17k8LUfy9UUWxQcDdLYOa43nyHqzqd6ABV3-gNUPPMFNOCeHbjrW7MZWt0GRs14xxFHUD08TJifsf6lZZRg6fezqlagB7ETWklkyiT3UZrdVVUx-wt3Z6e3fC6eplODkAfdqBw2d0qH0tYq48QjYw0MjMJKJEsllHGQikZkfCxxoFgmZ5L5rNGV4cl_JgEfBL-iUVam3gCUiFFrhUysThoonUaKE4G4QB4F2XdOFP62U0rzBiFM1iyLFcIIkmr5LtAv787ajGTzjy1Z9Eva8BQGv7YtqPEyb_ZNSYCYFuoOagPeoNAQuPYXaWoeZzHLehd12qtJmF07S9zXThYP59H3Tle3vv7IDKz6F2zYFbRc69Xiqf6NPUmd7zUJ7AykY3dE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIAttD0AB96ILaWyRC8c0jz8iHNC20KpkCiV6ErlFDmx3a4IyWqTLSq_nhmvu7SoQohLDtHkOWN7xh5_Q8hOnhph8lxHNTSHCHklUYWZObVyzuUQZGu_KezTkTyc8o-n4jTk5vQhrRJC8ZnvpP0WeVEkLE6zmMWCx3Pj3l6EiaQUV_gKVmAZ6w0pwBUfkY3p0fHkq19JDpeukKQMnhq7WZoliGfnNwYhz-q_4WDeXbZzfflDN821sebg4aqgau8RhZhi8m13OVS79c8_AI7__RmPyIPghdLJymwekzu2fULuX2MTPiUf0DlcLiz94ivlwD3opDnrFrPh_HtPdU8_t5Z2joIDSY8vkUBA3-lBU0858RPk9KTrmv4ZmR68P9k_jELVhahmMh0iGDSN5TqzRkiXIvxHcqcgKhKFljpnlSp0leUK_mQllC7qLHEWs0VlZjSTgj0no7Zr7QtCC8WVNXC0xnFuZCEKo5RMWM6YTRI3Jm-u1FDWAUmOlTGaEkITVFn5W2Vj8notO1-BOG6V2kNtriUQnu1PdIuzMrTFEoM8rcC1tAjPhw5IgRkb6Pktr3RVyzHZurKFMrTovgTXBmF8MkvHZGdtH395lc1_E3tJ7mUYwvu0ti0yGhZL-wr8nKHaDtb8C7PE9EI priority: 102 providerName: Unpaywall |
| Title | Feature Selection Algorithms as One of the Python Data Analytical Tools |
| URI | https://www.proquest.com/docview/2380160621 https://www.mdpi.com/1999-5903/12/3/54/pdf?version=1584793914 https://doaj.org/article/4999a8951e36476388ccad538e4babc6 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: ABDBF dateStart: 20110701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: ADMLS dateStart: 20110901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-5903 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392667 issn: 1999-5903 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMcf_jioB_EnTucI6MVDsT_T9Li5TRGcQzfQU0mbRIXaitsQ_3tf0m5uIHrx0tISSPpe0nxfef08gNPQEYEIQ26luBwszSuxEp2ZkzKlVIhBNjc_hd306NXQv34IHuZKfemcsBIPXBruXCtyzlAHSE06x9nCsE-By1T6CU9SA9u2WTQXTJl3MG77lIYlj9TDLs_Vi-Pams3uL-xABtS_oC7XJvkb__zgWTa30XS3YLNSiKRZjmwblmS-Axtz3MBduNTCbfIuyb2pYoOmJc3sqcA4__l1RPiI3OaSFIqguCP9T00HIG0-5sQQSMzHazIoimy0B8NuZ3BxZVUVEazUo87Ywg1NSJ-7UgRUORrMQ33FMGIJIk556CUs4okbMnzQJGA8Sl1bSZ3JSV3BPRp4-7CSF7k8ABIxn0mBRymU7wsaBZFgjNpe6HnStlUNzqZWitMKF66rVmQxhg3aovG3RWtwMmv7VkIyfmzV0saetdBga3MD3R1X7o7_cncN6lNXxdVqG8UoOzQoj7pODU5n7vtlKIf_MZQjWHd18G0S0uqwMn6fyGNUKOOkAcuse9mA1War3eriudXp9e8aZori1bDXbz5-AQnO5XY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hONAeqj7VbWlrqfTQQ0TiOI5zQBUU6FJgi9pF4hac2KaV0mS7yQrtn-tv60w2WUCquHHJIbKiZB6eGWfm-wA248BEJo61l6M7eIRX4mXUmZMr51yMRbZuh8JORnJ4Jr6eR-cr8LefhaG2yn5PbDdqU-V0Rr6FoYXA0CQPPk3-eMQaRX9XewoN3VErmO0WYqwb7Diy8yss4ertwz3U9wfOD_bHn4dexzLg5aEMGg-DhLFCc2si6QICu5HCKawCokRLHYeZSnTGY4XekEVKJzn3naXuSMmNDiWxRmAIWBOhSLD4W9vdH51-X57y-Jh-SBkvcFFD_PQt9yvgPmHEi1uRsCUMuJXlrs_KiZ5f6aK4EfAOHsOjLlNlOwvTegIrtnwKD2_gFz6DL5RAzqaW_WjZdFDFbKe4RKk1P3_XTNfsW2lZ5Rgmmex0TigFbE83mrVIKO0hOhtXVVE_h7N7kdkLWC2r0r4EliihrMGrNU4II5MoMUpJP4zD0Pq-G8DHXkpp3sGWE3tGkWL5QhJNryU6gPfLtZMFWMd_V-2SsJcrCGC7vVFNL9POX1MqBLXC9NMSwD5uUgpN3WB0sCLTWS4HsNGrKu28vk6vbXQAm0v13fEqr-5-yjtYH45PjtPjw9HRa3jAqdRv2982YLWZzuwbzIea7G1ndAwu7tvO_wGWLBnU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKvVxqPpUF2hrqfTQQ7SJk9jOASHa7QKlpUgFiVtwYptWCsmyyQrtX-uv60w2WUCquHHJIbKiZJ7fOONvADZlYGIjpfZydAeP-Eq8jDpzcuWck1hk6_ZQ2I9DsXcSfTuNT1fgb38Whtoq-5jYBmpT5bRHPsTUQmRoggdD17VFHI3G25NLjyZI0Z_WfpzGwkQO7PwKy7d6a3-Euv7I-fjr8Zc9r5sw4OWhCBoPE4SxkebWxMIFRHQjIqewAogTLbQMM5XojEuFnpDFSic5952lzkjBjQ4FTYzA8P9AEos7nVIf7y73d3wEHkLIBSNqiB89dH8C7hM7fHQrB7ajAm7h20ezcqLnV7oobqS68TN42mFUtrMwquewYssX8OQGc-FL2CXoOJta9qudo4PKZTvFOcqo-X1RM12zn6VllWMIL9nRnPgJ2Eg3mrUcKO32OTuuqqJ-BSf3IrHXsFpWpX0DLFGRsgav1rgoMiKJE6OU8EMZhtb33QA-9VJK846wnOZmFCkWLiTR9FqiA_iwXDtZ0HT8d9VnEvZyBVFrtzeq6XnaeWpKJaBWCDwtUetjeFJo5Abzgo0yneViABu9qtLO3-v02joHsLlU3x2vsnb3U97DQ7Tu9Pv-4cE6POZU47d9bxuw2kxn9i0CoSZ711ocg7P7NvF_1UsXbg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIAttD0AB96ILaWyRC8c0jz8iHNC20KpkCiV6ErlFDmx3a4IyWqTLSq_nhmvu7SoQohLDtHkOWN7xh5_Q8hOnhph8lxHNTSHCHklUYWZObVyzuUQZGu_KezTkTyc8o-n4jTk5vQhrRJC8ZnvpP0WeVEkLE6zmMWCx3Pj3l6EiaQUV_gKVmAZ6w0pwBUfkY3p0fHkq19JDpeukKQMnhq7WZoliGfnNwYhz-q_4WDeXbZzfflDN821sebg4aqgau8RhZhi8m13OVS79c8_AI7__RmPyIPghdLJymwekzu2fULuX2MTPiUf0DlcLiz94ivlwD3opDnrFrPh_HtPdU8_t5Z2joIDSY8vkUBA3-lBU0858RPk9KTrmv4ZmR68P9k_jELVhahmMh0iGDSN5TqzRkiXIvxHcqcgKhKFljpnlSp0leUK_mQllC7qLHEWs0VlZjSTgj0no7Zr7QtCC8WVNXC0xnFuZCEKo5RMWM6YTRI3Jm-u1FDWAUmOlTGaEkITVFn5W2Vj8notO1-BOG6V2kNtriUQnu1PdIuzMrTFEoM8rcC1tAjPhw5IgRkb6Pktr3RVyzHZurKFMrTovgTXBmF8MkvHZGdtH395lc1_E3tJ7mUYwvu0ti0yGhZL-wr8nKHaDtb8C7PE9EI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Algorithms+as+One+of+the+Python+Data+Analytical+Tools&rft.jtitle=Future+internet&rft.au=Pilnenskiy%2C+Nikita&rft.au=Smetannikov%2C+Ivan&rft.date=2020-03-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=12&rft.issue=3&rft.spage=54&rft_id=info:doi/10.3390%2Ffi12030054&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi12030054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |