Understanding the Flows of Signals and Gradients: A Tutorial on Algorithms Needed to Implement a Deep Neural Network from Scratch

Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with bu...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 21; p. 9972
Main Author Klęsk, Przemysław
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14219972

Cover

Abstract Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with building blocks offered by frameworks and rely on them, having a superficial understanding of the internal mechanics. This paper constitutes a concise tutorial that elucidates the flows of signals and gradients in deep neural networks, enabling readers to successfully implement a deep network from scratch. By “from scratch”, we mean with access to a programming language and numerical libraries but without any components that hide DL computations underneath. To achieve this goal, the following five topics need to be well understood: (1) automatic differentiation, (2) the initialization of weights, (3) learning algorithms, (4) regularization, and (5) the organization of computations. We cover all of these topics in the paper. From a tutorial perspective, the key contributions include the following: (a) proposition of R and S operators for tensors—rashape and stack, respectively—that facilitate algebraic notation of computations involved in convolutional, pooling, and flattening layers; (b) a Python project named hmdl (“home-made deep learning”); and (c) consistent notation across all mathematical contexts involved. The hmdl project serves as a practical example of implementation and a reference. It was built using NumPy and Numba modules with JIT and CUDA amenities applied. In the experimental section, we compare hmdl implementation to Keras (backed with TensorFlow). Finally, we point out the consistency of the two in terms of convergence and accuracy, and we observe the superiority of the latter in terms of efficiency.
AbstractList Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with building blocks offered by frameworks and rely on them, having a superficial understanding of the internal mechanics. This paper constitutes a concise tutorial that elucidates the flows of signals and gradients in deep neural networks, enabling readers to successfully implement a deep network from scratch. By “from scratch”, we mean with access to a programming language and numerical libraries but without any components that hide DL computations underneath. To achieve this goal, the following five topics need to be well understood: (1) automatic differentiation, (2) the initialization of weights, (3) learning algorithms, (4) regularization, and (5) the organization of computations. We cover all of these topics in the paper. From a tutorial perspective, the key contributions include the following: (a) proposition of R and S operators for tensors—rashape and stack, respectively—that facilitate algebraic notation of computations involved in convolutional, pooling, and flattening layers; (b) a Python project named hmdl (“home-made deep learning”); and (c) consistent notation across all mathematical contexts involved. The hmdl project serves as a practical example of implementation and a reference. It was built using NumPy and Numba modules with JIT and CUDA amenities applied. In the experimental section, we compare hmdl implementation to Keras (backed with TensorFlow). Finally, we point out the consistency of the two in terms of convergence and accuracy, and we observe the superiority of the latter in terms of efficiency.
Audience Academic
Author Klęsk, Przemysław
Author_xml – sequence: 1
  givenname: Przemysław
  orcidid: 0000-0002-5579-187X
  surname: Klęsk
  fullname: Klęsk, Przemysław
BookMark eNp9kcFu3CAQhq0qlZqmOfUFkHpsNwGDbdzbKmnSlaL0kORsjWHwsrXBBVarHPvmZesqyqlwYDTzzc8P8744cd5hUXxk9ILzll7CPDNRsrZtyjfFaUmbesUFa05exe-K8xh3NK-WccnoafH7yWkMMYHT1g0kbZHcjP4QiTfkwQ4OxkhyjdwG0BZdil_Jmjzukw8WRuIdWY9DjtN2iuQeUaMmyZPNNI84ZZwAuUacc2kfMn-P6eDDT2KCn8iDCpDU9kPx1uRb8PzfeVY83Xx7vPq-uvtxu7la360Ur1laKS1rbiinPXAmOEpB8wt4a5qm6ZlAZForww1TVDApuYY249CXoEECrflZsVl0tYddNwc7QXjuPNjub8KHoYOQrBqxM0ZXFfRNXVe9UBqgFshFU5u6YbJkMmt9WbT2bobnA4zjiyCj3XEa3atpZPzTgs_B_9pjTN3O78PxbzvOyqptW1ryTF0s1ADZg3XGpwAqb42TVXnWxub8WrKKC0Hl0cXnpUEFH2NA818TfwCYmakZ
Cites_doi 10.1007/978-3-031-20053-3_29
10.1016/j.csda.2022.107556
10.1111/exsy.13424
10.1111/j.1467-9868.2005.00503.x
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1038/323533a0
10.1007/s11222-021-10010-0
10.1109/ICCV.2015.123
10.1038/s41598-021-93977-0
10.1109/5.18626
10.1007/BF00344251
10.1111/j.2517-6161.1996.tb02080.x
10.1007/BF02551274
10.3390/jimaging8030064
10.1162/neco.1989.1.4.541
10.1016/0041-5553(64)90137-5
10.1016/j.ins.2022.06.036
10.1109/TSSC.1969.300225
10.1214/aos/1016218223
10.1109/TEVC.2023.3314766
10.1109/CVPR.2009.5206848
10.1162/neco.1997.9.8.1735
10.1162/neco.2006.18.7.1527
10.1016/j.neucom.2021.08.064
10.1145/1553374.1553486
10.1007/978-1-4757-3115-6
10.1016/S0167-6393(99)00077-1
10.1109/CVPR.2012.6248110
10.1145/3448250
10.1007/BF02478259
10.7551/mitpress/5236.001.0001
10.1162/neco.1992.4.4.473
10.1016/j.csda.2013.03.013
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app14219972
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ffd55ab7665b4cdaa64e3476f6718218
10.3390/app14219972
A815344088
10_3390_app14219972
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c361t-cd863f030ba3143e84038139f777b14ee1ddcf3f1c041883da93f0ab2ada8a063
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:29 EDT 2025
Sun Sep 07 11:24:07 EDT 2025
Mon Jun 30 14:43:49 EDT 2025
Mon Oct 20 16:54:51 EDT 2025
Thu Oct 16 04:34:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-cd863f030ba3143e84038139f777b14ee1ddcf3f1c041883da93f0ab2ada8a063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5579-187X
OpenAccessLink https://www.proquest.com/docview/3125999023?pq-origsite=%requestingapplication%&accountid=15518
PQID 3125999023
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ffd55ab7665b4cdaa64e3476f6718218
unpaywall_primary_10_3390_app14219972
proquest_journals_3125999023
gale_infotracacademiconefile_A815344088
crossref_primary_10_3390_app14219972
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_57
ref_12
ref_55
ref_10
ref_54
Bengio (ref_36) 2021; 64
ref_52
ref_18
ref_16
ref_15
ref_59
Polyak (ref_51) 1964; 4
Rumelhart (ref_7) 1986; 323
Hinton (ref_13) 2006; 18
ref_61
ref_60
Cybenko (ref_47) 1989; 2
Glorot (ref_17) 2010; 9
Duchi (ref_19) 2011; 12
ref_25
ref_69
ref_24
ref_68
ref_23
ref_67
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
Xue (ref_35) 2022; 608
Nesterov (ref_53) 1983; Volume 269
ref_71
McCulloch (ref_3) 1943; 5
ref_70
Ma (ref_49) 2024; 28
ref_34
ref_33
ref_32
ref_31
ref_30
ref_39
ref_37
Nowlan (ref_58) 1992; 4
Fukushima (ref_38) 1969; 5
Centofani (ref_63) 2022; 176
Fukushima (ref_6) 1980; 36
Heck (ref_11) 2000; 31
Tibshirani (ref_64) 1996; 58
ref_46
ref_45
ref_44
Rabiner (ref_1) 1989; 77
ref_43
Srivastava (ref_66) 2014; 15
ref_42
Friedman (ref_2) 2000; 28
Hochreiter (ref_9) 1997; 9
ref_41
ref_40
Hahn (ref_65) 2021; 31
Zou (ref_62) 2005; 67
ref_48
ref_5
ref_4
Jaroszewicz (ref_56) 2013; 64
LeCun (ref_8) 1989; 1
References_xml – ident: ref_45
  doi: 10.1007/978-3-031-20053-3_29
– ident: ref_5
– ident: ref_32
– ident: ref_55
– ident: ref_26
– ident: ref_68
– ident: ref_39
– volume: 176
  start-page: 107556
  year: 2022
  ident: ref_63
  article-title: Smooth LASSO estimator for the Function-on-Function linear regression model
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2022.107556
– ident: ref_46
  doi: 10.1111/exsy.13424
– ident: ref_61
– ident: ref_23
– ident: ref_71
– volume: 67
  start-page: 301
  year: 2005
  ident: ref_62
  article-title: Regularization and Variable Selection via the Elastic Net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref_30
  doi: 10.1109/CVPR.2016.90
– ident: ref_27
  doi: 10.1109/CVPR.2015.7298594
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_7
  article-title: Learning Representations by Back-propagating Errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: ref_4
– ident: ref_31
– volume: 31
  start-page: 35
  year: 2021
  ident: ref_65
  article-title: A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: Polygenic risk scores for chronic obstructive pulmonary disease (COPD)
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-021-10010-0
– ident: ref_29
  doi: 10.1109/ICCV.2015.123
– ident: ref_52
– ident: ref_42
  doi: 10.1038/s41598-021-93977-0
– ident: ref_48
– ident: ref_69
– volume: 77
  start-page: 257
  year: 1989
  ident: ref_1
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume: 36
  start-page: 193
  year: 1980
  ident: ref_6
  article-title: Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_64
  article-title: Regression Shrinkage and Selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_41
– volume: 2
  start-page: 303
  year: 1989
  ident: ref_47
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control. Signals Syst.
  doi: 10.1007/BF02551274
– ident: ref_57
  doi: 10.3390/jimaging8030064
– volume: 1
  start-page: 541
  year: 1989
  ident: ref_8
  article-title: Backpropagation Applied to Handwritten Zip Code Recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: ref_20
– ident: ref_59
– volume: 4
  start-page: 1
  year: 1964
  ident: ref_51
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– ident: ref_28
– volume: 608
  start-page: 453
  year: 2022
  ident: ref_35
  article-title: An ensemble of differential evolution and Adam for training feed-forward neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.06.036
– ident: ref_24
– volume: 5
  start-page: 322
  year: 1969
  ident: ref_38
  article-title: Visual feature extraction by a multilayered network of analog threshold elements
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1969.300225
– volume: 28
  start-page: 337
  year: 2000
  ident: ref_2
  article-title: Additive logistic regression: A statistical view of boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– ident: ref_34
– volume: 28
  start-page: 570
  year: 2024
  ident: ref_49
  article-title: Pareto-Wise Ranking Classifier for Multiobjective Evolutionary Neural Architecture Search
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3314766
– ident: ref_14
  doi: 10.1109/CVPR.2009.5206848
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_9
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref_19
  article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_40
– ident: ref_67
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_13
  article-title: A Fast Learning Algorithm for Deep Belief Nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref_18
– ident: ref_44
– ident: ref_43
  doi: 10.1016/j.neucom.2021.08.064
– ident: ref_16
  doi: 10.1145/1553374.1553486
– ident: ref_10
  doi: 10.1007/978-1-4757-3115-6
– ident: ref_25
– ident: ref_50
– ident: ref_33
– ident: ref_54
– volume: 31
  start-page: 181
  year: 2000
  ident: ref_11
  article-title: Robustness to Telephone Handset Distortion in Speaker Recognition by Discriminative Feature Design
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(99)00077-1
– ident: ref_12
– volume: 9
  start-page: 249
  year: 2010
  ident: ref_17
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J. Mach. Learn. Res. Proc. Track
– ident: ref_21
  doi: 10.1109/CVPR.2012.6248110
– ident: ref_15
– volume: 64
  start-page: 58
  year: 2021
  ident: ref_36
  article-title: Deep Learning for AI
  publication-title: Commun. ACM
  doi: 10.1145/3448250
– volume: 5
  start-page: 115
  year: 1943
  ident: ref_3
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: ref_70
– ident: ref_60
– ident: ref_22
– ident: ref_37
  doi: 10.7551/mitpress/5236.001.0001
– volume: 4
  start-page: 473
  year: 1992
  ident: ref_58
  article-title: Simplifying Neural Networks by Soft Weight-Sharing
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.4.473
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_66
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: Volume 269
  start-page: 543
  year: 1983
  ident: ref_53
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)
  publication-title: Proceedings of the Doklady ANSSSR (Translated as Soviet. Math. Docl.)
– volume: 64
  start-page: 281
  year: 2013
  ident: ref_56
  article-title: Logistic regression with weight grouping priors
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.03.013
SSID ssj0000913810
Score 2.302668
Snippet Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9972
SubjectTerms Algorithms
automatic differentiation
Back propagation
Computational linguistics
Computer services industry
Data mining
Deep learning
deep neural networks
Language processing
Machine learning
Natural language interfaces
Neural networks
optimization
Python
regularization
Signal processing
Tutoring
weights intialization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9RAEF6hNJACkQTEQUBTJAIKi1vvem3THSSXKFKuSU5Kt9pngnTYp7OjiJJ_zoztREZI0KQ7-aYY7by-sWe-ZezAR6rKmUqsjEUiXcoTMy1jUqa5d4iAXdrd1nC-UKdLeXaVXY2u-qKZsJ4euD-4zzH6LDM2Vyqz0nljlAxC5ioqzKpYnyj7Toty1Ex1ObjkRF3VL-QJ7OvpezCXKY1VpH-UoI6p_-98vM2e3lZr8_POrFajgjN_wZ4PSBFmvYY77Emodtn2iD9wl-0MkdnAx4E--tMe-7Uc76sAAjyYr-q7BuoIF9-viS8Z8D842XTTXm3zBWZwSVQG6IpQVzBbXePv9uZHAwusbcFDW0PHIkxvEsHAUQhrIFYPlF_0Y-RAaypw4dCf3M1LtpwfX347TYaLFhInFG8T5wslIoa7NQLxU8CmD09PlDHPc8tlCNx7F0Xkbip5UQhvShQ3NjXeFAZBziu2VdVVeM2A-zxkpZXSEpUg9tfT1ClXmJD5IAzPJuzg_uz1uufT0NiHkIn0yEQT9pXs8iBCJNjdA3QNPbiG_p9rTNgHsqqmUG03xplh4wA1JdIrPSsw3dON2yi5f294PcRwowViP4TPCGom7PDBGf6l9ZvH0Pote5YicOr3HffZVru5De8Q-LT2fefjvwFe6f-g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9UH7oLYqPa0yYEV9SLlkN5vEt2g9i-AhtAf1KexnK57JcclR9M3_3NkkV2IF9S0kExiy8_Gb7M5vAA6N81k5FoHiLg24jsJATjIXZFFiNCFgHbXTGj7OxMmcfziPz7fg2aYXZrB_z6gc99u4IY_8aQiKs9siJsA9gu357FP-2Y-Noyo8oDicdJ13N9_4Lde0lPx_Bt4duLUul_L7lVwsBplleheONzp1B0q-Hq0bdaR_3KBr_IfS9-BOjywx70xhF7ZsuQc7A77BPdjtPbnGlz3d9Kv78HM-7G9BAoQ4XVRXNVYOT79ceH5lpGf4ftWeDmvq15jjmac-INPFqsR8cUHXzeW3GmeUC63BpsKWddj_eUSJx9Yu0bOAkPysO3aOvq0FTzXZn758APPpu7O3J0E_mCHQTIRNoE0qmKPwoCQjvGWpSKTEzzKXJIkKubWhMdoxF-oJD9OUGZmRuFSRNDKVBIoewqisSrsPGJrExpniXHnqQarHJ5EWOpU2NpbJMB7D4WYJi2XHv1FQ3eI_czH4zGN445f3WsSTZrc3aFmK3gcL50wcS5UIESuujZSCW8YT4QQlaII6Y3jhjaPwrt2spJZ9hwJp6kmyijyl9OAndJPkwcZ-it7n64IRViS4TSBoDM-vbepvWj_6T7nHcDsiLNW1QB7AqFmt7RPCQo162vvCL1q5BFA
  priority: 102
  providerName: Unpaywall
Title Understanding the Flows of Signals and Gradients: A Tutorial on Algorithms Needed to Implement a Deep Neural Network from Scratch
URI https://www.proquest.com/docview/3125999023
https://doi.org/10.3390/app14219972
https://doaj.org/article/ffd55ab7665b4cdaa64e3476f6718218
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_a64P2QWxVPFuPeaioD8FLsvkSRFLttQiGYntQn8JmP67CmVzvUoqP_ufO5OM8EfqWjyGEndmZ387u_AbgSFuOykHoFMLGjlCe68hxYp3Ei7QiBKy8plvD1yw8m4ovV8HVFmR9LQwfq-x9YuOodaU4R_7Op0hMYIZCzMfFjcNdo3h3tW-hIbvWCvpDQzG2DTseM2MNYOf4JDv_ts66MAtm7I7bQj2f1vu8T-wKj49beP-EpobB_38_vQsPbsuF_HUn5_ONQDR5DI86BIlpq_I92DLlPuxu8Aruw143Y1f4pqOVfvsEfk8361iQgB9O5tXdCiuLFz9mzKOM9A5Pl80psHr1HlO8ZIoDMlGsSkznM7qur3-uMKOYZzTWFTbswpxhRImfjVkgs32QfNYeL0cuX8ELRXamrp_CdHJy-enM6RowOMoP3dpROg59S26gkD7hKkOLQRo9P7FRFBWuMMbVWlnfumos3Dj2tUxIXBae1DKWBH6ewaCsSvMc0NWRCZJCiIIpBmndPfZUqGJpAm186QZDOOrHPl-0PBs5rU9YRfmGioZwzHpZizA5dvOgWs7ybq7l1uogkEUUhkEhlJYyFMYXUWhDCsQEaYbwmrWa8xSul1LJrhKB_pTJsPI0pjDAnbhJ8rBXfN7N7VX-1xKH8GptDPf99Yv7P3MADz2CSm2F4yEM6uWteUlQpy5GsB1PTkedFY-ahAHdTbPz9PsfmaMBDQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSACBSYQyvgYGF71y-kCqW0IaWthWgi9WbW-0iRgh1iV1GP_DF-G7OOE4KQeuvNslerlWd2vpndmW8A9pSxqByETs5N7HDpe45wE-MkfqQkecDSb7o1nKdhf8g_XwaXa_B7UQtj0yoXNrEx1KqU9oz8HSMkJmeGIObD5Kdju0bZ29VFCw3RtlZQBw3FWFvYcapvZhTCVQcnRyTvfd_vHQ8-9p22y4AjWejVjlRxyAzpei4YOQ-aIh5CMZaYKIpyj2vtKSUNM550uRfHTImEhovcF0rEghCe5r0HG5zxhIK_jcPj9MvX5SmPZd2MPXdeGMhY4tp7aY_7Nr3D_wcKm44B_-PCFmxeFxNxMxPj8Qrw9R7Cg9Zjxe5cxbZhTRc7sLXCY7gD262FqPBNS2P99hH8Gq7WzSA5mtgbl7MKS4MX30eWtxnpG36aNllndfUeuziwlAq0JbAssDse0XN99aPClDBWK6xLbNiM7YkmCjzSeoKWXYTGp_N0drTlMnghSa_l1WMY3okonsB6URb6KaCnIh0kOee5pTSkON_1ZShjoQOlmfCCDuwt_n02mfN6ZBQPWRFlKyLqwKGVy3KIJeNuXpTTUdbu7cwYFQQij8IwyLlUQoRcMx6FJiTgJxeqA6-tVDNrMuqpkKKtfKCVWvKtrBsT7NjO3zRydyH4rLUlVfZX8zuwv1SG21b97PZpXsFmf3B-lp2dpKfP4b5Pbtq8unIX1uvptX5Bbladv2x1GeHbXW-fP_ahOmo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpABArMoRVwsIi96xcSQoGQthQipDZSb2a9jxQpxCF2FfXI3-LXMWM7IQipt94se7RaeWbnm92d-QZgzzhG5TDycukST-rA91Q3dV4axEZTBKyDulvDl2F0OJKfzsKzDfi9rIXhtMqlT6wdtSk0n5G_FoTEFMwwLY9r0yK-9gfvZj897iDFN63LdhqNiRzbywVt38q3R33S9X4QDD6efjj02g4DnhaRX3naJJFwZOe5EhQ4WNrtEIKJ1MVxnPvSWt8Y7YTzdVf6SSKMSklc5YEyKlGE7jTuDbgZM4s7V6kPDlbnO8y3mfjdpiRQiLTLN9K-DDixI_gHBOteAf8jwhbcvpjO1OVCTSZrkDe4B3fbWBV7jXFtw4ad7sDWGoPhDmy3vqHEly2B9av78Gu0XjGDFGLiYFIsSiwcnnwfM2Mz0jc8mNf5ZlX5Bnt4ymQKtBiwmGJvMqbn6vxHiUNCV2uwKrDmMeazTFTYt3aGzCtC8sMmkR25UAZPNFm0Pn8Ao2tRxEPYnBZT-wjQN7EN01zKnMkMaYffDXSkE2VDY4Xyww7sLf99NmsYPTLaCbGKsjUVdeA962UlwjTc9YtiPs7aVZ05Z8JQ5XEUhbnURqlIWiHjyEUE-RQ8deAFazVjZ1HNlVZtzQPNlGm3sl5CgMM9v0lyd6n4rPUiZfbX5juwvzKGq2b9-OphnsMtWjTZ56Ph8RO4E1B81pRV7sJmNb-wTym-qvJntSEjfLvulfMHYGs4BA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9UH7oLYqPa0yYEV9SLlkN5vEt2g9i-AhtAf1KexnK57JcclR9M3_3NkkV2IF9S0kExiy8_Gb7M5vAA6N81k5FoHiLg24jsJATjIXZFFiNCFgHbXTGj7OxMmcfziPz7fg2aYXZrB_z6gc99u4IY_8aQiKs9siJsA9gu357FP-2Y-Noyo8oDicdJ13N9_4Lde0lPx_Bt4duLUul_L7lVwsBplleheONzp1B0q-Hq0bdaR_3KBr_IfS9-BOjywx70xhF7ZsuQc7A77BPdjtPbnGlz3d9Kv78HM-7G9BAoQ4XVRXNVYOT79ceH5lpGf4ftWeDmvq15jjmac-INPFqsR8cUHXzeW3GmeUC63BpsKWddj_eUSJx9Yu0bOAkPysO3aOvq0FTzXZn758APPpu7O3J0E_mCHQTIRNoE0qmKPwoCQjvGWpSKTEzzKXJIkKubWhMdoxF-oJD9OUGZmRuFSRNDKVBIoewqisSrsPGJrExpniXHnqQarHJ5EWOpU2NpbJMB7D4WYJi2XHv1FQ3eI_czH4zGN445f3WsSTZrc3aFmK3gcL50wcS5UIESuujZSCW8YT4QQlaII6Y3jhjaPwrt2spJZ9hwJp6kmyijyl9OAndJPkwcZ-it7n64IRViS4TSBoDM-vbepvWj_6T7nHcDsiLNW1QB7AqFmt7RPCQo162vvCL1q5BFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Flows+of+Signals+and+Gradients%3A+A+Tutorial+on+Algorithms+Needed+to+Implement+a+Deep+Neural+Network+from+Scratch&rft.jtitle=Applied+sciences&rft.au=Kl%C4%99sk%2C+Przemys%C5%82aw&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=21&rft.spage=9972&rft_id=info:doi/10.3390%2Fapp14219972&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon