Determining Vertical Displacement of Agricultural Areas Using UAV-Photogrammetry and a Heteroscedastic Deep Learning Model
This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on poin...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 18; p. 3259 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.09.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs17183259 | 
Cover
| Abstract | This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%. | 
    
|---|---|
| AbstractList | What are the main findings? * The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. * Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. What is the implication of the main finding? * The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. * The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%. What are the main findings? The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. What is the implication of the main finding? The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%. This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%.  | 
    
| Audience | Academic | 
    
| Author | Ćwiąkała, Paweł Matwij, Wojciech Gruszczyński, Wojciech Puniach, Edyta  | 
    
| Author_xml | – sequence: 1 givenname: Wojciech orcidid: 0000-0001-7810-5855 surname: Gruszczyński fullname: Gruszczyński, Wojciech – sequence: 2 givenname: Edyta orcidid: 0000-0003-0607-0432 surname: Puniach fullname: Puniach, Edyta – sequence: 3 givenname: Paweł orcidid: 0000-0001-5526-0908 surname: Ćwiąkała fullname: Ćwiąkała, Paweł – sequence: 4 givenname: Wojciech orcidid: 0000-0002-4008-2704 surname: Matwij fullname: Matwij, Wojciech  | 
    
| BookMark | eNp9UU1v1DAQjVCRKKUXfoElbqAUf-TLx6gLtNJW7aHbqzVxxsGrJA52omr59TgNAk7Ykseaee95xu9tcja6EZPkPaNXQkj62QdWskrwXL5KzjkteZpxyc_-ub9JLkM40riEYJJm58nPHc7oBzvasSNP6GeroSc7G6YeNA44zsQZUnfe6qWfFx-LtUcI5BBWxqF-Sh--u9l1HoYBZ38iMLYEyM0q64LGFkLUJDvEiewR_MtDd67F_l3y2kAf8PJ3vEgOX788Xt-k-_tvt9f1PtWiYHOqdUWLpqKm0AXSXFacCSEqRlsh17NqWImlLnIwJYgMqKECJcccc2pMA-Iiud10WwdHNXk7gD8pB1a9JJzvFKxz96hEg5lhwnBG80wiaxgi5KClRixMK6LWp01rGSc4PUPf_xFkVK0uqL8uRPSHDT1592PBMKujW_wYh1WxnhUiq3gZUVcbqoPYgh2Nmz3ouFscrI4WGxvzdZWXpciilZHwcSPo-MPBo_lfD78A4JGmvw | 
    
| Cites_doi | 10.1117/1.JRS.15.024505 10.1007/978-3-319-24574-4_28 10.1109/ICNN.1994.374138 10.1016/j.measurement.2025.117431 10.1109/ACCESS.2020.2967410 10.1016/j.isprsjprs.2023.06.005 10.1111/phor.12490 10.3390/rs16224283 10.1016/j.measurement.2024.115944 10.1016/j.isprsjprs.2014.02.014 10.1109/JSTARS.2011.2132793 10.1016/j.isprsjprs.2012.12.002 10.1109/TGRS.2006.890412 10.3390/rs8060501 10.1109/CVPR46437.2021.01427 10.5194/isprs-annals-IV-1-W1-3-2017 10.1016/0305-0548(93)90109-V 10.1016/j.measurement.2021.109482 10.3390/rs14020421 10.5194/isprsannals-III-3-177-2016 10.1016/S0924-2716(98)00009-4 10.14358/PERS.74.5.625 10.1109/CVPR42600.2020.01112 10.3390/rs12111733 10.1038/nature14539 10.1109/TGRS.2003.810682 10.1016/j.enggeo.2022.106939 10.1109/ICCV.2019.00651  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs17183259 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_3be4f13f210549e1b1eea5ac9cee6fd3 10.3390/rs17183259 A857734207 10_3390_rs17183259  | 
    
| GeographicLocations | Poland | 
    
| GeographicLocations_xml | – name: Poland | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c361t-cc806b80f6c6e059821333810d39810d8b17e7c65af7a34a0f03e92e5e50ffba3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Tue Oct 14 19:03:01 EDT 2025 Thu Sep 25 05:41:35 EDT 2025 Fri Sep 26 22:45:39 EDT 2025 Tue Oct 07 10:03:46 EDT 2025 Thu Oct 16 04:34:55 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 18 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c361t-cc806b80f6c6e059821333810d39810d8b17e7c65af7a34a0f03e92e5e50ffba3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5526-0908 0000-0003-0607-0432 0000-0001-7810-5855 0000-0002-4008-2704  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3254634827?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3254634827 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3be4f13f210549e1b1eea5ac9cee6fd3 unpaywall_primary_10_3390_rs17183259 proquest_journals_3254634827 gale_infotracacademiconefile_A857734207 crossref_primary_10_3390_rs17183259  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-09-01 | 
    
| PublicationDateYYYYMMDD | 2025-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zhu (ref_7) 2025; 242 Puniach (ref_25) 2022; 60 Zhang (ref_11) 2003; 41 Zhan (ref_5) 2024; 39 ref_19 ref_18 Puniach (ref_32) 2023; 312 ref_17 Shao (ref_13) 2008; 5 Zhou (ref_2) 2020; 8 Pingel (ref_15) 2013; 77 Matwij (ref_31) 2021; 180 Hu (ref_16) 2014; 92 (ref_34) 2019; 16 ref_23 ref_22 ref_21 ref_20 Hwang (ref_30) 1993; 20 LeCun (ref_27) 2015; 521 Evans (ref_12) 2007; 45 Zoej (ref_14) 2011; 4 ref_1 Qin (ref_24) 2023; 202 ref_29 Kraus (ref_10) 1998; 53 ref_28 Puniach (ref_33) 2025; 253 ref_26 ref_9 Lian (ref_3) 2021; 15 ref_8 ref_4 ref_6  | 
    
| References_xml | – volume: 15 start-page: 024505 year: 2021 ident: ref_3 article-title: Time-series unmanned aerial vehicle photogrammetry monitoring method without ground control points to measure mining subsidence publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.15.024505 – ident: ref_9 – ident: ref_26 doi: 10.1007/978-3-319-24574-4_28 – volume: 60 start-page: 5601518 year: 2022 ident: ref_25 article-title: Correction of Low Vegetation Impact on UAV-Derived Point Cloud Heights with U-Net Networks publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_28 doi: 10.1109/ICNN.1994.374138 – volume: 253 start-page: 117431 year: 2025 ident: ref_33 article-title: Determining ground surface deformation indices in urbanized mining areas based on UAV-photogrammetry products publication-title: Measurement doi: 10.1016/j.measurement.2025.117431 – volume: 8 start-page: 16372 year: 2020 ident: ref_2 article-title: Unmanned Aerial Vehicle (UAV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2967410 – volume: 202 start-page: 246 year: 2023 ident: ref_24 article-title: Deep learning for filtering the ground fromALS point clouds: A dataset, evaluations and issues publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.06.005 – volume: 39 start-page: 373 year: 2024 ident: ref_5 article-title: Comparative analysis of surface deformation monitoring in a mining area based on UAV-lidar and UAV photogrammetry publication-title: Photogramm. Rec. doi: 10.1111/phor.12490 – ident: ref_6 doi: 10.3390/rs16224283 – volume: 242 start-page: 115944 year: 2025 ident: ref_7 article-title: UAV-MSSH: A novel UAV photogrammetry-based framework for mining surface three-dimensional movement basin monitoring publication-title: Measurement doi: 10.1016/j.measurement.2024.115944 – volume: 92 start-page: 98 year: 2014 ident: ref_16 article-title: An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.014 – volume: 4 start-page: 836 year: 2011 ident: ref_14 article-title: A Novel Filtering Algorithm for Bare-Earth Extraction From Airborne Laser Scanning Data Using an Artificial Neural Network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2132793 – volume: 77 start-page: 21 year: 2013 ident: ref_15 article-title: An improved simple morphological filter for the terrain classification of airborne LIDAR data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.12.002 – volume: 45 start-page: 1029 year: 2007 ident: ref_12 article-title: A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.890412 – ident: ref_17 doi: 10.3390/rs8060501 – ident: ref_22 doi: 10.1109/CVPR46437.2021.01427 – ident: ref_19 doi: 10.5194/isprs-annals-IV-1-W1-3-2017 – volume: 20 start-page: 889 year: 1993 ident: ref_30 article-title: A new approach for multiple objective decision making publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(93)90109-V – volume: 180 start-page: 109482 year: 2021 ident: ref_31 article-title: Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration publication-title: Measurement doi: 10.1016/j.measurement.2021.109482 – ident: ref_8 – ident: ref_4 doi: 10.3390/rs14020421 – ident: ref_29 – ident: ref_18 doi: 10.5194/isprsannals-III-3-177-2016 – volume: 53 start-page: 193 year: 1998 ident: ref_10 article-title: Determination of terrain models in wooded areas with airborne laser scanner data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(98)00009-4 – volume: 5 start-page: 625 year: 2008 ident: ref_13 article-title: Automated Searching of Ground Points from Airborne Lidar Data Using a Climbing and Sliding Method publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.74.5.625 – ident: ref_23 doi: 10.1109/CVPR42600.2020.01112 – ident: ref_1 doi: 10.3390/rs12111733 – volume: 521 start-page: 436 year: 2015 ident: ref_27 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 41 start-page: 872 year: 2003 ident: ref_11 article-title: A Progressive Morphological Filter for Removing Nonground Measurements From Airborne LIDAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.810682 – ident: ref_20 – volume: 312 start-page: 106939 year: 2023 ident: ref_32 article-title: Determination of the coefficient of proportionality between horizontal displacement and tilt change using UAV photogrammetry publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106939 – volume: 16 start-page: 211 year: 2019 ident: ref_34 article-title: Uncertainty in determining the parameters of the surface deformation model publication-title: Acta Geodyn. Et Geomater. – ident: ref_21 doi: 10.1109/ICCV.2019.00651  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.4092455 | 
    
| Snippet | This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle... What are the main findings? * The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal... What are the main findings? The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal...  | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 3259 | 
    
| SubjectTerms | Accuracy Aerial photography Algorithms Classification Datasets Deep learning Drone aircraft Filters Filtration ground filters heteroscedastic regression Machine learning Neural networks Nodes performance ranking Photogrammetry point cloud Risk assessment Root-mean-square errors Subsidence U-Net Uncertainty Unmanned aerial vehicles Vegetation vertical displacements  | 
    
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll7SH0vSDbpoGQQM9mcirD9vHbTdhKbT00A25CUkeJYWtd7EdyvbXd0Z2tguF9NKLD0KIQW_08eznN4yd6dIJ4WNEBOI0UwpMVmJTJiBEHWow3hFR_PzFLJbq07W-3iv1RZqwwR54mLhz6UHFXEakJkhlIPc5gNMuVLi7m1gnn09RVntkKu3BElNLqMGPVCKvP2-7vKD0JVPSvRMoGfX_vR0_YYd3zcZtf7rVau-8uXzGno4XRT4bAjxij6B5zg7HmuW32xfs13xUsuDhw6-SPBr7z793SWZFL_34OvLZTbtz18DBwHU8qQT4cnaVfb1d90me9QP6dstdU3PHFzTsugtQO_Jw5nOADR9tWG841U5bvWTLy4tvHxfZWEkhC9LkfRZCKYwvRTTBgCDPPqSm5O1Vy4qepc8LKILRLhZOKieikFBNQYMWMXonX7GDZt3Aa8bxQuW9p6-NXirldaVDNFL5qATkkBcT9u5-du1mMMywSDQIA_sHgwn7QBO_60Em16kBobcj9PZf0E_Ye4LN0lLsWxfc-EcBBkqmVnZW6qKQaiowqJN7ZO24RjsrUykAskGdsLMd2g8Effw_gn7DHk-phHCSqZ2wg769g7d4r-n9aUrh31_r-Dk priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWge1g48I0ILMgSK3HK1oljJzmhQllVSKz2QFfLKbKdcXdFaaokBXV_PTNpWiqQEBKXHCzbcjRjz7zk-Q1jxyozQljv0QI-DpMEdJhhUyjAeeVK0NYQUPx0pifT5OOluty7xU-0SoTi190hHYsUx8d5PIzSYZQNJebqw2Xp337vvyVh7MsQz2AIvs0OtMJsfMAOpmfnoy9UU247eqNKKhHdD-smSsmJSZp0Lw51cv1_Hsp32eFqsTTrH2Y-34s6p_eZ2a53Qzb5erJq7Ym7-U3K8X9e6AG716ekfLTxoYfsFiwescO-OvrV-jG7GfecGQxz_KIjYmP_8XXTEbro8yKvPB_N6p2OB04GpuEdH4FPRxfh-VXVdkSwb9DWa24WJTd8QtNWjYPSkFo0HwMseS_4OuNUpW3-hE1PP3x-Pwn7mg2hkzpqQ-cyoW0mvHYaBKkDIggmFbFS5vTMbJRC6rQyPjUyMcILCXkMCpTw3hr5lA0W1QKeMY6pm7WW_mtamSRW5cp5LRPrEwERRGnAXm8tWCw30hwFQhqyc_HLzgF7R8bd9SA57a6hqmdFvzsLaSHxkfSIfxEvQ2QjAKOMyzGF0L6UAXtDrlHQpm9r40x_dwEXSvJZxShTaSoTNG_AjrbeU_SnQVPIrugACa4G7HjnUX9Z9PN_6_aC3YmpHHFHeTtig7ZewUvMkVr7qt8GPwGJxwxn priority: 102 providerName: Unpaywall  | 
    
| Title | Determining Vertical Displacement of Agricultural Areas Using UAV-Photogrammetry and a Heteroscedastic Deep Learning Model | 
    
| URI | https://www.proquest.com/docview/3254634827 https://www.mdpi.com/2072-4292/17/18/3259/pdf?version=1758446273 https://doaj.org/article/3be4f13f210549e1b1eea5ac9cee6fd3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5KHbw9gny9YFwQp7MpUjf-VhDHdpFsYawraU7slI8ikdZHZmu4zsr59OsdPCoC8GCyGEfnc63en0O4CTMJGcK2MsAmbkBQFGXmKbPI7ahDrHSElyFC_m0WwZfL4Krw5g3r2FobTKbk90G3VeaoqRnwpH3E6klR82vz2qGkW3q10JDdmWVsjfO4qxQ-iPiBmrB_2z8_ni6z7qwoUVOR7seEqF9fdPq9qPSayJrPSOZXIE_v9v0w_h6KbYyO0fuV7fsUPTx_CoPUCydIf4EzjA4ikctbXMr7fP4O-kzXCxRoldurRp23_ys3bpVxQMZKVh6aras27YwVDWzGUPsGV66S2uy8albf3CptoyWeRMshkNW9Yac0nczmyCuGEtPeuKUU219XNYTs-_f5x5bYUFT4vIbzytEx6phJtIR8iJy8-6rMT5lYsxfRPlxxjrKJQmliKQ3HCB4xGGGHJjlBQvoFeUBb4EZg9aSim6hVQiCFQ4DrWxeCkTcPTRjwfwtlvdbLMj0sisA0IYZLcYDOCMFn7fg8ivXUNZrbJWlzKhMDC-MBZg692ir3xEGUo9tgY_MrkYwDuCLSMVbSqpZfvSwE6UyK6yNAnjWAQjbid13CGbtbpbZ7eSNoCTPdr3TPrV_aO8hgcjKhrsEtOOoddUN_jGnmQaNYTDZPppCP10cvHl27AV1qGLC9i_5XyR_vgHzGj51w | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHLY9VH2KpbS1VKqeIpzYeR1QtXRBS4EVqljELbWd8VJpSbZJENr-uP62erLOglSJG5ccrGhkecbzsMffR8hOmEjGlDFWAybwhIDIS-yQx0CbUOcQKYmF4uk4Gk3E98vwco387d7CYFtl5xNbR52XGs_Id3kL3I6glV_nvz1kjcLb1Y5CQzpqhXyvhRhzDzuOYXFrS7h672ho9f05CA4Pzr-NPMcy4Gke-Y2ndcIilTAT6QgY4tnZsg1xr3Ke4jdRfgyxjkJpYsmFZIZxSAMIIWTGKMmt3CdkQ3CR2uJvY_9gfPZjdcrDuDVxJpa4qJynbLeq_Ri3EYKj3ouELWHA_2HhGendFHO5uJWz2b24d_iCPHcJKx0sLewlWYPiFek57vSrxWvyZ-g6amwQpBdtm7b9f_irbtu98PCRloYOptUK5cMKA1nTtluBTgYX3tlV2bRtYtfQVAsqi5xKOkKxZa0hl4glTYcAc-rgYKcUOdxmb8jkUdb6LVkvygI2CbWJnVIKbz0VF0KFaaiNtQ9lBAMf_LhPPnWrm82XwB2ZLXhQB9mdDvpkHxd-9QeCbbcDZTXN3N7NuAJhfG5sdWyrafCVDyBDqVObYEQm533yBdWWoUtoKqmle9lgJ4rgWtkgCeOYi4DZSW13ms2cr6izO8vuk52Vth-Y9NbDUj6S3uj89CQ7ORofvyNPAyQsbpvitsl6U93Ae5tFNeqDM1VKfj727vgHcrsxFQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEE-xUMASRZyidWI7jwNCC8uypVD1wFa9ubYz3iItyZKkqpafxq_Dk022lZB66yUHKxpZnpfH_vwNIXsy1YwZ57wGXBQIAXGQ-qGAgXXS5hAbjYXi98N4OhNfT-TJFvnbv4VBWGUfE9tAnZcWz8iHvCVuR9LKoetgEUfjyYfl7wA7SOFNa99OY20iB7C68OVb_X5_7HX9Noomn398mgZdh4HA8jhsAmtTFpuUudjGwJDLzpdsyHmV8wy_qQkTSGwstUs0F5o5xiGLQIJkzhnNvdxb5HaCLO74Sn3yZXO-w7g3bibWjKicZ2xY1WGCDoS0qFdyYNsq4P-EcI_snBdLvbrQi8WVjDd5QO53W1U6WtvWQ7IFxSOy03VNP1s9Jn_GHZbGpz963AK0_f_jn3UL9MJjR1o6OppXG34PLwx0TVucAp2NjoOjs7JpAWK_oKlWVBc51XSKYsvaQq6RRZqOAZa0I4KdU-zetnhCZjey0k_JdlEW8IxQv6UzxuB9p-FCGJlJ67xlGCcYhBAmA_KmX121XFN2KF_qoA7UpQ4G5CMu_OYPpNluB8pqrjqvVdyAcCF3vi72dTSEJgTQUtvMby1il_MBeYdqUxgMmkpb3b1p8BNFWi01SmWScBExP6ndXrOqixK1urTpAdnbaPuaST-_Xsprcsf7hPq2f3jwgtyNsFNxi4bbJdtNdQ4v_fapMa9aO6Xk9KYd4x8fLS6v | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWge1g48I0ILMgSK3HK1oljJzmhQllVSKz2QFfLKbKdcXdFaaokBXV_PTNpWiqQEBKXHCzbcjRjz7zk-Q1jxyozQljv0QI-DpMEdJhhUyjAeeVK0NYQUPx0pifT5OOluty7xU-0SoTi190hHYsUx8d5PIzSYZQNJebqw2Xp337vvyVh7MsQz2AIvs0OtMJsfMAOpmfnoy9UU247eqNKKhHdD-smSsmJSZp0Lw51cv1_Hsp32eFqsTTrH2Y-34s6p_eZ2a53Qzb5erJq7Ym7-U3K8X9e6AG716ekfLTxoYfsFiwescO-OvrV-jG7GfecGQxz_KIjYmP_8XXTEbro8yKvPB_N6p2OB04GpuEdH4FPRxfh-VXVdkSwb9DWa24WJTd8QtNWjYPSkFo0HwMseS_4OuNUpW3-hE1PP3x-Pwn7mg2hkzpqQ-cyoW0mvHYaBKkDIggmFbFS5vTMbJRC6rQyPjUyMcILCXkMCpTw3hr5lA0W1QKeMY6pm7WW_mtamSRW5cp5LRPrEwERRGnAXm8tWCw30hwFQhqyc_HLzgF7R8bd9SA57a6hqmdFvzsLaSHxkfSIfxEvQ2QjAKOMyzGF0L6UAXtDrlHQpm9r40x_dwEXSvJZxShTaSoTNG_AjrbeU_SnQVPIrugACa4G7HjnUX9Z9PN_6_aC3YmpHHFHeTtig7ZewUvMkVr7qt8GPwGJxwxn | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Vertical+Displacement+of+Agricultural+Areas+Using+UAV-Photogrammetry+and+a+Heteroscedastic+Deep+Learning+Model&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gruszczy%C5%84ski+Wojciech&rft.au=Puniach+Edyta&rft.au=%C4%86wi%C4%85ka%C5%82a+Pawe%C5%82&rft.au=Matwij+Wojciech&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=18&rft.spage=3259&rft_id=info:doi/10.3390%2Frs17183259&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |