A Generation Algorithm for "Text to Image" Based on Multi-Channel Attention

Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 144878 - 144886
Main Authors Yang, Yang, Wahab, Ainuddin Wahid Bin Abdul, Binti Idris, Norisma, Yu, Dingguo, Liu, Chang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3596894

Cover

Abstract Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the inability to capture long-range semantic dependencies. To address these issues, this study proposes a generation algorithm for "text to image" based on multi-channel attention (TTI-MCA). The method integrates a self-supervised module into the initial image generation phase, leveraging attention mechanisms to enable autonomous mapping learning between image features. This facilitates a deep integration of contextual understanding and self-attention learning. Additionally, a feature fusion enhancement module is introduced, which combines low-resolution features from the previous stage with high-resolution features from the current stage. This allows the generation network to fully utilize the rich semantic information of low-level features and the high-resolution details of high-level features, ultimately producing high-quality, realistic images. Experimental results show that TTI-MCA outperforms the baseline algorithm in both Inception Score (IS) and Fréchet Inception Distance (FID), achieving superior performance on the CUB and COCO datasets. This research provides a novel approach to generating high-quality images from text.
AbstractList Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the inability to capture long-range semantic dependencies. To address these issues, this study proposes a generation algorithm for "text to image" based on multi-channel attention (TTI-MCA). The method integrates a self-supervised module into the initial image generation phase, leveraging attention mechanisms to enable autonomous mapping learning between image features. This facilitates a deep integration of contextual understanding and self-attention learning. Additionally, a feature fusion enhancement module is introduced, which combines low-resolution features from the previous stage with high-resolution features from the current stage. This allows the generation network to fully utilize the rich semantic information of low-level features and the high-resolution details of high-level features, ultimately producing high-quality, realistic images. Experimental results show that TTI-MCA outperforms the baseline algorithm in both Inception Score (IS) and Fréchet Inception Distance (FID), achieving superior performance on the CUB and COCO datasets. This research provides a novel approach to generating high-quality images from text.
Author Yang, Yang
Yu, Dingguo
Binti Idris, Norisma
Wahab, Ainuddin Wahid Bin Abdul
Liu, Chang
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Ainuddin Wahid Bin Abdul
  orcidid: 0000-0003-1062-0329
  surname: Wahab
  fullname: Wahab, Ainuddin Wahid Bin Abdul
  email: ainuddin@um.edu.my
  organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Norisma
  orcidid: 0000-0002-8006-7496
  surname: Binti Idris
  fullname: Binti Idris, Norisma
  organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Dingguo
  orcidid: 0000-0001-6701-6451
  surname: Yu
  fullname: Yu, Dingguo
  organization: College of Media Engineering, Communication University of Zhejiang, Hangzhou, China
– sequence: 5
  givenname: Chang
  orcidid: 0000-0003-0846-956X
  surname: Liu
  fullname: Liu, Chang
  organization: College of Media Engineering, Communication University of Zhejiang, Hangzhou, China
BookMark eNplkU1v1DAQhi1UJErpL4CDVc7Zxp-xjyEqZdUiDt275STjbVZZe7G9Kv33eEkFCOYy1mieR_I7b9GZDx4Qek_qFSG1vm677ubhYUVrKlZMaKk0f4XOKZG6YoLJs7_eb9BlSru6lCoj0Zyjuxbfgodo8xQ8budtiFN-3GMXIr7awI-Mc8Drvd3CFf5kE4y4rH09znmqukfrPcy4zRn8CX-HXjs7J7h86Rdo8_lm032p7r_drrv2vhqYJLkaRgHSStpz6QDIyG3fC-eEElBaowlVVKpG9PUInDnnNNWN5aoAeiQju0DrRTsGuzOHOO1tfDbBTubXIMStsTFPwwxmkKBVcY0Keg6CWcV4T5yy2lFluSguvriO_mCfn-w8_xaS2pziNXYYICVzite8xFuwjwt2iOH7EVI2u3CMvnzaMMobXgtKSdliy9YQQ0oR3H_u5XT_uj8s1AQAf4hSWpYb_gTQYZQc
CODEN IAECCG
Cites_doi 10.1109/ICCV48922.2021.01110
10.1145/3569219.3569352
10.1109/ICACCS51430.2021.9441788
10.1109/ACCESS.2022.3207469
10.1053/j.sult.2022.02.007
10.1109/TMM.2021.3075997
10.1016/j.eij.2024.100475
10.1109/ICCV48922.2021.01370
10.1109/ACCESS.2020.3026823
10.1109/CVPR52688.2022.01738
10.1109/TMM.2021.3060291
10.1109/CVPR52729.2023.00976
10.1016/j.neunet.2021.01.023
10.1109/CVPRW53098.2021.00041
10.1109/TGRS.2022.3231340
10.1109/ACCESS.2024.3365043
10.1109/WACV45572.2020.9093286
10.1109/ACCESS.2021.3075579
10.1109/ICCVW54120.2021.00221
10.1145/3689641
10.1007/s40009-023-01353-5
10.1145/3503161.3547881
10.1109/LGRS.2021.3071624
10.1016/j.displa.2023.102568
10.1109/access.2024.3434714
10.1109/WACV48630.2021.00360
10.1109/TIP.2020.3026728
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3596894
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 144886
ExternalDocumentID oai_doaj_org_article_c6e98687d8eb4e53a834b1f8a9f28a45
10.1109/access.2025.3596894
10_1109_ACCESS_2025_3596894
11119635
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62206241
  funderid: 10.13039/501100001809
– fundername: Medium and Long-Term Science and Technology Plan for Radio, Television, and Online Audiovisuals
  grantid: 2022AD0400
  funderid: 10.13039/501100019065
– fundername: National Social Science Fund of China
  grantid: 22BSH025
– fundername: Key Research and Development Program of Zhejiang Province, China
  grantid: 2021C03138
– fundername: 2025 Pioneer Lingyan + X Science and Technology Plan
  grantid: 2025C01036
  funderid: 10.13039/501100018539
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-cd5e6a62b46fee1d4abb5ff585e5ff7912826875b0de43fff9297a482b49d1d3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 14 19:00:29 EDT 2025
Mon Sep 15 10:13:10 EDT 2025
Wed Oct 08 08:10:33 EDT 2025
Wed Oct 01 05:38:19 EDT 2025
Wed Sep 03 07:09:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-cd5e6a62b46fee1d4abb5ff585e5ff7912826875b0de43fff9297a482b49d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1062-0329
0000-0003-0846-956X
0000-0001-6701-6451
0000-0002-8006-7496
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11119635
PQID 3247405221
PQPubID 4845423
PageCount 9
ParticipantIDs proquest_journals_3247405221
ieee_primary_11119635
unpaywall_primary_10_1109_access_2025_3596894
crossref_primary_10_1109_ACCESS_2025_3596894
doaj_primary_oai_doaj_org_article_c6e98687d8eb4e53a834b1f8a9f28a45
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
Zhu (ref2); 36
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1109/ICCV48922.2021.01110
– ident: ref3
  doi: 10.1145/3569219.3569352
– ident: ref26
  doi: 10.1109/ICACCS51430.2021.9441788
– ident: ref10
  doi: 10.1109/ACCESS.2022.3207469
– ident: ref21
  doi: 10.1053/j.sult.2022.02.007
– ident: ref15
  doi: 10.1109/TMM.2021.3075997
– ident: ref23
  doi: 10.1016/j.eij.2024.100475
– volume: 36
  start-page: 77771
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Genimage: A million-scale benchmark for detecting AI-generated image
– ident: ref18
  doi: 10.1109/ICCV48922.2021.01370
– ident: ref22
  doi: 10.1109/ACCESS.2020.3026823
– ident: ref4
  doi: 10.1109/CVPR52688.2022.01738
– ident: ref28
  doi: 10.1109/TMM.2021.3060291
– ident: ref9
  doi: 10.1109/CVPR52729.2023.00976
– ident: ref7
  doi: 10.1016/j.neunet.2021.01.023
– ident: ref11
  doi: 10.1109/CVPRW53098.2021.00041
– ident: ref16
  doi: 10.1109/TGRS.2022.3231340
– ident: ref5
  doi: 10.1109/ACCESS.2024.3365043
– ident: ref25
  doi: 10.1109/WACV45572.2020.9093286
– ident: ref14
  doi: 10.1109/ACCESS.2021.3075579
– ident: ref17
  doi: 10.1109/ICCVW54120.2021.00221
– ident: ref1
  doi: 10.1145/3689641
– ident: ref8
  doi: 10.1007/s40009-023-01353-5
– ident: ref19
  doi: 10.1145/3503161.3547881
– ident: ref20
  doi: 10.1109/LGRS.2021.3071624
– ident: ref13
  doi: 10.1016/j.displa.2023.102568
– ident: ref6
  doi: 10.1109/access.2024.3434714
– ident: ref24
  doi: 10.1109/WACV48630.2021.00360
– ident: ref27
  doi: 10.1109/TIP.2020.3026728
SSID ssj0000816957
Score 2.336492
Snippet Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 144878
SubjectTerms AI-generated images
Algorithms
Attention mechanisms
Computational modeling
Convolution
Feature extraction
Generators
High resolution
image feature fusion
Image processing
Image quality
Image resolution
Image synthesis
Learning
long-range semantic dependencies
Mathematical models
Modules
Semantics
Text to image
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELYQCzAgfkX5kwdGAnFiO_bYVqCCBCxFYrPs2IahpBUEITYeBF6OJ-HsBGjFwEKWSJbjXL5zfN9ZvjuEDiTxmlDjEyILmdCS2cSEnThDYfpY6oWO4WIXl3xwTc9v2M1Uqa9wJqxJD9wAd1xyJwUXhRXOUMdyLXJqCIwhfSY0jdlLUyGnnKm4BgvCJSvaNEMklcfdfh--CBzCjB3lTHIh6Ywpihn72xIrM2xz4ama6JdnPRpNGZ7TFbTcMkbcbSRdRXOuWkNLU3kE19FVFzfpowPKuDu6HYPLf3ePgZDij9e3ISzAuB7js3tYPD5e33EPTJfF0DWG3yYhwqBy8Iq6bg4_bqDh6cmwP0jaSglJmXNSJ6VljmueGcq9c8RSbQzzHlwBB7dCghHKAENmUuto7r0HUlRoKuABaYnNN9F8Na7cFsJWA-VzYNil55SkHgiCyUQpDDUhyDbvoMMvzNSkyYehoh-RStVArALEqoW4g3oB1--uIZl1bAAVq1bF6i8Vd9BG0MrP--CCdQPad7_UpNo_71EBQSyAhGYZ6aDkW3W_ZNWxHOWMrNv_IesOWgxjNps0u2i-fnhye0BbarMfZ-gntwznqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZGOUwcxjZAKzDkA0fcxYnj2sdQgWDSGIcisZNlxzYg2hTRVAhO_SHw5_glPCcBWiZNLJdElq04fs9-34v9vofQtqReU2Y8obIrCctTS0z4E2cYqI9lXugqXOzXET84YT9P09OGZzvEwszu39NI_tBV2kDw4-K0k6SSC8kW0CKHp6iFFk-OjrM_IX0c5ZIk1Ubkxj9aztmeiqK_yakyBy8_ToorfXujB4MZS7O_XIdwjyuCwnDA5LIzKU0nv3tD3_jOj_iMPjWIE2e1inxBH1zxFS3N8BCuoN8Zrumng5RwNjgbXV-U50MMgBY_Tu_7sIDjcoQPh7D4PE4f8C6YPouhahW-S0KEQuHgFWVZH55cRf39vX7vgDSZFkiecFqS3KaOax4bxr1z1DJtTOo9uBIObl0JRizm4NmYyDqWeO8BVHU1E9BAWmqTNdQqRoX7hrDVABkdAAPpOaORB4BhYpELw0wI0k3aaOdZBOqq5tNQlR8SSZX1eqB0KgyTaoapjXaDmF6qBjLsqgCGVzVzS-XcSQHds8IZ5tJEi4QZCmomfSw0S9toNQj59X1wwboD5ZvPUlfNzB0rAJhdALFxTNuIvGjCX32tRTrX1_X_rL-JWuX1xH0HUFOarUaZnwCvDPHU
  priority: 102
  providerName: Unpaywall
Title A Generation Algorithm for "Text to Image" Based on Multi-Channel Attention
URI https://ieeexplore.ieee.org/document/11119635
https://www.proquest.com/docview/3247405221
https://doi.org/10.1109/access.2025.3596894
https://doaj.org/article/c6e98687d8eb4e53a834b1f8a9f28a45
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x8QB74HNogVFZE4-kqxPbsR-zimmAqHjopPFk2bE9EF06jVQI_nrOTlpWEBJPiSInPvvOvt9dfHcArxQNhjIbcqoqlbOGu9xGT5xlKD6OBWlSuNiHmTg7Z-8u-MUQrJ5iYbz36fCZH8fb9C_fLZtVdJUdx-WNAsN3YKeSog_W2jhUYgUJxashsxCdqON6OsVBoA1Y8HHJlZCKbWmflKR_qKqyBTDvrdpr8-O7WSxu6ZrThzBbU9kfMfk6XnV23Pz8I4Hjfw_jETwYUCepezF5DHd8-wT2buUifArva9KnoI6cIvXicnnzpft8RRDUkqM5buGkW5K3V7j9HJETVH2OYLMUvpvHCIXW4-e7rj88uQ_z0zfz6Vk-VFrIm1LQLm8c98KIwjIRvKeOGWt5CGhKeLxUCpVYIdCysRPnWRlCQFBVGSbxBeWoK5_Bbrts_QEQZxAyegQGKghGJwEBhi1kIy2zMUi3zOD1mgH6us-noZMdMlG655eO_NIDvzI4iUzaNI3JsNMDnFA9rC3dCK8kkuekt8zz0siSWYpipkIhDeMZ7Ecm_O5vmP8MDtc818PK_aYRYFYIYouCZpBv5OAvWk0qZ7lF6_N_dPMC7sdmvd_mEHa7m5V_iUims6PkARglOR7B3fPZx_rTL2eJ8D0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBg8jK8hsg2wJh5JVyd2Yj92FVPHtj4VaW-WHdsD0aXTSIXgr9_ZccsKQuIpUWQnZ9_Z97uL7w7gvaReU2Z8TmUtc9Zwm5vgiTMMxccyL3QMF7uYVpPP7NMlv0zB6jEWxjkXD5-5QbiN__LtolkGV9lRWN4oMPwhPOKMMd6Ha61dKqGGhOR1yi1Eh_JoNB7jMNAKLPig5LISkm3on5imP9VV2YCY28v2Rv_8oefze9rm5ClMV3T2h0y-DZadGTS__kjh-N8DeQY7CXeSUS8oz-GBa1_Ak3vZCF_C2Yj0SagDr8hofrW4_dp9uSYIa8nhDDdx0i3I6TVuQIfkGJWfJdgsBvDmIUahdfj6ruuPT-7C7OTjbDzJU62FvCkr2uWN5a7SVWFY5Z2jlmljuPdoTDi81BLVWFGhbWOG1rHSe4-wqtZMYAdpqS1fwVa7aN1rIFYjaHQIDaSvGB16hBimEI0wzIQw3TKDDysGqJs-o4aKlshQqp5fKvBLJX5lcByYtG4a0mHHBzihKq0u1VROCiTPCmeY46UWJTMUBU36QmjGM9gNTPj9vTT_GRyseK7S2v2uEGLWCGOLgmaQr-XgL1p1LGi5QevePz7zDrYns4tzdX46PduHx6FL78U5gK3uduneIK7pzNsozXfvgvDl
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZGOUwcxjZAKzDkA0fcxYnj2sdQgWDSGIcisZNlxzYg2hTRVAhO_SHw5_glPCcBWiZNLJdElq04fs9-34v9vofQtqReU2Y8obIrCctTS0z4E2cYqI9lXugqXOzXET84YT9P09OGZzvEwszu39NI_tBV2kDw4-K0k6SSC8kW0CKHp6iFFk-OjrM_IX0c5ZIk1Ubkxj9aztmeiqK_yakyBy8_ToorfXujB4MZS7O_XIdwjyuCwnDA5LIzKU0nv3tD3_jOj_iMPjWIE2e1inxBH1zxFS3N8BCuoN8Zrumng5RwNjgbXV-U50MMgBY_Tu_7sIDjcoQPh7D4PE4f8C6YPouhahW-S0KEQuHgFWVZH55cRf39vX7vgDSZFkiecFqS3KaOax4bxr1z1DJtTOo9uBIObl0JRizm4NmYyDqWeO8BVHU1E9BAWmqTNdQqRoX7hrDVABkdAAPpOaORB4BhYpELw0wI0k3aaOdZBOqq5tNQlR8SSZX1eqB0KgyTaoapjXaDmF6qBjLsqgCGVzVzS-XcSQHds8IZ5tJEi4QZCmomfSw0S9toNQj59X1wwboD5ZvPUlfNzB0rAJhdALFxTNuIvGjCX32tRTrX1_X_rL-JWuX1xH0HUFOarUaZnwCvDPHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generation+Algorithm+for+%22Text+to+Image%22+Based+on+Multi-Channel+Attention&rft.jtitle=IEEE+access&rft.au=Yang%2C+Yang&rft.au=Wahab%2C+Ainuddin+Wahid+Bin+Abdul&rft.au=Binti+Idris%2C+Norisma&rft.au=Yu%2C+Dingguo&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=144878&rft.epage=144886&rft_id=info:doi/10.1109%2FACCESS.2025.3596894&rft.externalDocID=11119635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon