A Generation Algorithm for "Text to Image" Based on Multi-Channel Attention
Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the...
Saved in:
| Published in | IEEE access Vol. 13; pp. 144878 - 144886 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3596894 |
Cover
| Abstract | Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the inability to capture long-range semantic dependencies. To address these issues, this study proposes a generation algorithm for "text to image" based on multi-channel attention (TTI-MCA). The method integrates a self-supervised module into the initial image generation phase, leveraging attention mechanisms to enable autonomous mapping learning between image features. This facilitates a deep integration of contextual understanding and self-attention learning. Additionally, a feature fusion enhancement module is introduced, which combines low-resolution features from the previous stage with high-resolution features from the current stage. This allows the generation network to fully utilize the rich semantic information of low-level features and the high-resolution details of high-level features, ultimately producing high-quality, realistic images. Experimental results show that TTI-MCA outperforms the baseline algorithm in both Inception Score (IS) and Fréchet Inception Distance (FID), achieving superior performance on the CUB and COCO datasets. This research provides a novel approach to generating high-quality images from text. |
|---|---|
| AbstractList | Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature extraction during the initial image generation stage. This approach has inherent limitations, often leading to the loss of global information and the inability to capture long-range semantic dependencies. To address these issues, this study proposes a generation algorithm for "text to image" based on multi-channel attention (TTI-MCA). The method integrates a self-supervised module into the initial image generation phase, leveraging attention mechanisms to enable autonomous mapping learning between image features. This facilitates a deep integration of contextual understanding and self-attention learning. Additionally, a feature fusion enhancement module is introduced, which combines low-resolution features from the previous stage with high-resolution features from the current stage. This allows the generation network to fully utilize the rich semantic information of low-level features and the high-resolution details of high-level features, ultimately producing high-quality, realistic images. Experimental results show that TTI-MCA outperforms the baseline algorithm in both Inception Score (IS) and Fréchet Inception Distance (FID), achieving superior performance on the CUB and COCO datasets. This research provides a novel approach to generating high-quality images from text. |
| Author | Yang, Yang Yu, Dingguo Binti Idris, Norisma Wahab, Ainuddin Wahid Bin Abdul Liu, Chang |
| Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia – sequence: 2 givenname: Ainuddin Wahid Bin Abdul orcidid: 0000-0003-1062-0329 surname: Wahab fullname: Wahab, Ainuddin Wahid Bin Abdul email: ainuddin@um.edu.my organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia – sequence: 3 givenname: Norisma orcidid: 0000-0002-8006-7496 surname: Binti Idris fullname: Binti Idris, Norisma organization: Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia – sequence: 4 givenname: Dingguo orcidid: 0000-0001-6701-6451 surname: Yu fullname: Yu, Dingguo organization: College of Media Engineering, Communication University of Zhejiang, Hangzhou, China – sequence: 5 givenname: Chang orcidid: 0000-0003-0846-956X surname: Liu fullname: Liu, Chang organization: College of Media Engineering, Communication University of Zhejiang, Hangzhou, China |
| BookMark | eNplkU1v1DAQhi1UJErpL4CDVc7Zxp-xjyEqZdUiDt275STjbVZZe7G9Kv33eEkFCOYy1mieR_I7b9GZDx4Qek_qFSG1vm677ubhYUVrKlZMaKk0f4XOKZG6YoLJs7_eb9BlSru6lCoj0Zyjuxbfgodo8xQ8budtiFN-3GMXIr7awI-Mc8Drvd3CFf5kE4y4rH09znmqukfrPcy4zRn8CX-HXjs7J7h86Rdo8_lm032p7r_drrv2vhqYJLkaRgHSStpz6QDIyG3fC-eEElBaowlVVKpG9PUInDnnNNWN5aoAeiQju0DrRTsGuzOHOO1tfDbBTubXIMStsTFPwwxmkKBVcY0Keg6CWcV4T5yy2lFluSguvriO_mCfn-w8_xaS2pziNXYYICVzite8xFuwjwt2iOH7EVI2u3CMvnzaMMobXgtKSdliy9YQQ0oR3H_u5XT_uj8s1AQAf4hSWpYb_gTQYZQc |
| CODEN | IAECCG |
| Cites_doi | 10.1109/ICCV48922.2021.01110 10.1145/3569219.3569352 10.1109/ICACCS51430.2021.9441788 10.1109/ACCESS.2022.3207469 10.1053/j.sult.2022.02.007 10.1109/TMM.2021.3075997 10.1016/j.eij.2024.100475 10.1109/ICCV48922.2021.01370 10.1109/ACCESS.2020.3026823 10.1109/CVPR52688.2022.01738 10.1109/TMM.2021.3060291 10.1109/CVPR52729.2023.00976 10.1016/j.neunet.2021.01.023 10.1109/CVPRW53098.2021.00041 10.1109/TGRS.2022.3231340 10.1109/ACCESS.2024.3365043 10.1109/WACV45572.2020.9093286 10.1109/ACCESS.2021.3075579 10.1109/ICCVW54120.2021.00221 10.1145/3689641 10.1007/s40009-023-01353-5 10.1145/3503161.3547881 10.1109/LGRS.2021.3071624 10.1016/j.displa.2023.102568 10.1109/access.2024.3434714 10.1109/WACV48630.2021.00360 10.1109/TIP.2020.3026728 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3596894 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) eJournal Collection |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 144886 |
| ExternalDocumentID | oai_doaj_org_article_c6e98687d8eb4e53a834b1f8a9f28a45 10.1109/access.2025.3596894 10_1109_ACCESS_2025_3596894 11119635 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62206241 funderid: 10.13039/501100001809 – fundername: Medium and Long-Term Science and Technology Plan for Radio, Television, and Online Audiovisuals grantid: 2022AD0400 funderid: 10.13039/501100019065 – fundername: National Social Science Fund of China grantid: 22BSH025 – fundername: Key Research and Development Program of Zhejiang Province, China grantid: 2021C03138 – fundername: 2025 Pioneer Lingyan + X Science and Technology Plan grantid: 2025C01036 funderid: 10.13039/501100018539 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-cd5e6a62b46fee1d4abb5ff585e5ff7912826875b0de43fff9297a482b49d1d3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 19:00:29 EDT 2025 Mon Sep 15 10:13:10 EDT 2025 Wed Oct 08 08:10:33 EDT 2025 Wed Oct 01 05:38:19 EDT 2025 Wed Sep 03 07:09:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-cd5e6a62b46fee1d4abb5ff585e5ff7912826875b0de43fff9297a482b49d1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1062-0329 0000-0003-0846-956X 0000-0001-6701-6451 0000-0002-8006-7496 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11119635 |
| PQID | 3247405221 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3247405221 ieee_primary_11119635 unpaywall_primary_10_1109_access_2025_3596894 crossref_primary_10_1109_ACCESS_2025_3596894 doaj_primary_oai_doaj_org_article_c6e98687d8eb4e53a834b1f8a9f28a45 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref1 Zhu (ref2); 36 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.1109/ICCV48922.2021.01110 – ident: ref3 doi: 10.1145/3569219.3569352 – ident: ref26 doi: 10.1109/ICACCS51430.2021.9441788 – ident: ref10 doi: 10.1109/ACCESS.2022.3207469 – ident: ref21 doi: 10.1053/j.sult.2022.02.007 – ident: ref15 doi: 10.1109/TMM.2021.3075997 – ident: ref23 doi: 10.1016/j.eij.2024.100475 – volume: 36 start-page: 77771 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Genimage: A million-scale benchmark for detecting AI-generated image – ident: ref18 doi: 10.1109/ICCV48922.2021.01370 – ident: ref22 doi: 10.1109/ACCESS.2020.3026823 – ident: ref4 doi: 10.1109/CVPR52688.2022.01738 – ident: ref28 doi: 10.1109/TMM.2021.3060291 – ident: ref9 doi: 10.1109/CVPR52729.2023.00976 – ident: ref7 doi: 10.1016/j.neunet.2021.01.023 – ident: ref11 doi: 10.1109/CVPRW53098.2021.00041 – ident: ref16 doi: 10.1109/TGRS.2022.3231340 – ident: ref5 doi: 10.1109/ACCESS.2024.3365043 – ident: ref25 doi: 10.1109/WACV45572.2020.9093286 – ident: ref14 doi: 10.1109/ACCESS.2021.3075579 – ident: ref17 doi: 10.1109/ICCVW54120.2021.00221 – ident: ref1 doi: 10.1145/3689641 – ident: ref8 doi: 10.1007/s40009-023-01353-5 – ident: ref19 doi: 10.1145/3503161.3547881 – ident: ref20 doi: 10.1109/LGRS.2021.3071624 – ident: ref13 doi: 10.1016/j.displa.2023.102568 – ident: ref6 doi: 10.1109/access.2024.3434714 – ident: ref24 doi: 10.1109/WACV48630.2021.00360 – ident: ref27 doi: 10.1109/TIP.2020.3026728 |
| SSID | ssj0000816957 |
| Score | 2.336492 |
| Snippet | Research on text-to-image has gained significant attention. However, existing methods primarily rely on upsampling convolution operations for feature... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 144878 |
| SubjectTerms | AI-generated images Algorithms Attention mechanisms Computational modeling Convolution Feature extraction Generators High resolution image feature fusion Image processing Image quality Image resolution Image synthesis Learning long-range semantic dependencies Mathematical models Modules Semantics Text to image |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELYQCzAgfkX5kwdGAnFiO_bYVqCCBCxFYrPs2IahpBUEITYeBF6OJ-HsBGjFwEKWSJbjXL5zfN9ZvjuEDiTxmlDjEyILmdCS2cSEnThDYfpY6oWO4WIXl3xwTc9v2M1Uqa9wJqxJD9wAd1xyJwUXhRXOUMdyLXJqCIwhfSY0jdlLUyGnnKm4BgvCJSvaNEMklcfdfh--CBzCjB3lTHIh6Ywpihn72xIrM2xz4ama6JdnPRpNGZ7TFbTcMkbcbSRdRXOuWkNLU3kE19FVFzfpowPKuDu6HYPLf3ePgZDij9e3ISzAuB7js3tYPD5e33EPTJfF0DWG3yYhwqBy8Iq6bg4_bqDh6cmwP0jaSglJmXNSJ6VljmueGcq9c8RSbQzzHlwBB7dCghHKAENmUuto7r0HUlRoKuABaYnNN9F8Na7cFsJWA-VzYNil55SkHgiCyUQpDDUhyDbvoMMvzNSkyYehoh-RStVArALEqoW4g3oB1--uIZl1bAAVq1bF6i8Vd9BG0MrP--CCdQPad7_UpNo_71EBQSyAhGYZ6aDkW3W_ZNWxHOWMrNv_IesOWgxjNps0u2i-fnhye0BbarMfZ-gntwznqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZGOUwcxjZAKzDkA0fcxYnj2sdQgWDSGIcisZNlxzYg2hTRVAhO_SHw5_glPCcBWiZNLJdElq04fs9-34v9vofQtqReU2Y8obIrCctTS0z4E2cYqI9lXugqXOzXET84YT9P09OGZzvEwszu39NI_tBV2kDw4-K0k6SSC8kW0CKHp6iFFk-OjrM_IX0c5ZIk1Ubkxj9aztmeiqK_yakyBy8_ToorfXujB4MZS7O_XIdwjyuCwnDA5LIzKU0nv3tD3_jOj_iMPjWIE2e1inxBH1zxFS3N8BCuoN8Zrumng5RwNjgbXV-U50MMgBY_Tu_7sIDjcoQPh7D4PE4f8C6YPouhahW-S0KEQuHgFWVZH55cRf39vX7vgDSZFkiecFqS3KaOax4bxr1z1DJtTOo9uBIObl0JRizm4NmYyDqWeO8BVHU1E9BAWmqTNdQqRoX7hrDVABkdAAPpOaORB4BhYpELw0wI0k3aaOdZBOqq5tNQlR8SSZX1eqB0KgyTaoapjXaDmF6qBjLsqgCGVzVzS-XcSQHds8IZ5tJEi4QZCmomfSw0S9toNQj59X1wwboD5ZvPUlfNzB0rAJhdALFxTNuIvGjCX32tRTrX1_X_rL-JWuX1xH0HUFOarUaZnwCvDPHU priority: 102 providerName: Unpaywall |
| Title | A Generation Algorithm for "Text to Image" Based on Multi-Channel Attention |
| URI | https://ieeexplore.ieee.org/document/11119635 https://www.proquest.com/docview/3247405221 https://doi.org/10.1109/access.2025.3596894 https://doaj.org/article/c6e98687d8eb4e53a834b1f8a9f28a45 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x8QB74HNogVFZE4-kqxPbsR-zimmAqHjopPFk2bE9EF06jVQI_nrOTlpWEBJPiSInPvvOvt9dfHcArxQNhjIbcqoqlbOGu9xGT5xlKD6OBWlSuNiHmTg7Z-8u-MUQrJ5iYbz36fCZH8fb9C_fLZtVdJUdx-WNAsN3YKeSog_W2jhUYgUJxashsxCdqON6OsVBoA1Y8HHJlZCKbWmflKR_qKqyBTDvrdpr8-O7WSxu6ZrThzBbU9kfMfk6XnV23Pz8I4Hjfw_jETwYUCepezF5DHd8-wT2buUifArva9KnoI6cIvXicnnzpft8RRDUkqM5buGkW5K3V7j9HJETVH2OYLMUvpvHCIXW4-e7rj88uQ_z0zfz6Vk-VFrIm1LQLm8c98KIwjIRvKeOGWt5CGhKeLxUCpVYIdCysRPnWRlCQFBVGSbxBeWoK5_Bbrts_QEQZxAyegQGKghGJwEBhi1kIy2zMUi3zOD1mgH6us-noZMdMlG655eO_NIDvzI4iUzaNI3JsNMDnFA9rC3dCK8kkuekt8zz0siSWYpipkIhDeMZ7Ecm_O5vmP8MDtc818PK_aYRYFYIYouCZpBv5OAvWk0qZ7lF6_N_dPMC7sdmvd_mEHa7m5V_iUims6PkARglOR7B3fPZx_rTL2eJ8D0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeBg8jK8hsg2wJh5JVyd2Yj92FVPHtj4VaW-WHdsD0aXTSIXgr9_ZccsKQuIpUWQnZ9_Z97uL7w7gvaReU2Z8TmUtc9Zwm5vgiTMMxccyL3QMF7uYVpPP7NMlv0zB6jEWxjkXD5-5QbiN__LtolkGV9lRWN4oMPwhPOKMMd6Ha61dKqGGhOR1yi1Eh_JoNB7jMNAKLPig5LISkm3on5imP9VV2YCY28v2Rv_8oefze9rm5ClMV3T2h0y-DZadGTS__kjh-N8DeQY7CXeSUS8oz-GBa1_Ak3vZCF_C2Yj0SagDr8hofrW4_dp9uSYIa8nhDDdx0i3I6TVuQIfkGJWfJdgsBvDmIUahdfj6ruuPT-7C7OTjbDzJU62FvCkr2uWN5a7SVWFY5Z2jlmljuPdoTDi81BLVWFGhbWOG1rHSe4-wqtZMYAdpqS1fwVa7aN1rIFYjaHQIDaSvGB16hBimEI0wzIQw3TKDDysGqJs-o4aKlshQqp5fKvBLJX5lcByYtG4a0mHHBzihKq0u1VROCiTPCmeY46UWJTMUBU36QmjGM9gNTPj9vTT_GRyseK7S2v2uEGLWCGOLgmaQr-XgL1p1LGi5QevePz7zDrYns4tzdX46PduHx6FL78U5gK3uduneIK7pzNsozXfvgvDl |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLZGOUwcxjZAKzDkA0fcxYnj2sdQgWDSGIcisZNlxzYg2hTRVAhO_SHw5_glPCcBWiZNLJdElq04fs9-34v9vofQtqReU2Y8obIrCctTS0z4E2cYqI9lXugqXOzXET84YT9P09OGZzvEwszu39NI_tBV2kDw4-K0k6SSC8kW0CKHp6iFFk-OjrM_IX0c5ZIk1Ubkxj9aztmeiqK_yakyBy8_ToorfXujB4MZS7O_XIdwjyuCwnDA5LIzKU0nv3tD3_jOj_iMPjWIE2e1inxBH1zxFS3N8BCuoN8Zrumng5RwNjgbXV-U50MMgBY_Tu_7sIDjcoQPh7D4PE4f8C6YPouhahW-S0KEQuHgFWVZH55cRf39vX7vgDSZFkiecFqS3KaOax4bxr1z1DJtTOo9uBIObl0JRizm4NmYyDqWeO8BVHU1E9BAWmqTNdQqRoX7hrDVABkdAAPpOaORB4BhYpELw0wI0k3aaOdZBOqq5tNQlR8SSZX1eqB0KgyTaoapjXaDmF6qBjLsqgCGVzVzS-XcSQHds8IZ5tJEi4QZCmomfSw0S9toNQj59X1wwboD5ZvPUlfNzB0rAJhdALFxTNuIvGjCX32tRTrX1_X_rL-JWuX1xH0HUFOarUaZnwCvDPHU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generation+Algorithm+for+%22Text+to+Image%22+Based+on+Multi-Channel+Attention&rft.jtitle=IEEE+access&rft.au=Yang%2C+Yang&rft.au=Wahab%2C+Ainuddin+Wahid+Bin+Abdul&rft.au=Binti+Idris%2C+Norisma&rft.au=Yu%2C+Dingguo&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=144878&rft.epage=144886&rft_id=info:doi/10.1109%2FACCESS.2025.3596894&rft.externalDocID=11119635 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |