TL-Net: A Novel Network for Transmission Line Scenes Classification
With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection,...
Saved in:
Published in | Energies (Basel) Vol. 13; no. 15; p. 3910 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en13153910 |
Cover
Abstract | With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection, but most of them contain no critical components of transmission lines. Hence, it is a momentous task to adopt image classification algorithms to distinguish key images from all aerial images. In this work, we propose a novel classification method to remove redundant data and retain informative images. A novel transmission line scene dataset, namely TLS_dataset, is built to evaluate the classification performance of networks. Then, we propose a novel convolutional neural network (CNN), namely TL-Net, to classify transmission line scenes. In comparison to other typical deep learning networks, TL-Nets gain better classification accuracy and less memory consumption. The experimental results show that TL-Net101 gains 99.68% test accuracy on the TLS_dataset. |
---|---|
AbstractList | With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection, but most of them contain no critical components of transmission lines. Hence, it is a momentous task to adopt image classification algorithms to distinguish key images from all aerial images. In this work, we propose a novel classification method to remove redundant data and retain informative images. A novel transmission line scene dataset, namely TLS_dataset, is built to evaluate the classification performance of networks. Then, we propose a novel convolutional neural network (CNN), namely TL-Net, to classify transmission line scenes. In comparison to other typical deep learning networks, TL-Nets gain better classification accuracy and less memory consumption. The experimental results show that TL-Net101 gains 99.68% test accuracy on the TLS_dataset. |
Author | Li, Hongchen Fang, Qianhui Zhang, Qiuyan Han, Jiaming Lai, Shangxiang Zhang, Chi Hu, Guoxiong Yang, Zhong |
Author_xml | – sequence: 1 givenname: Hongchen surname: Li fullname: Li, Hongchen – sequence: 2 givenname: Zhong surname: Yang fullname: Yang, Zhong – sequence: 3 givenname: Jiaming surname: Han fullname: Han, Jiaming – sequence: 4 givenname: Shangxiang surname: Lai fullname: Lai, Shangxiang – sequence: 5 givenname: Qiuyan surname: Zhang fullname: Zhang, Qiuyan – sequence: 6 givenname: Chi surname: Zhang fullname: Zhang, Chi – sequence: 7 givenname: Qianhui surname: Fang fullname: Fang, Qianhui – sequence: 8 givenname: Guoxiong surname: Hu fullname: Hu, Guoxiong |
BookMark | eNptUMtOwzAQtBBIlNILXxCJG1LAzubhcKsqHpWqcqCcLWezQS5pXOwUxN_jtggQYi_7mp1ZzQk77GxHjJ0JfglQ8ivqBIgMSsEP2ECUZR4LXsDhr_qYjbxf8hAAAgAGbLKYxXPqr6NxNLdv1EahebfuJWqsixZOd35lvDe2i2amo-gRqSMfTVodho1B3YfVKTtqdOtp9JWH7On2ZjG5j2cPd9PJeBYj5KKP66wqJWahTgkqLJoEeaFlRjWWVZXlpJOcaqiR6xCi1pSmSaWzvMCGKlnBkE33vLXVS7V2ZqXdh7LaqN3AumelXW-wJYUpJDIBngWRtJZSNnkimxRRI6aF3nKd77nWzr5uyPdqaTeuC--rJAWeyBJABtTFHoXOeu-o-VYVXG09Vz-eBzD_A0bT7wzqnTbtfyefA0CE_Q |
CitedBy_id | crossref_primary_10_3390_s23167171 crossref_primary_10_1007_s10489_022_03932_3 crossref_primary_10_3390_electronics13101858 |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/TPAMI.2013.50 10.3390/en12071204 10.1109/ACCESS.2019.2902558 10.1145/3065386 10.14358/PERS.79.9.821 10.1109/TIP.2015.2475625 10.1016/j.ijepes.2017.07.019 10.1016/j.ijepes.2017.12.016 10.1109/JIOT.2018.2872545 10.1016/j.acags.2019.100002 10.3390/su12041525 10.3390/app9102009 10.3390/en11123496 10.1109/CVPR.2016.308 10.1016/j.isprsjprs.2017.11.003 10.1214/09-AOAS285 10.1109/5.726791 10.3390/en13030713 10.1016/j.epsr.2017.09.019 10.12720/jcm.9.9.687-692 10.1609/aaai.v31i1.11231 10.1109/CVPR.2018.00745 10.1109/CVPR.2016.90 10.1162/neco.2006.18.7.1527 10.1016/j.rse.2006.04.001 10.20944/preprints201902.0072.v1 10.1109/IJCNN.2016.7727606 10.1109/TII.2018.2794320 10.3390/en10030406 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en13153910 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_c43282305f2c4d888f628f4ccacc47ab 10_3390_en13153910 |
GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-d5b98c53614e3bc7f2c07a85edc9bb56ea26ed3dc0aaaa1dae442ba567cfeb8b3 |
IEDL.DBID | 8FG |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 00:44:17 EDT 2025 Mon Jun 30 11:12:51 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Jul 01 04:21:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-d5b98c53614e3bc7f2c07a85edc9bb56ea26ed3dc0aaaa1dae442ba567cfeb8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2430289338?pq-origsite=%requestingapplication% |
PQID | 2430289338 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c43282305f2c4d888f628f4ccacc47ab proquest_journals_2430289338 crossref_primary_10_3390_en13153910 crossref_citationtrail_10_3390_en13153910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Krizhevsky (ref_20) 2017; 60 Deng (ref_2) 2014; 9 Juntao (ref_28) 2018; 47 ref_11 ref_33 ref_32 ref_31 Chan (ref_7) 2015; 24 ref_30 Ehsan (ref_16) 2019; 1 Chipman (ref_13) 2010; 4 Jenssen (ref_1) 2018; 99 ref_15 Zhou (ref_4) 2018; 14 Meinshausen (ref_14) 2006; 7 Pan (ref_9) 2018; 145 ref_25 ref_24 LeCun (ref_19) 1998; 86 ref_23 ref_22 Kim (ref_29) 2013; 79 ref_21 Yamato (ref_8) 2018; 6 Hinton (ref_10) 2006; 18 Bengio (ref_18) 2013; 35 ref_3 Foody (ref_12) 2006; 103 Cerrai (ref_17) 2019; 7 ref_27 ref_26 Qiu (ref_5) 2018; 94 ref_6 |
References_xml | – ident: ref_22 doi: 10.1109/CVPR.2015.7298594 – volume: 35 start-page: 1798 year: 2013 ident: ref_18 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: ref_24 doi: 10.3390/en12071204 – volume: 7 start-page: 29639 year: 2019 ident: ref_17 article-title: Predicting storm outages through new representations of weather and vegetation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902558 – volume: 60 start-page: 84 year: 2017 ident: ref_20 article-title: Pdf ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 7 start-page: 983 year: 2006 ident: ref_14 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 79 start-page: 821 year: 2013 ident: ref_29 article-title: Point-based classification of power line corridor scene using random forests publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.79.9.821 – volume: 24 start-page: 5017 year: 2015 ident: ref_7 article-title: PCANet: A simple deep learning baseline for image classification? publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2475625 – volume: 94 start-page: 311 year: 2018 ident: ref_5 article-title: How to build an electric power transmission network considering demand side management and a risk constraint? publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.07.019 – volume: 99 start-page: 107 year: 2018 ident: ref_1 article-title: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.12.016 – volume: 6 start-page: 2669 year: 2018 ident: ref_8 article-title: Automatic GPU offloading technology for open IoT environment publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2872545 – ident: ref_21 – volume: 1 start-page: 100002 year: 2019 ident: ref_16 article-title: Advanced wind speed prediction using convective weather variables through machine learning application publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2019.100002 – ident: ref_15 doi: 10.3390/su12041525 – ident: ref_6 doi: 10.3390/app9102009 – ident: ref_27 doi: 10.3390/en11123496 – ident: ref_32 doi: 10.1109/CVPR.2016.308 – volume: 145 start-page: 108 year: 2018 ident: ref_9 article-title: MugNet: Deep learning for hyperspectral image classification using limited samples publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.003 – volume: 4 start-page: 266 year: 2010 ident: ref_13 article-title: BART: Bayesian additive regression trees publication-title: Ann. Appl. Stat. doi: 10.1214/09-AOAS285 – volume: 86 start-page: 2278 year: 1998 ident: ref_19 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_25 doi: 10.3390/en13030713 – ident: ref_3 doi: 10.1016/j.epsr.2017.09.019 – volume: 9 start-page: 687 year: 2014 ident: ref_2 article-title: Unmanned aerial vehicles for power line inspection: A cooperative way in platforms and communications publication-title: J. Commun. doi: 10.12720/jcm.9.9.687-692 – ident: ref_33 doi: 10.1609/aaai.v31i1.11231 – ident: ref_11 doi: 10.1109/CVPR.2018.00745 – volume: 47 start-page: 188 year: 2018 ident: ref_28 article-title: Multi-scale features and markov random field model for powerline scene classification publication-title: Acta Geod. Cartogr. Sin. – ident: ref_23 doi: 10.1109/CVPR.2016.90 – volume: 18 start-page: 1527 year: 2006 ident: ref_10 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 103 start-page: 179 year: 2006 ident: ref_12 article-title: The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.001 – ident: ref_26 doi: 10.20944/preprints201902.0072.v1 – ident: ref_30 doi: 10.1109/IJCNN.2016.7727606 – volume: 14 start-page: 2705 year: 2018 ident: ref_4 article-title: Energy-efficient industrial internet of UAVs for power line inspection in smart grid publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2794320 – ident: ref_31 doi: 10.3390/en10030406 |
SSID | ssj0000331333 |
Score | 2.255808 |
Snippet | With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3910 |
SubjectTerms | Accuracy Algorithms Classification Data collection Datasets Deep learning deep neural network Efficiency Electricity image classification Inspections Machine learning Methods Neural networks Semantics Sustainability transmission lines inspection unmanned aerial vehicle voting classification strategy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoEhw4RCtTdJHuI2JaULQC5u0WxUn6WnqEBR-P07ajUkgcaGnqrLkym5sf43zmZAbkSlnBHcMbG6ZBJkyQCzEjFFKZhWi7MifHX4u0ulcPi6SxdaoL98T1tIDt4YbGim43wxKKm6kRbxWpTyvJCo2RmYafPTFNLYFpkIMFgLBl2j5SAVqHLo6Fri6lT8qu5WBAlH_jzgcksvkgOx3VSEdtW9zSHZcfUT2trgCj8l49sQK19zRES1Wn25Ji7aBm2LVSUPGQY_5X18U4aWjL8YHMRpmXvpuoOCAEzKfPMzGU9ZNQGBGpHHDbAIqNwneSyfAZGiDKNN54qxRAEnqNE-dFdZEGq_YaiclB52kmakc5CBOSa9e1e6M0FhDbi0X4OldgCutcp6BrhBg2cgp6JPbtVVK09GD-ykVyxJhgrdg-W3BPrneyL62pBi_St17424kPJF1eIDuLTv3ln-5t08Ga9eU3ep6L7kUfoMU0fX5f-i4ILvco-jQ1jcgvebtw11iqdHAVfiqvgBnDtIb priority: 102 providerName: Directory of Open Access Journals |
Title | TL-Net: A Novel Network for Transmission Line Scenes Classification |
URI | https://www.proquest.com/docview/2430289338 https://doaj.org/article/c43282305f2c4d888f628f4ccacc47ab |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYLnBArGKtLMGFg9XEdhZzQVC1IAQRglbqLfIWLlXDUvh-Zty0VAKRQxQllpLMjMd-4_EbQs5EprwV3DPjcsekkSkzgIWYtUrJrAKUHeHe4YcivR3Iu2EybAJuH01a5cwnBkftaosx8jaXAhfFAFFdvr4xrBqFq6tNCY1lshpzsCTcKd67mcdYIiEAgokpK6mA97b9OBbQxxVumF0YhwJd_y9vHIaY3ibZaOaG9GqqzC2y5MfbZH2BMXCHdPr3rPCTC3pFi_rLj2gxTeOmMPekYdwBvWEAjALI9PTZoiujofIl5gQFNeySQa_b79yypg4CsyKNJ8wlRuU2gWvphbFZxW2U6TzxzipjktRrnnonnI00HLHTXkpudJJmtvImN2KPrIzrsd8nNNYmd44LgyQvhiutcp4ZXQHMcpFX5oCcz6RS2oYkHGtVjEoACyjB8keCB-R03vZ1So3xZ6trFO68BdJZhxv1-0vZ9I7SSsFxxS-BX5MOQHmV8rySYF3WykzDZx3PVFM2feyj_LGIw_8fH5E1jig5pO0dk5XJ-6c_ganExLSCvbTI6nW3eHxqBUAO55th_A3E5Myc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiPJQX1BLwIGD1azHSWwkhErbZUu3ubCVegt-hUu128cWxJ_iNzLjJNtKoN6aU5RYUTz-PPZnj79h7C2UJnqQUbigg1BOFcIhFxLeG6PKBll2RmeHj6tidKK-nuanS-xPfxaGwip7n5gcdZh5WiPfkQpoUwwZ1afzC0FZo2h3tU-h0cLiKP7-hZTt6uPhPrbvOymHB5O9keiyCggPxWAuQu6M9jneqwjOl430WWl1HoM3zuVFtLKIAYLPLF6DYKNS0tm8KH0TnXaA333AVhQAkFa_Hn5ZrOlkAEj5oFVBBaznTpwOAH2KoQO6t8a9lB7gH--fhrThU_akm4vy3RY8q2wpTp-xx7cUCp-zvclYVHH-ge_yavYznvGqDRvnONflaZxDnNCCG0dSG_k3T66Tp0ybFIOUmv0FO7kXC71ky9PZNK4xPrBOhyDBkaiMk8YaLUtnG6R1IYvGrbP3vVVq34mSU26MsxrJCVmwvrHgOnuzKHveSnH8t9RnMu6iBMlnpwezyx911xtrr0DSDmOOVVNBa90UUjcK0ey9Ki3-1lbfNHXXp6_qGwRu3P16mz0cTY7H9fiwOtpkjyQx9BQyuMWW55fX8RVOY-budcIOZ9_vG6x_Ad0SCWk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiK0gKWgAMHa7O2k9hIFepr1dISVdBKvaV-hUu128cC4i_yq5jxOttKIG7NKUqsKB5_nvFnzwPgraxN9FJE7oIOXDlVcYdciHtvjKo7ZNkFxQ5_bqrdY_XppDxZgt99LAy5VfY6MSnqMPW0Rz4UStKhGDKqYZfdIg63xx_PLzhVkKKT1r6chs1lFsJ6SjeWgzz246-fSOeu1ve2cezfCTHeOdra5bniAPeyGs14KJ3RvsR7FaXzdSd8UVtdxuCNc2UVrahikMEXFq9RsFEp4WxZ1b6LTjuJ370DyzXFiw5geXOnOfyy2PEppERCKOc5UiVKYRgnI4kax1D47g2rmIoH_GUbksEbP4QHeaXKNubQegRLcfIY7t_IX_gEto4OeBNnH9gGa6Y_4hlr5k7lDFfCLFlBRBFtxzGkvJF99aRYWarDSR5KCRRP4fhWZPQMBpPpJD4HNrJOhyCko5QzThhrtKid7ZD0hSIatwLve6m0Pqcsp8oZZy1SF5Jgey3BFXizaHs-T9Txz1abJNxFC0qunR5ML7-1ea62XklB548ldk0FrXVXCd0pxLr3qrb4W2v90LR5xl-11_h88f_Xr-EuArc92Gv2V-GeIPqe_AnXYDC7_B5f4hpn5l5l8DA4vW28_gFmkxRD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TL-Net%3A+A+Novel+Network+for+Transmission+Line+Scenes+Classification&rft.jtitle=Energies+%28Basel%29&rft.au=Li%2C+Hongchen&rft.au=Yang%2C+Zhong&rft.au=Han%2C+Jiaming&rft.au=Lai%2C+Shangxiang&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=15&rft.spage=3910&rft_id=info:doi/10.3390%2Fen13153910&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |