TL-Net: A Novel Network for Transmission Line Scenes Classification

With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection,...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 13; no. 15; p. 3910
Main Authors Li, Hongchen, Yang, Zhong, Han, Jiaming, Lai, Shangxiang, Zhang, Qiuyan, Zhang, Chi, Fang, Qianhui, Hu, Guoxiong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2020
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en13153910

Cover

Abstract With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection, but most of them contain no critical components of transmission lines. Hence, it is a momentous task to adopt image classification algorithms to distinguish key images from all aerial images. In this work, we propose a novel classification method to remove redundant data and retain informative images. A novel transmission line scene dataset, namely TLS_dataset, is built to evaluate the classification performance of networks. Then, we propose a novel convolutional neural network (CNN), namely TL-Net, to classify transmission line scenes. In comparison to other typical deep learning networks, TL-Nets gain better classification accuracy and less memory consumption. The experimental results show that TL-Net101 gains 99.68% test accuracy on the TLS_dataset.
AbstractList With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection, but most of them contain no critical components of transmission lines. Hence, it is a momentous task to adopt image classification algorithms to distinguish key images from all aerial images. In this work, we propose a novel classification method to remove redundant data and retain informative images. A novel transmission line scene dataset, namely TLS_dataset, is built to evaluate the classification performance of networks. Then, we propose a novel convolutional neural network (CNN), namely TL-Net, to classify transmission line scenes. In comparison to other typical deep learning networks, TL-Nets gain better classification accuracy and less memory consumption. The experimental results show that TL-Net101 gains 99.68% test accuracy on the TLS_dataset.
Author Li, Hongchen
Fang, Qianhui
Zhang, Qiuyan
Han, Jiaming
Lai, Shangxiang
Zhang, Chi
Hu, Guoxiong
Yang, Zhong
Author_xml – sequence: 1
  givenname: Hongchen
  surname: Li
  fullname: Li, Hongchen
– sequence: 2
  givenname: Zhong
  surname: Yang
  fullname: Yang, Zhong
– sequence: 3
  givenname: Jiaming
  surname: Han
  fullname: Han, Jiaming
– sequence: 4
  givenname: Shangxiang
  surname: Lai
  fullname: Lai, Shangxiang
– sequence: 5
  givenname: Qiuyan
  surname: Zhang
  fullname: Zhang, Qiuyan
– sequence: 6
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
– sequence: 7
  givenname: Qianhui
  surname: Fang
  fullname: Fang, Qianhui
– sequence: 8
  givenname: Guoxiong
  surname: Hu
  fullname: Hu, Guoxiong
BookMark eNptUMtOwzAQtBBIlNILXxCJG1LAzubhcKsqHpWqcqCcLWezQS5pXOwUxN_jtggQYi_7mp1ZzQk77GxHjJ0JfglQ8ivqBIgMSsEP2ECUZR4LXsDhr_qYjbxf8hAAAgAGbLKYxXPqr6NxNLdv1EahebfuJWqsixZOd35lvDe2i2amo-gRqSMfTVodho1B3YfVKTtqdOtp9JWH7On2ZjG5j2cPd9PJeBYj5KKP66wqJWahTgkqLJoEeaFlRjWWVZXlpJOcaqiR6xCi1pSmSaWzvMCGKlnBkE33vLXVS7V2ZqXdh7LaqN3AumelXW-wJYUpJDIBngWRtJZSNnkimxRRI6aF3nKd77nWzr5uyPdqaTeuC--rJAWeyBJABtTFHoXOeu-o-VYVXG09Vz-eBzD_A0bT7wzqnTbtfyefA0CE_Q
CitedBy_id crossref_primary_10_3390_s23167171
crossref_primary_10_1007_s10489_022_03932_3
crossref_primary_10_3390_electronics13101858
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/TPAMI.2013.50
10.3390/en12071204
10.1109/ACCESS.2019.2902558
10.1145/3065386
10.14358/PERS.79.9.821
10.1109/TIP.2015.2475625
10.1016/j.ijepes.2017.07.019
10.1016/j.ijepes.2017.12.016
10.1109/JIOT.2018.2872545
10.1016/j.acags.2019.100002
10.3390/su12041525
10.3390/app9102009
10.3390/en11123496
10.1109/CVPR.2016.308
10.1016/j.isprsjprs.2017.11.003
10.1214/09-AOAS285
10.1109/5.726791
10.3390/en13030713
10.1016/j.epsr.2017.09.019
10.12720/jcm.9.9.687-692
10.1609/aaai.v31i1.11231
10.1109/CVPR.2018.00745
10.1109/CVPR.2016.90
10.1162/neco.2006.18.7.1527
10.1016/j.rse.2006.04.001
10.20944/preprints201902.0072.v1
10.1109/IJCNN.2016.7727606
10.1109/TII.2018.2794320
10.3390/en10030406
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13153910
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_c43282305f2c4d888f628f4ccacc47ab
10_3390_en13153910
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-d5b98c53614e3bc7f2c07a85edc9bb56ea26ed3dc0aaaa1dae442ba567cfeb8b3
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Wed Aug 27 00:44:17 EDT 2025
Mon Jun 30 11:12:51 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Jul 01 04:21:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-d5b98c53614e3bc7f2c07a85edc9bb56ea26ed3dc0aaaa1dae442ba567cfeb8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2430289338?pq-origsite=%requestingapplication%
PQID 2430289338
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_c43282305f2c4d888f628f4ccacc47ab
proquest_journals_2430289338
crossref_primary_10_3390_en13153910
crossref_citationtrail_10_3390_en13153910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Krizhevsky (ref_20) 2017; 60
Deng (ref_2) 2014; 9
Juntao (ref_28) 2018; 47
ref_11
ref_33
ref_32
ref_31
Chan (ref_7) 2015; 24
ref_30
Ehsan (ref_16) 2019; 1
Chipman (ref_13) 2010; 4
Jenssen (ref_1) 2018; 99
ref_15
Zhou (ref_4) 2018; 14
Meinshausen (ref_14) 2006; 7
Pan (ref_9) 2018; 145
ref_25
ref_24
LeCun (ref_19) 1998; 86
ref_23
ref_22
Kim (ref_29) 2013; 79
ref_21
Yamato (ref_8) 2018; 6
Hinton (ref_10) 2006; 18
Bengio (ref_18) 2013; 35
ref_3
Foody (ref_12) 2006; 103
Cerrai (ref_17) 2019; 7
ref_27
ref_26
Qiu (ref_5) 2018; 94
ref_6
References_xml – ident: ref_22
  doi: 10.1109/CVPR.2015.7298594
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_18
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: ref_24
  doi: 10.3390/en12071204
– volume: 7
  start-page: 29639
  year: 2019
  ident: ref_17
  article-title: Predicting storm outages through new representations of weather and vegetation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902558
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_20
  article-title: Pdf ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 7
  start-page: 983
  year: 2006
  ident: ref_14
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 821
  year: 2013
  ident: ref_29
  article-title: Point-based classification of power line corridor scene using random forests
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.79.9.821
– volume: 24
  start-page: 5017
  year: 2015
  ident: ref_7
  article-title: PCANet: A simple deep learning baseline for image classification?
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2475625
– volume: 94
  start-page: 311
  year: 2018
  ident: ref_5
  article-title: How to build an electric power transmission network considering demand side management and a risk constraint?
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.07.019
– volume: 99
  start-page: 107
  year: 2018
  ident: ref_1
  article-title: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.12.016
– volume: 6
  start-page: 2669
  year: 2018
  ident: ref_8
  article-title: Automatic GPU offloading technology for open IoT environment
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2872545
– ident: ref_21
– volume: 1
  start-page: 100002
  year: 2019
  ident: ref_16
  article-title: Advanced wind speed prediction using convective weather variables through machine learning application
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2019.100002
– ident: ref_15
  doi: 10.3390/su12041525
– ident: ref_6
  doi: 10.3390/app9102009
– ident: ref_27
  doi: 10.3390/en11123496
– ident: ref_32
  doi: 10.1109/CVPR.2016.308
– volume: 145
  start-page: 108
  year: 2018
  ident: ref_9
  article-title: MugNet: Deep learning for hyperspectral image classification using limited samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.003
– volume: 4
  start-page: 266
  year: 2010
  ident: ref_13
  article-title: BART: Bayesian additive regression trees
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/09-AOAS285
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_19
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_25
  doi: 10.3390/en13030713
– ident: ref_3
  doi: 10.1016/j.epsr.2017.09.019
– volume: 9
  start-page: 687
  year: 2014
  ident: ref_2
  article-title: Unmanned aerial vehicles for power line inspection: A cooperative way in platforms and communications
  publication-title: J. Commun.
  doi: 10.12720/jcm.9.9.687-692
– ident: ref_33
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_11
  doi: 10.1109/CVPR.2018.00745
– volume: 47
  start-page: 188
  year: 2018
  ident: ref_28
  article-title: Multi-scale features and markov random field model for powerline scene classification
  publication-title: Acta Geod. Cartogr. Sin.
– ident: ref_23
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_10
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 103
  start-page: 179
  year: 2006
  ident: ref_12
  article-title: The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.001
– ident: ref_26
  doi: 10.20944/preprints201902.0072.v1
– ident: ref_30
  doi: 10.1109/IJCNN.2016.7727606
– volume: 14
  start-page: 2705
  year: 2018
  ident: ref_4
  article-title: Energy-efficient industrial internet of UAVs for power line inspection in smart grid
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2794320
– ident: ref_31
  doi: 10.3390/en10030406
SSID ssj0000331333
Score 2.255808
Snippet With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3910
SubjectTerms Accuracy
Algorithms
Classification
Data collection
Datasets
Deep learning
deep neural network
Efficiency
Electricity
image classification
Inspections
Machine learning
Methods
Neural networks
Semantics
Sustainability
transmission lines inspection
unmanned aerial vehicle
voting classification strategy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoEhw4RCtTdJHuI2JaULQC5u0WxUn6WnqEBR-P07ajUkgcaGnqrLkym5sf43zmZAbkSlnBHcMbG6ZBJkyQCzEjFFKZhWi7MifHX4u0ulcPi6SxdaoL98T1tIDt4YbGim43wxKKm6kRbxWpTyvJCo2RmYafPTFNLYFpkIMFgLBl2j5SAVqHLo6Fri6lT8qu5WBAlH_jzgcksvkgOx3VSEdtW9zSHZcfUT2trgCj8l49sQK19zRES1Wn25Ji7aBm2LVSUPGQY_5X18U4aWjL8YHMRpmXvpuoOCAEzKfPMzGU9ZNQGBGpHHDbAIqNwneSyfAZGiDKNN54qxRAEnqNE-dFdZEGq_YaiclB52kmakc5CBOSa9e1e6M0FhDbi0X4OldgCutcp6BrhBg2cgp6JPbtVVK09GD-ykVyxJhgrdg-W3BPrneyL62pBi_St17424kPJF1eIDuLTv3ln-5t08Ga9eU3ep6L7kUfoMU0fX5f-i4ILvco-jQ1jcgvebtw11iqdHAVfiqvgBnDtIb
  priority: 102
  providerName: Directory of Open Access Journals
Title TL-Net: A Novel Network for Transmission Line Scenes Classification
URI https://www.proquest.com/docview/2430289338
https://doaj.org/article/c43282305f2c4d888f628f4ccacc47ab
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArGKtLMGFg9XEdhZzQVC1IAQRglbqLfIWLlXDUvh-Zty0VAKRQxQllpLMjMd-4_EbQs5EprwV3DPjcsekkSkzgIWYtUrJrAKUHeHe4YcivR3Iu2EybAJuH01a5cwnBkftaosx8jaXAhfFAFFdvr4xrBqFq6tNCY1lshpzsCTcKd67mcdYIiEAgokpK6mA97b9OBbQxxVumF0YhwJd_y9vHIaY3ibZaOaG9GqqzC2y5MfbZH2BMXCHdPr3rPCTC3pFi_rLj2gxTeOmMPekYdwBvWEAjALI9PTZoiujofIl5gQFNeySQa_b79yypg4CsyKNJ8wlRuU2gWvphbFZxW2U6TzxzipjktRrnnonnI00HLHTXkpudJJmtvImN2KPrIzrsd8nNNYmd44LgyQvhiutcp4ZXQHMcpFX5oCcz6RS2oYkHGtVjEoACyjB8keCB-R03vZ1So3xZ6trFO68BdJZhxv1-0vZ9I7SSsFxxS-BX5MOQHmV8rySYF3WykzDZx3PVFM2feyj_LGIw_8fH5E1jig5pO0dk5XJ-6c_ganExLSCvbTI6nW3eHxqBUAO55th_A3E5Myc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiPJQX1BLwIGD1azHSWwkhErbZUu3ubCVegt-hUu128cWxJ_iNzLjJNtKoN6aU5RYUTz-PPZnj79h7C2UJnqQUbigg1BOFcIhFxLeG6PKBll2RmeHj6tidKK-nuanS-xPfxaGwip7n5gcdZh5WiPfkQpoUwwZ1afzC0FZo2h3tU-h0cLiKP7-hZTt6uPhPrbvOymHB5O9keiyCggPxWAuQu6M9jneqwjOl430WWl1HoM3zuVFtLKIAYLPLF6DYKNS0tm8KH0TnXaA333AVhQAkFa_Hn5ZrOlkAEj5oFVBBaznTpwOAH2KoQO6t8a9lB7gH--fhrThU_akm4vy3RY8q2wpTp-xx7cUCp-zvclYVHH-ge_yavYznvGqDRvnONflaZxDnNCCG0dSG_k3T66Tp0ybFIOUmv0FO7kXC71ky9PZNK4xPrBOhyDBkaiMk8YaLUtnG6R1IYvGrbP3vVVq34mSU26MsxrJCVmwvrHgOnuzKHveSnH8t9RnMu6iBMlnpwezyx911xtrr0DSDmOOVVNBa90UUjcK0ey9Ki3-1lbfNHXXp6_qGwRu3P16mz0cTY7H9fiwOtpkjyQx9BQyuMWW55fX8RVOY-budcIOZ9_vG6x_Ad0SCWk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiK0gKWgAMHa7O2k9hIFepr1dISVdBKvaV-hUu128cC4i_yq5jxOttKIG7NKUqsKB5_nvFnzwPgraxN9FJE7oIOXDlVcYdciHtvjKo7ZNkFxQ5_bqrdY_XppDxZgt99LAy5VfY6MSnqMPW0Rz4UStKhGDKqYZfdIg63xx_PLzhVkKKT1r6chs1lFsJ6SjeWgzz246-fSOeu1ve2cezfCTHeOdra5bniAPeyGs14KJ3RvsR7FaXzdSd8UVtdxuCNc2UVrahikMEXFq9RsFEp4WxZ1b6LTjuJ370DyzXFiw5geXOnOfyy2PEppERCKOc5UiVKYRgnI4kax1D47g2rmIoH_GUbksEbP4QHeaXKNubQegRLcfIY7t_IX_gEto4OeBNnH9gGa6Y_4hlr5k7lDFfCLFlBRBFtxzGkvJF99aRYWarDSR5KCRRP4fhWZPQMBpPpJD4HNrJOhyCko5QzThhrtKid7ZD0hSIatwLve6m0Pqcsp8oZZy1SF5Jgey3BFXizaHs-T9Txz1abJNxFC0qunR5ML7-1ea62XklB548ldk0FrXVXCd0pxLr3qrb4W2v90LR5xl-11_h88f_Xr-EuArc92Gv2V-GeIPqe_AnXYDC7_B5f4hpn5l5l8DA4vW28_gFmkxRD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TL-Net%3A+A+Novel+Network+for+Transmission+Line+Scenes+Classification&rft.jtitle=Energies+%28Basel%29&rft.au=Li%2C+Hongchen&rft.au=Yang%2C+Zhong&rft.au=Han%2C+Jiaming&rft.au=Lai%2C+Shangxiang&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=15&rft.spage=3910&rft_id=info:doi/10.3390%2Fen13153910&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon