Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm

The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 8; p. 1879
Main Authors Aprillia, Happy, Yang, Hong-Tzer, Huang, Chao-Ming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2020
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en13081879

Cover

Abstract The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods.
AbstractList The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods.
Author Huang, Chao-Ming
Aprillia, Happy
Yang, Hong-Tzer
Author_xml – sequence: 1
  givenname: Happy
  orcidid: 0000-0002-5263-0608
  surname: Aprillia
  fullname: Aprillia, Happy
– sequence: 2
  givenname: Hong-Tzer
  surname: Yang
  fullname: Yang, Hong-Tzer
– sequence: 3
  givenname: Chao-Ming
  orcidid: 0000-0002-4371-9475
  surname: Huang
  fullname: Huang, Chao-Ming
BookMark eNp9kM-KFDEQh4Os4LruxSdo8Ka05k930jkug6sLiy7M7jlUp6tnMmY6Y5J22Jvv4Bv6JGZ2REXEOlSF8NVH8XtKTqYwISHPGX0thKZvcGKCdqxT-hE5ZVrLmlElTv54PyHnKW1oKSGYEOKU4HIdYq5vMW6rm3XI4UvwGZytbsIeY3UZIlpI2U2r6i4dOlSLMBVozi5M4KsPOMeHkfchfvr-9dsS_K5a7qEIL_wqRJfX22fk8Qg-4fnPeUbuLt_eLt7X1x_fXS0urmsrJMs1DhZ7qYUGje3AABvZjAoaTpFjz_mgtKKNAgGKyX6wA-05pWpUtrVjx1CckaujdwiwMbvothDvTQBnHj5CXBmI2VmPpmt6WvbaflBd03Ld9TBQ2WopbC_HVhXXq6NrnnZwvwfvfwkZNYfAze_AC_3iSO9i-DxjymYT5lgCSoYXVMiWN7xQ9EjZGFKKOBrrMhySzBGc_7f45V8r_7niBx6GoF4
CitedBy_id crossref_primary_10_3390_en13154017
crossref_primary_10_1016_j_solener_2022_08_042
crossref_primary_10_3390_en15145008
crossref_primary_10_4108_ew_3809
crossref_primary_10_3390_en17164145
crossref_primary_10_1016_j_seta_2021_101354
crossref_primary_10_3390_en13112857
crossref_primary_10_1016_j_ref_2023_04_010
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_3390_en14051222
crossref_primary_10_3390_en17174301
crossref_primary_10_1155_2021_6638436
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_3390_en14113086
crossref_primary_10_1016_j_egyr_2023_08_003
crossref_primary_10_1080_15325008_2024_2317369
crossref_primary_10_1007_s40313_024_01099_5
crossref_primary_10_3390_app10238400
crossref_primary_10_1049_rpg2_12736
crossref_primary_10_3390_en17133073
crossref_primary_10_1016_j_clet_2024_100831
crossref_primary_10_1109_ACCESS_2023_3270714
crossref_primary_10_1016_j_energy_2023_126980
crossref_primary_10_3390_en17102392
crossref_primary_10_1016_j_seta_2021_101048
crossref_primary_10_1109_ACCESS_2021_3122826
crossref_primary_10_1109_ACCESS_2024_3420693
crossref_primary_10_1016_j_engappai_2024_108935
crossref_primary_10_1016_j_ecmx_2024_100768
crossref_primary_10_3390_en14164733
crossref_primary_10_1109_ACCESS_2022_3156942
crossref_primary_10_3390_sym14050955
crossref_primary_10_1007_s43621_024_00615_6
crossref_primary_10_1016_j_apenergy_2021_117410
crossref_primary_10_3390_fractalfract9010035
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1080_15325008_2023_2217193
crossref_primary_10_1063_5_0082629
crossref_primary_10_1002_er_7254
crossref_primary_10_3390_en15041460
crossref_primary_10_3390_su15129234
crossref_primary_10_3390_su15010771
crossref_primary_10_1063_5_0090126
crossref_primary_10_3390_en15114171
crossref_primary_10_1007_s43621_024_00783_5
crossref_primary_10_1016_j_enconman_2024_118207
crossref_primary_10_3390_en13246603
crossref_primary_10_3390_en14112998
crossref_primary_10_3390_en17010097
crossref_primary_10_1109_TIA_2022_3186662
crossref_primary_10_3390_en15062150
Cites_doi 10.1049/iet-smt.2013.0135
10.3390/app8101869
10.3390/sym10120748
10.3390/en12091621
10.1109/ACCESS.2018.2883330
10.3390/en8021138
10.3390/electronics8030292
10.1113/jphysiol.1959.sp006308
10.1016/j.solener.2010.02.006
10.1109/TSG.2018.2815434
10.3390/en13030723
10.1109/ACCESS.2019.2921238
10.1007/BF00994018
10.1016/j.apenergy.2017.03.034
10.1109/TPWRS.2018.2869195
10.3390/electronics8080876
10.1016/j.solener.2016.06.069
10.3390/en12234490
10.1109/ACCESS.2018.2888978
10.1016/j.egypro.2018.09.173
10.2172/986925
10.1109/TIA.2018.2870348
10.1109/TSG.2018.2851512
10.3390/en12244815
10.3390/en11051143
10.3390/su11051501
10.1016/j.ijforecast.2016.02.001
10.1016/j.enconman.2017.10.008
10.3390/en6020733
10.1016/j.enconman.2017.11.019
10.3390/s18072220
10.1016/j.epsr.2012.03.009
10.3390/en11112982
10.1109/ACCESS.2018.2869424
10.1109/ACCESS.2019.2931985
10.1016/j.solener.2016.06.073
10.1109/TSTE.2015.2433957
10.1109/TSG.2018.2844877
10.1109/ACCESS.2019.2901920
10.1016/j.solener.2015.09.047
10.1109/TSG.2014.2377178
10.21629/JSEE.2017.01.18
10.1016/j.solener.2014.03.018
10.1016/j.renene.2012.10.009
10.3390/en12132538
10.1109/ACCESS.2019.2926137
10.1016/j.advengsoft.2017.07.002
10.1109/ACCESS.2019.2949065
10.1049/iet-gtd.2018.5847
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/en13081879
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57
10.3390/en13081879
10_3390_en13081879
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
2XV
ADTOC
C1A
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3
IEDL.DBID UNPAY
ISSN 1996-1073
IngestDate Tue Oct 14 19:08:45 EDT 2025
Sun Oct 26 04:04:43 EDT 2025
Mon Jun 30 11:07:03 EDT 2025
Thu Oct 16 04:24:05 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-edceb6939a9e5d1ae464f7a420e2eb22d797047a3a716bdcd0b2007f7c5cf81e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4371-9475
0000-0002-5263-0608
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1073/13/8/1879/pdf?version=1586788671
PQID 2390365242
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_84b07c55bd7845298bad065963cb6f57
unpaywall_primary_10_3390_en13081879
proquest_journals_2390365242
crossref_citationtrail_10_3390_en13081879
crossref_primary_10_3390_en13081879
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Huang (ref_23) 2019; 7
Hernandez (ref_38) 2012; 89
Wang (ref_36) 2017; 153
Saez (ref_34) 2015; 6
Zeng (ref_16) 2013; 52
ref_51
ref_18
ref_17
Nguyen (ref_9) 2019; 34
ref_15
Luna (ref_8) 2019; 55
Hong (ref_35) 2016; 32
Raza (ref_11) 2016; 136
Gao (ref_4) 2019; 7
Malvoni (ref_10) 2014; 8
ref_24
Dolara (ref_14) 2015; 8
Yan (ref_20) 2019; 7
Sobri (ref_12) 2018; 156
Han (ref_21) 2019; 7
Du (ref_26) 2018; 6
Antonanzas (ref_39) 2016; 136
Zhang (ref_6) 2015; 122
ref_29
ref_28
Mirjalili (ref_33) 2017; 114
Cortes (ref_47) 1995; 20
Lee (ref_27) 2018; 6
Ju (ref_19) 2019; 7
Yang (ref_7) 2015; 6
Mellit (ref_13) 2014; 105
ref_32
ref_30
Zhong (ref_44) 2018; 152
Zhao (ref_31) 2017; 28
Bracale (ref_37) 2013; 6
Chakraborty (ref_3) 2019; 10
Alkaabi (ref_1) 2019; 10
Zhang (ref_22) 2018; 12
Hubel (ref_45) 1959; 148
ref_46
Chen (ref_48) 2017; 195
Deng (ref_25) 2019; 7
ref_43
ref_42
Mellit (ref_40) 2010; 84
ref_41
ref_49
Fleischhacker (ref_2) 2019; 10
ref_5
References_xml – volume: 8
  start-page: 90
  year: 2014
  ident: ref_10
  article-title: Photovoltaic power forecasting using statistical methods: Impact of weather data
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0135
– ident: ref_28
  doi: 10.3390/app8101869
– ident: ref_51
– ident: ref_17
  doi: 10.3390/sym10120748
– ident: ref_15
  doi: 10.3390/en12091621
– volume: 6
  start-page: 73068
  year: 2018
  ident: ref_27
  article-title: Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883330
– volume: 8
  start-page: 1138
  year: 2015
  ident: ref_14
  article-title: A physical hybrid artificial neural network for short term forecasting of PV plant power output
  publication-title: Energies
  doi: 10.3390/en8021138
– ident: ref_43
  doi: 10.3390/electronics8030292
– volume: 148
  start-page: 574
  year: 1959
  ident: ref_45
  article-title: Receptive Fields of Single Neurons in The Cat’s Striate Cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 84
  start-page: 807
  year: 2010
  ident: ref_40
  article-title: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected {PV} plant at Trieste, Italy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.02.006
– volume: 10
  start-page: 2923
  year: 2019
  ident: ref_1
  article-title: Short-Term Reactive Power Planning to Minimize Cost of Energy Losses Considering PV Systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2815434
– ident: ref_30
  doi: 10.3390/en13030723
– volume: 7
  start-page: 74822
  year: 2019
  ident: ref_23
  article-title: Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921238
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_47
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 195
  start-page: 659
  year: 2017
  ident: ref_48
  article-title: Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 34
  start-page: 718
  year: 2019
  ident: ref_9
  article-title: Exact Optimal Power Dispatch in Unbalanced Distribution Systems with High PV Penetration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2869195
– ident: ref_24
  doi: 10.3390/electronics8080876
– volume: 136
  start-page: 78
  year: 2016
  ident: ref_39
  article-title: Review of photovoltaic power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.069
– ident: ref_49
  doi: 10.3390/en12234490
– volume: 7
  start-page: 4045
  year: 2019
  ident: ref_21
  article-title: Enhanced Deep Networks for Short-Term and Medium-Term Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888978
– volume: 152
  start-page: 1224
  year: 2018
  ident: ref_44
  article-title: Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.09.173
– ident: ref_5
  doi: 10.2172/986925
– volume: 55
  start-page: 60
  year: 2019
  ident: ref_8
  article-title: Improving Grid Integration of Hybrid PV-Storage Systems Through a Suitable Energy Management Strategy
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2018.2870348
– volume: 10
  start-page: 4175
  year: 2019
  ident: ref_3
  article-title: Analysis of Solar Energy Aggregation Under Various Billing Mechanisms
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2851512
– ident: ref_32
  doi: 10.3390/en12244815
– ident: ref_41
  doi: 10.3390/en11051143
– ident: ref_42
  doi: 10.3390/su11051501
– volume: 32
  start-page: 896
  year: 2016
  ident: ref_35
  article-title: Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.02.001
– volume: 153
  start-page: 409
  year: 2017
  ident: ref_36
  article-title: Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
– volume: 6
  start-page: 733
  year: 2013
  ident: ref_37
  article-title: A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control
  publication-title: Energies
  doi: 10.3390/en6020733
– volume: 156
  start-page: 459
  year: 2018
  ident: ref_12
  article-title: Solar photovoltaic generation forecasting methods: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.019
– ident: ref_46
  doi: 10.3390/s18072220
– volume: 89
  start-page: 129
  year: 2012
  ident: ref_38
  article-title: Probabilistic load flow for photovoltaic distributed generation using the Cornish-Fisher expansion
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.03.009
– ident: ref_29
  doi: 10.3390/en11112982
– volume: 6
  start-page: 52639
  year: 2018
  ident: ref_26
  article-title: Deep Power Forecasting Model for Building Attached Photovoltaic System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869424
– volume: 7
  start-page: 105019
  year: 2019
  ident: ref_4
  article-title: Techno-Economic Evaluation of Mixed AC and DC Power Distribution Network for Integrating Large-Scale Photovoltaic Power Generation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931985
– volume: 136
  start-page: 125
  year: 2016
  ident: ref_11
  article-title: On recent advances in PV output power forecast
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.06.073
– volume: 6
  start-page: 1346
  year: 2015
  ident: ref_7
  article-title: MF-APSO-Based Multiobjective Optimization for PV System Reactive Power Regulation
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2433957
– volume: 10
  start-page: 3963
  year: 2019
  ident: ref_2
  article-title: Sharing Solar PV and Energy Storage in Apartment Buildings: Resource Allocation and Pricing
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2844877
– ident: ref_50
– volume: 7
  start-page: 28309
  year: 2019
  ident: ref_19
  article-title: A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901920
– volume: 122
  start-page: 804
  year: 2015
  ident: ref_6
  article-title: Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.09.047
– volume: 6
  start-page: 548
  year: 2015
  ident: ref_34
  article-title: Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2377178
– volume: 28
  start-page: 162169
  year: 2017
  ident: ref_31
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 105
  start-page: 401
  year: 2014
  ident: ref_13
  article-title: Short-term forecasting of power production in a large-scale photovoltaic plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.03.018
– volume: 52
  start-page: 118
  year: 2013
  ident: ref_16
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.10.009
– ident: ref_18
  doi: 10.3390/en12132538
– volume: 7
  start-page: 88058
  year: 2019
  ident: ref_25
  article-title: Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926137
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_33
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 7
  start-page: 157633
  year: 2019
  ident: ref_20
  article-title: A Hybrid LSTM Neural Network for Energy Consumption Forecasting of Individual Households
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949065
– volume: 12
  start-page: 4557
  year: 2018
  ident: ref_22
  article-title: Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5847
SSID ssj0000331333
Score 2.4904394
Snippet The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1879
SubjectTerms Accuracy
Algorithms
convolutional neural network
day ahead forecasting
Deep learning
Humidity
Methods
Neural networks
Outdoor air quality
Power
PV power forecasting
renewable energy
salp swarm algorithm
Short term
Support vector machines
Variables
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ei3oQn1hfLNiLh2Cyu9kkRxVLEZRCK3gL-4oVYlLaVPHmf_Af-kuc3aS1gujFUyAsm2VmdvJ92ck3CLUh_wlKtfQCEmiPUUI9EXLYVwmAI8M1S1zPyJtb3r1j1_fh_UKrL1sTVssD14Y7i5n0IxWGUkexPSSMpdD2LJBTJXkWuv_I_ThZIFMuB1MK5IvWeqQUeP2ZKSBbx7a39rc3kBPq_4YuV6bFSLy-iDxfeNF0NtB6gxDxeb2yTbRkii20tqAbuI1Mfwio2RtAVsW9YVmVkGOA4ivcsz3PsG23qcTEFjRjVxKABb4si-cmymByK8nhLq4G_OPtvS_yEe6_CJjwPH8ox4_V8GkH3XWuBpddr-mX4CnKg8qzBZ2SJzQRiQl1IAzjLIsEI74hQKCJjpLIZ5GgAkiS1Er70n6pzMC8KosDQ3fRclEWZg9hBaYCZEEymIgZw5NYB5JEsdSMgm9VC53ObJiqRkzc9rTIUyAV1t7pl71b6GQ-dlRLaPw46sK6Yj7Cyl67GxAMaRMM6V_B0EKHM0emzV6cpAQeRHkIWKSF2nPn_rKU_f9YygFaJZaauyKfQ7RcjafmCPBLJY9dqH4C11vtyg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3SzaHtIfSTbpMWQXPpwcSWZNk-lJKEhBDosnQTyM3oy9mDa28Tp6G3_of-w_ySzGjtTQIhJ4MRg5mRRvOk8XsA25j_tBDORAlPXCQFF5FOFa6rAosjr5wsgmbkj4k6OpXHZ-nZGkyGf2GorXLIiSFRu9bSGfkOR3AuVIo7yvfF74hUo-h2dZDQ0L20gvsWKMaewTonZqwRrO8dTKY_V6cusRAIysSSp1SgyR3fYBbPSXP7wc4UCPwfVJ3Pr5qF_nut6_reBnT4Cjb6ypHtLkP9GtZ88wZe3uMTfAt-NsdqOjrBbMum87ZrMfcg9LdsSlpojGQ4rb6kRmcWWgWYZvtt86effWicqDrCI_SG3_z7P9P1gs2uNRrcrc_RH9381zs4PTw42T-Keh2FyAqVdBE1ehpViEIXPnWJ9lLJKtOSx54jsOYuK7JYZlpoBE_GWRcbOsGsMpvaKk-8eA-jpm38B2AWXYUVB6_QkPReFblLDM9y46TAmNsxfB18WNqeZJy0LuoSwQb5u7zz9xi-rMYultQaj47ao1CsRhAddnjRXpyX_eoqc2li_NrUuCynm-TcaEcXxkpYo6o0G8PWEMiyX6OX5d2MGsP2KrhPfMrHp61swgtOYDy09WzBqLu48p-wYunM534a3gJOJuxD
  priority: 102
  providerName: ProQuest
Title Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm
URI https://www.proquest.com/docview/2390365242
https://www.mdpi.com/1996-1073/13/8/1879/pdf?version=1586788671
https://doaj.org/article/84b07c55bd7845298bad065963cb6f57
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7R5AAceCMCJbJELxxcx157vT6htGpaIRFFpJHCyezLTYSxo8RpBSf-A_-QX8LsZhNahBASF1uyxuu15rHf7I6-ATjA-McJUcIPo1D5MYmIzxOKfpUhONJUxZntGfluSM8m8dtpMnV9TleurBJT8bkN0rZCFvMTEoQkYIFpjB0sVPHm0m0lhQnDbxmGtj1o0wTBeAvak-Go_8GeJbuXN6SkBJP7QFcYspkZ58YyZNn6b0DM2-tqwb9c8bK8ttoM7sPH7Tw3RSafDteNOJRff6Nw_I8feQD3HBL1-hvTeQi3dPUI7l7jJ3wMejxDdO6fY_T2RrO6qTGWNXwuvZHpreaZtp6Sr0zhtGdLDzzuHdfVpbNmHNxQf9ibrTX_8e37mJcLb3zFccB-eVEv583s8xOYDE7Oj89815fBl4SGjW8KRwXNSMYznaiQ65jGRcrjqKcjTNQjlWZpL0454ZiMCSVVT5gd0SKViSxYqMlTaFV1pZ-BJ1EbiGCiAgeKtaYZU6GIUiZUTNCGZAdeb9WUS0dabnpnlDkmL0al-S-VduDVTnaxoer4o9SR0fZOwtBr2wf18iJ33pqzWPRwtolQKTMn00xwZQ6gKZGCFknagf2treTO51d5hB8iNEHM04GDnf38ZSrP_03sBdyJTJJvy4X2odUs1_olIqFGdGGPDU670D46GY7ed-1-Al5Pp2HX-cFPXBcIJw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB5RONAeUH_VAG1XKj30YGHvrtf2AVVAQaFAFDVB4ubunwmSsQMxjbj1Hfo-fZg-SWcdO4BUceNkyVqN7JnZ-dvZ-QA20P5JxozyAhoYjzPKPBkK3FcJBkdWGJ7UmJHHPdE94d9Ow9MF-NPehXFtla1NrA21KbWrkW9STM6ZCNGjfBlfeg41yp2uthAasoFWMFv1iLHmYsehvZliCjfZOviK8v5E6f7ecLfrNSgDnmYiqDzXBqlEwhKZ2NAE0nLBs0hy6luKaSc1URL5PJJMYmqhjDa-cvW9LNKhzuLAMqT7BJY44wkmf0s7e73-93mVx2cMk0A2m4vK8Bc2bYFeI3YY3_c8YQ0YcC_KXb4uxvJmKvP8jsPbfw4rTaRKtmeq9QIWbPESnt2ZX_gK7GCE0bs3ROtO-qOyKtHWVfJck77DXiMO9lPLiWusJnVrApFktyx-NtqOxN1okPpR96L__fV7IPMxGUwlEtzOz5D_1ejiNZw8CkffwGJRFvYtEI2swgiHZkiIWyuS2ASKRrEynKGO6Q58bnmY6maoucPWyFNMbhy_01t-d-DjfO14Nsrjv6t2nCjmK9z47fpFeXWWNrs5jbny8WtDZaLYnVzHShp3QC2YViILow6st4JMG5swSW81uAMbc-E-8CmrD1P5AMvd4fFRenTQO1yDp9QVAuqWonVYrK6u7TuMlir1vlFJAj8eexf8AxhQKn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IJ4iUGAlyoGDFXt3vbYPCJWW0FKoIqWVenP35QbJ2KFxiXrjP_Bv-Dn8EmYcJ20l1FtPlqzVaDUzO6-dnQ9gHe2fFsKZIOKRC6TgItCxwnOVYXDklZNZixn5dU9tH8jPh_HhCvxZvIWhtsqFTWwNtast1cj7HJNzoWL0KP2ia4sYbg3eT34EhCBFN60LOI25iuz6sxmmb9N3O1so6zecDz7ub24HHcJAYIWKmoBaII3KRKYzH7tIe6lkkWjJQ88x5eQuyZJQJlpoTCuMsy40VNsrEhvbIo28QLo34GZCU9zplfrg07K-EwqB6Z-YT0QVuPm-r9BfpITufckHtlABl-Lb26fVRJ_NdFlecHWD-3Cvi1HZxlypHsCKrx7C3QuTCx-BH40xbg_20a6z4bhuarRyjf5m2ZBQ1xgBflo9pZZq1jYlMM026-pnp-dInIaCtJ-2C_3vr98jXU7YaKaR4EZ5jNxuxt8fw8G18PMJrFZ15Z8Cs8gqjG14gYSk9ypLXWR4khonBWqX7cHbBQ9z240zJ1SNMse0hvidn_O7B6-XayfzIR7_XfWBRLFcQYO32x_1yXHeneM8lSbE3cbGJSndWadGO7qaVsIaVcRJD9YWgsw7azDNz3W3B-tL4V6xlWdXU3kFt1D38y87e7vP4Q6nCkDbS7QGq83JqX-BYVJjXrb6yODoug_APwDkKBg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BegAOvCsCBa1ELxxcx_vy-oRCRVUhUUVKI5WT2ZebCGNHidMKTvwH_iG_hNnNJrQIISROlqzx7FozOzuz--kbhPYh_ilKrU4yktmEUUITxQWsqwKSIycsK0LPyPcn4njC3p3xs9jndBlhlVCKz0KQDghZqE9omtFUpr4xdjq31euLeJSUcQljeYa2m2hHcEjGe2hncjIafgh3yfHjNSkpheI-dQ2EbOn1XNuGAlv_tRTz1qqZqy-Xqq6v7DZH99DHzTzXIJNPB6tOH5ivv1E4_seP3Ed3YyaKh2vXeYBuuOYhunOFn_ARcuMpZOfJKURvPJq2XQuxrFMzg0e-txr2bT2NWnrgNA7QA6zwYdtcRG8G5Z76IzwC1vzHt-9jVc_x-FKBwmF93i5m3fTzYzQ5ent6eJzEvgyJoSLrEg8c1aKghSoct5lyTLAqV4wMHIFCndi8yAcsV1RBMaatsQPtT0Sr3HBTyczRXdRr2sY9QdiANSCDIRUoYs6JQtpMk1xqyyj4kOmjVxszlSaSlvveGXUJxYs3afnLpH30cis7X1N1_FHqjbf2VsLTa4cX7eK8jKu1lEwPYLZc21z6m2mplfUX0IIaLSqe99HexlfKuOaXJYGBqOCQ8_TR_tZ__jKVp_8m9gzdJr7ID3ChPdTrFiv3HDKhTr-I3v4Ty8wDwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Photovoltaic+Power+Forecasting+Using+a+Convolutional+Neural+Network%E2%80%93Salp+Swarm+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Aprillia%2C+Happy&rft.au=Hong-Tzer+Yang&rft.au=Chao-Ming%2C+Huang&rft.date=2020-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=8&rft.spage=1879&rft_id=info:doi/10.3390%2Fen13081879&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon