Understanding the Flows of Signals and Gradients: A Tutorial on Algorithms Needed to Implement a Deep Neural Network from Scratch
Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with bu...
Saved in:
| Published in | Applied sciences Vol. 14; no. 21; p. 9972 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app14219972 |
Cover
| Abstract | Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with building blocks offered by frameworks and rely on them, having a superficial understanding of the internal mechanics. This paper constitutes a concise tutorial that elucidates the flows of signals and gradients in deep neural networks, enabling readers to successfully implement a deep network from scratch. By “from scratch”, we mean with access to a programming language and numerical libraries but without any components that hide DL computations underneath. To achieve this goal, the following five topics need to be well understood: (1) automatic differentiation, (2) the initialization of weights, (3) learning algorithms, (4) regularization, and (5) the organization of computations. We cover all of these topics in the paper. From a tutorial perspective, the key contributions include the following: (a) proposition of R and S operators for tensors—rashape and stack, respectively—that facilitate algebraic notation of computations involved in convolutional, pooling, and flattening layers; (b) a Python project named hmdl (“home-made deep learning”); and (c) consistent notation across all mathematical contexts involved. The hmdl project serves as a practical example of implementation and a reference. It was built using NumPy and Numba modules with JIT and CUDA amenities applied. In the experimental section, we compare hmdl implementation to Keras (backed with TensorFlow). Finally, we point out the consistency of the two in terms of convergence and accuracy, and we observe the superiority of the latter in terms of efficiency. |
|---|---|
| AbstractList | Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the good they achieve, the danger of such frameworks is that they unintentionally spur a black-box attitude. Some practitioners play around with building blocks offered by frameworks and rely on them, having a superficial understanding of the internal mechanics. This paper constitutes a concise tutorial that elucidates the flows of signals and gradients in deep neural networks, enabling readers to successfully implement a deep network from scratch. By “from scratch”, we mean with access to a programming language and numerical libraries but without any components that hide DL computations underneath. To achieve this goal, the following five topics need to be well understood: (1) automatic differentiation, (2) the initialization of weights, (3) learning algorithms, (4) regularization, and (5) the organization of computations. We cover all of these topics in the paper. From a tutorial perspective, the key contributions include the following: (a) proposition of R and S operators for tensors—rashape and stack, respectively—that facilitate algebraic notation of computations involved in convolutional, pooling, and flattening layers; (b) a Python project named hmdl (“home-made deep learning”); and (c) consistent notation across all mathematical contexts involved. The hmdl project serves as a practical example of implementation and a reference. It was built using NumPy and Numba modules with JIT and CUDA amenities applied. In the experimental section, we compare hmdl implementation to Keras (backed with TensorFlow). Finally, we point out the consistency of the two in terms of convergence and accuracy, and we observe the superiority of the latter in terms of efficiency. |
| Audience | Academic |
| Author | Klęsk, Przemysław |
| Author_xml | – sequence: 1 givenname: Przemysław orcidid: 0000-0002-5579-187X surname: Klęsk fullname: Klęsk, Przemysław |
| BookMark | eNp9kcFu3CAQhq0qlZqmOfUFkHpsNwGDbdzbKmnSlaL0kORsjWHwsrXBBVarHPvmZesqyqlwYDTzzc8P8744cd5hUXxk9ILzll7CPDNRsrZtyjfFaUmbesUFa05exe-K8xh3NK-WccnoafH7yWkMMYHT1g0kbZHcjP4QiTfkwQ4OxkhyjdwG0BZdil_Jmjzukw8WRuIdWY9DjtN2iuQeUaMmyZPNNI84ZZwAuUacc2kfMn-P6eDDT2KCn8iDCpDU9kPx1uRb8PzfeVY83Xx7vPq-uvtxu7la360Ur1laKS1rbiinPXAmOEpB8wt4a5qm6ZlAZForww1TVDApuYY249CXoEECrflZsVl0tYddNwc7QXjuPNjub8KHoYOQrBqxM0ZXFfRNXVe9UBqgFshFU5u6YbJkMmt9WbT2bobnA4zjiyCj3XEa3atpZPzTgs_B_9pjTN3O78PxbzvOyqptW1ryTF0s1ADZg3XGpwAqb42TVXnWxub8WrKKC0Hl0cXnpUEFH2NA818TfwCYmakZ |
| Cites_doi | 10.1007/978-3-031-20053-3_29 10.1016/j.csda.2022.107556 10.1111/exsy.13424 10.1111/j.1467-9868.2005.00503.x 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1038/323533a0 10.1007/s11222-021-10010-0 10.1109/ICCV.2015.123 10.1038/s41598-021-93977-0 10.1109/5.18626 10.1007/BF00344251 10.1111/j.2517-6161.1996.tb02080.x 10.1007/BF02551274 10.3390/jimaging8030064 10.1162/neco.1989.1.4.541 10.1016/0041-5553(64)90137-5 10.1016/j.ins.2022.06.036 10.1109/TSSC.1969.300225 10.1214/aos/1016218223 10.1109/TEVC.2023.3314766 10.1109/CVPR.2009.5206848 10.1162/neco.1997.9.8.1735 10.1162/neco.2006.18.7.1527 10.1016/j.neucom.2021.08.064 10.1145/1553374.1553486 10.1007/978-1-4757-3115-6 10.1016/S0167-6393(99)00077-1 10.1109/CVPR.2012.6248110 10.1145/3448250 10.1007/BF02478259 10.7551/mitpress/5236.001.0001 10.1162/neco.1992.4.4.473 10.1016/j.csda.2013.03.013 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app14219972 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_ffd55ab7665b4cdaa64e3476f6718218 10.3390/app14219972 A815344088 10_3390_app14219972 |
| GeographicLocations | Italy |
| GeographicLocations_xml | – name: Italy |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-cd863f030ba3143e84038139f777b14ee1ddcf3f1c041883da93f0ab2ada8a063 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:29 EDT 2025 Sun Sep 07 11:24:07 EDT 2025 Mon Jun 30 14:43:49 EDT 2025 Mon Oct 20 16:54:51 EDT 2025 Thu Oct 16 04:34:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-cd863f030ba3143e84038139f777b14ee1ddcf3f1c041883da93f0ab2ada8a063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5579-187X |
| OpenAccessLink | https://www.proquest.com/docview/3125999023?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3125999023 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffd55ab7665b4cdaa64e3476f6718218 unpaywall_primary_10_3390_app14219972 proquest_journals_3125999023 gale_infotracacademiconefile_A815344088 crossref_primary_10_3390_app14219972 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 ref_14 ref_57 ref_12 ref_55 ref_10 ref_54 Bengio (ref_36) 2021; 64 ref_52 ref_18 ref_16 ref_15 ref_59 Polyak (ref_51) 1964; 4 Rumelhart (ref_7) 1986; 323 Hinton (ref_13) 2006; 18 ref_61 ref_60 Cybenko (ref_47) 1989; 2 Glorot (ref_17) 2010; 9 Duchi (ref_19) 2011; 12 ref_25 ref_69 ref_24 ref_68 ref_23 ref_67 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 Xue (ref_35) 2022; 608 Nesterov (ref_53) 1983; Volume 269 ref_71 McCulloch (ref_3) 1943; 5 ref_70 Ma (ref_49) 2024; 28 ref_34 ref_33 ref_32 ref_31 ref_30 ref_39 ref_37 Nowlan (ref_58) 1992; 4 Fukushima (ref_38) 1969; 5 Centofani (ref_63) 2022; 176 Fukushima (ref_6) 1980; 36 Heck (ref_11) 2000; 31 Tibshirani (ref_64) 1996; 58 ref_46 ref_45 ref_44 Rabiner (ref_1) 1989; 77 ref_43 Srivastava (ref_66) 2014; 15 ref_42 Friedman (ref_2) 2000; 28 Hochreiter (ref_9) 1997; 9 ref_41 ref_40 Hahn (ref_65) 2021; 31 Zou (ref_62) 2005; 67 ref_48 ref_5 ref_4 Jaroszewicz (ref_56) 2013; 64 LeCun (ref_8) 1989; 1 |
| References_xml | – ident: ref_45 doi: 10.1007/978-3-031-20053-3_29 – ident: ref_5 – ident: ref_32 – ident: ref_55 – ident: ref_26 – ident: ref_68 – ident: ref_39 – volume: 176 start-page: 107556 year: 2022 ident: ref_63 article-title: Smooth LASSO estimator for the Function-on-Function linear regression model publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2022.107556 – ident: ref_46 doi: 10.1111/exsy.13424 – ident: ref_61 – ident: ref_23 – ident: ref_71 – volume: 67 start-page: 301 year: 2005 ident: ref_62 article-title: Regularization and Variable Selection via the Elastic Net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref_30 doi: 10.1109/CVPR.2016.90 – ident: ref_27 doi: 10.1109/CVPR.2015.7298594 – volume: 323 start-page: 533 year: 1986 ident: ref_7 article-title: Learning Representations by Back-propagating Errors publication-title: Nature doi: 10.1038/323533a0 – ident: ref_4 – ident: ref_31 – volume: 31 start-page: 35 year: 2021 ident: ref_65 article-title: A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: Polygenic risk scores for chronic obstructive pulmonary disease (COPD) publication-title: Stat. Comput. doi: 10.1007/s11222-021-10010-0 – ident: ref_29 doi: 10.1109/ICCV.2015.123 – ident: ref_52 – ident: ref_42 doi: 10.1038/s41598-021-93977-0 – ident: ref_48 – ident: ref_69 – volume: 77 start-page: 257 year: 1989 ident: ref_1 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – volume: 36 start-page: 193 year: 1980 ident: ref_6 article-title: Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 58 start-page: 267 year: 1996 ident: ref_64 article-title: Regression Shrinkage and Selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref_41 – volume: 2 start-page: 303 year: 1989 ident: ref_47 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control. Signals Syst. doi: 10.1007/BF02551274 – ident: ref_57 doi: 10.3390/jimaging8030064 – volume: 1 start-page: 541 year: 1989 ident: ref_8 article-title: Backpropagation Applied to Handwritten Zip Code Recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: ref_20 – ident: ref_59 – volume: 4 start-page: 1 year: 1964 ident: ref_51 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – ident: ref_28 – volume: 608 start-page: 453 year: 2022 ident: ref_35 article-title: An ensemble of differential evolution and Adam for training feed-forward neural networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.036 – ident: ref_24 – volume: 5 start-page: 322 year: 1969 ident: ref_38 article-title: Visual feature extraction by a multilayered network of analog threshold elements publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1969.300225 – volume: 28 start-page: 337 year: 2000 ident: ref_2 article-title: Additive logistic regression: A statistical view of boosting publication-title: Ann. Stat. doi: 10.1214/aos/1016218223 – ident: ref_34 – volume: 28 start-page: 570 year: 2024 ident: ref_49 article-title: Pareto-Wise Ranking Classifier for Multiobjective Evolutionary Neural Architecture Search publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2023.3314766 – ident: ref_14 doi: 10.1109/CVPR.2009.5206848 – volume: 9 start-page: 1735 year: 1997 ident: ref_9 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 2121 year: 2011 ident: ref_19 article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization publication-title: J. Mach. Learn. Res. – ident: ref_40 – ident: ref_67 – volume: 18 start-page: 1527 year: 2006 ident: ref_13 article-title: A Fast Learning Algorithm for Deep Belief Nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: ref_18 – ident: ref_44 – ident: ref_43 doi: 10.1016/j.neucom.2021.08.064 – ident: ref_16 doi: 10.1145/1553374.1553486 – ident: ref_10 doi: 10.1007/978-1-4757-3115-6 – ident: ref_25 – ident: ref_50 – ident: ref_33 – ident: ref_54 – volume: 31 start-page: 181 year: 2000 ident: ref_11 article-title: Robustness to Telephone Handset Distortion in Speaker Recognition by Discriminative Feature Design publication-title: Speech Commun. doi: 10.1016/S0167-6393(99)00077-1 – ident: ref_12 – volume: 9 start-page: 249 year: 2010 ident: ref_17 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J. Mach. Learn. Res. Proc. Track – ident: ref_21 doi: 10.1109/CVPR.2012.6248110 – ident: ref_15 – volume: 64 start-page: 58 year: 2021 ident: ref_36 article-title: Deep Learning for AI publication-title: Commun. ACM doi: 10.1145/3448250 – volume: 5 start-page: 115 year: 1943 ident: ref_3 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: ref_70 – ident: ref_60 – ident: ref_22 – ident: ref_37 doi: 10.7551/mitpress/5236.001.0001 – volume: 4 start-page: 473 year: 1992 ident: ref_58 article-title: Simplifying Neural Networks by Soft Weight-Sharing publication-title: Neural Comput. doi: 10.1162/neco.1992.4.4.473 – volume: 15 start-page: 1929 year: 2014 ident: ref_66 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – volume: Volume 269 start-page: 543 year: 1983 ident: ref_53 article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2) publication-title: Proceedings of the Doklady ANSSSR (Translated as Soviet. Math. Docl.) – volume: 64 start-page: 281 year: 2013 ident: ref_56 article-title: Logistic regression with weight grouping priors publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.03.013 |
| SSID | ssj0000913810 |
| Score | 2.302668 |
| Snippet | Theano, TensorFlow, Keras, Torch, PyTorch, and other software frameworks have remarkably stimulated the popularity of deep learning (DL). Apart from all the... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 9972 |
| SubjectTerms | Algorithms automatic differentiation Back propagation Computational linguistics Computer services industry Data mining Deep learning deep neural networks Language processing Machine learning Natural language interfaces Neural networks optimization Python regularization Signal processing Tutoring weights intialization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9RAEF6hNJACkQTEQUBTJAIKi1vvem3THSSXKFKuSU5Kt9pngnTYp7OjiJJ_zoztREZI0KQ7-aYY7by-sWe-ZezAR6rKmUqsjEUiXcoTMy1jUqa5d4iAXdrd1nC-UKdLeXaVXY2u-qKZsJ4euD-4zzH6LDM2Vyqz0nljlAxC5ioqzKpYnyj7Toty1Ex1ObjkRF3VL-QJ7OvpezCXKY1VpH-UoI6p_-98vM2e3lZr8_POrFajgjN_wZ4PSBFmvYY77Emodtn2iD9wl-0MkdnAx4E--tMe-7Uc76sAAjyYr-q7BuoIF9-viS8Z8D842XTTXm3zBWZwSVQG6IpQVzBbXePv9uZHAwusbcFDW0PHIkxvEsHAUQhrIFYPlF_0Y-RAaypw4dCf3M1LtpwfX347TYaLFhInFG8T5wslIoa7NQLxU8CmD09PlDHPc8tlCNx7F0Xkbip5UQhvShQ3NjXeFAZBziu2VdVVeM2A-zxkpZXSEpUg9tfT1ClXmJD5IAzPJuzg_uz1uufT0NiHkIn0yEQT9pXs8iBCJNjdA3QNPbiG_p9rTNgHsqqmUG03xplh4wA1JdIrPSsw3dON2yi5f294PcRwowViP4TPCGom7PDBGf6l9ZvH0Pote5YicOr3HffZVru5De8Q-LT2fefjvwFe6f-g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9UH7oLYqPa0yYEV9SLlkN5vEt2g9i-AhtAf1KexnK57JcclR9M3_3NkkV2IF9S0kExiy8_Gb7M5vAA6N81k5FoHiLg24jsJATjIXZFFiNCFgHbXTGj7OxMmcfziPz7fg2aYXZrB_z6gc99u4IY_8aQiKs9siJsA9gu357FP-2Y-Noyo8oDicdJ13N9_4Lde0lPx_Bt4duLUul_L7lVwsBplleheONzp1B0q-Hq0bdaR_3KBr_IfS9-BOjywx70xhF7ZsuQc7A77BPdjtPbnGlz3d9Kv78HM-7G9BAoQ4XVRXNVYOT79ceH5lpGf4ftWeDmvq15jjmac-INPFqsR8cUHXzeW3GmeUC63BpsKWddj_eUSJx9Yu0bOAkPysO3aOvq0FTzXZn758APPpu7O3J0E_mCHQTIRNoE0qmKPwoCQjvGWpSKTEzzKXJIkKubWhMdoxF-oJD9OUGZmRuFSRNDKVBIoewqisSrsPGJrExpniXHnqQarHJ5EWOpU2NpbJMB7D4WYJi2XHv1FQ3eI_czH4zGN445f3WsSTZrc3aFmK3gcL50wcS5UIESuujZSCW8YT4QQlaII6Y3jhjaPwrt2spJZ9hwJp6kmyijyl9OAndJPkwcZ-it7n64IRViS4TSBoDM-vbepvWj_6T7nHcDsiLNW1QB7AqFmt7RPCQo162vvCL1q5BFA priority: 102 providerName: Unpaywall |
| Title | Understanding the Flows of Signals and Gradients: A Tutorial on Algorithms Needed to Implement a Deep Neural Network from Scratch |
| URI | https://www.proquest.com/docview/3125999023 https://doi.org/10.3390/app14219972 https://doaj.org/article/ffd55ab7665b4cdaa64e3476f6718218 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_a64P2QWxVPFuPeaioD8FLsvkSRFLttQiGYntQn8JmP67CmVzvUoqP_ufO5OM8EfqWjyGEndmZ387u_AbgSFuOykHoFMLGjlCe68hxYp3Ei7QiBKy8plvD1yw8m4ovV8HVFmR9LQwfq-x9YuOodaU4R_7Op0hMYIZCzMfFjcNdo3h3tW-hIbvWCvpDQzG2DTseM2MNYOf4JDv_ts66MAtm7I7bQj2f1vu8T-wKj49beP-EpobB_38_vQsPbsuF_HUn5_ONQDR5DI86BIlpq_I92DLlPuxu8Aruw143Y1f4pqOVfvsEfk8361iQgB9O5tXdCiuLFz9mzKOM9A5Pl80psHr1HlO8ZIoDMlGsSkznM7qur3-uMKOYZzTWFTbswpxhRImfjVkgs32QfNYeL0cuX8ELRXamrp_CdHJy-enM6RowOMoP3dpROg59S26gkD7hKkOLQRo9P7FRFBWuMMbVWlnfumos3Dj2tUxIXBae1DKWBH6ewaCsSvMc0NWRCZJCiIIpBmndPfZUqGJpAm186QZDOOrHPl-0PBs5rU9YRfmGioZwzHpZizA5dvOgWs7ybq7l1uogkEUUhkEhlJYyFMYXUWhDCsQEaYbwmrWa8xSul1LJrhKB_pTJsPI0pjDAnbhJ8rBXfN7N7VX-1xKH8GptDPf99Yv7P3MADz2CSm2F4yEM6uWteUlQpy5GsB1PTkedFY-ahAHdTbPz9PsfmaMBDQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSACBSYQyvgYGF71y-kCqW0IaWthWgi9WbW-0iRgh1iV1GP_DF-G7OOE4KQeuvNslerlWd2vpndmW8A9pSxqByETs5N7HDpe45wE-MkfqQkecDSb7o1nKdhf8g_XwaXa_B7UQtj0yoXNrEx1KqU9oz8HSMkJmeGIObD5Kdju0bZ29VFCw3RtlZQBw3FWFvYcapvZhTCVQcnRyTvfd_vHQ8-9p22y4AjWejVjlRxyAzpei4YOQ-aIh5CMZaYKIpyj2vtKSUNM550uRfHTImEhovcF0rEghCe5r0HG5zxhIK_jcPj9MvX5SmPZd2MPXdeGMhY4tp7aY_7Nr3D_wcKm44B_-PCFmxeFxNxMxPj8Qrw9R7Cg9Zjxe5cxbZhTRc7sLXCY7gD262FqPBNS2P99hH8Gq7WzSA5mtgbl7MKS4MX30eWtxnpG36aNllndfUeuziwlAq0JbAssDse0XN99aPClDBWK6xLbNiM7YkmCjzSeoKWXYTGp_N0drTlMnghSa_l1WMY3okonsB6URb6KaCnIh0kOee5pTSkON_1ZShjoQOlmfCCDuwt_n02mfN6ZBQPWRFlKyLqwKGVy3KIJeNuXpTTUdbu7cwYFQQij8IwyLlUQoRcMx6FJiTgJxeqA6-tVDNrMuqpkKKtfKCVWvKtrBsT7NjO3zRydyH4rLUlVfZX8zuwv1SG21b97PZpXsFmf3B-lp2dpKfP4b5Pbtq8unIX1uvptX5Bbladv2x1GeHbXW-fP_ahOmo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpABArMoRVwsIi96xcSQoGQthQipDZSb2a9jxQpxCF2FfXI3-LXMWM7IQipt94se7RaeWbnm92d-QZgzzhG5TDycukST-rA91Q3dV4axEZTBKyDulvDl2F0OJKfzsKzDfi9rIXhtMqlT6wdtSk0n5G_FoTEFMwwLY9r0yK-9gfvZj897iDFN63LdhqNiRzbywVt38q3R33S9X4QDD6efjj02g4DnhaRX3naJJFwZOe5EhQ4WNrtEIKJ1MVxnPvSWt8Y7YTzdVf6SSKMSklc5YEyKlGE7jTuDbgZM4s7V6kPDlbnO8y3mfjdpiRQiLTLN9K-DDixI_gHBOteAf8jwhbcvpjO1OVCTSZrkDe4B3fbWBV7jXFtw4ad7sDWGoPhDmy3vqHEly2B9av78Gu0XjGDFGLiYFIsSiwcnnwfM2Mz0jc8mNf5ZlX5Bnt4ymQKtBiwmGJvMqbn6vxHiUNCV2uwKrDmMeazTFTYt3aGzCtC8sMmkR25UAZPNFm0Pn8Ao2tRxEPYnBZT-wjQN7EN01zKnMkMaYffDXSkE2VDY4Xyww7sLf99NmsYPTLaCbGKsjUVdeA962UlwjTc9YtiPs7aVZ05Z8JQ5XEUhbnURqlIWiHjyEUE-RQ8deAFazVjZ1HNlVZtzQPNlGm3sl5CgMM9v0lyd6n4rPUiZfbX5juwvzKGq2b9-OphnsMtWjTZ56Ph8RO4E1B81pRV7sJmNb-wTym-qvJntSEjfLvulfMHYGs4BA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_K9UH7oLYqPa0yYEV9SLlkN5vEt2g9i-AhtAf1KexnK57JcclR9M3_3NkkV2IF9S0kExiy8_Gb7M5vAA6N81k5FoHiLg24jsJATjIXZFFiNCFgHbXTGj7OxMmcfziPz7fg2aYXZrB_z6gc99u4IY_8aQiKs9siJsA9gu357FP-2Y-Noyo8oDicdJ13N9_4Lde0lPx_Bt4duLUul_L7lVwsBplleheONzp1B0q-Hq0bdaR_3KBr_IfS9-BOjywx70xhF7ZsuQc7A77BPdjtPbnGlz3d9Kv78HM-7G9BAoQ4XVRXNVYOT79ceH5lpGf4ftWeDmvq15jjmac-INPFqsR8cUHXzeW3GmeUC63BpsKWddj_eUSJx9Yu0bOAkPysO3aOvq0FTzXZn758APPpu7O3J0E_mCHQTIRNoE0qmKPwoCQjvGWpSKTEzzKXJIkKubWhMdoxF-oJD9OUGZmRuFSRNDKVBIoewqisSrsPGJrExpniXHnqQarHJ5EWOpU2NpbJMB7D4WYJi2XHv1FQ3eI_czH4zGN445f3WsSTZrc3aFmK3gcL50wcS5UIESuujZSCW8YT4QQlaII6Y3jhjaPwrt2spJZ9hwJp6kmyijyl9OAndJPkwcZ-it7n64IRViS4TSBoDM-vbepvWj_6T7nHcDsiLNW1QB7AqFmt7RPCQo162vvCL1q5BFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Flows+of+Signals+and+Gradients%3A+A+Tutorial+on+Algorithms+Needed+to+Implement+a+Deep+Neural+Network+from+Scratch&rft.jtitle=Applied+sciences&rft.au=Kl%C4%99sk%2C+Przemys%C5%82aw&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=21&rft.spage=9972&rft_id=info:doi/10.3390%2Fapp14219972&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |