Determining Vertical Displacement of Agricultural Areas Using UAV-Photogrammetry and a Heteroscedastic Deep Learning Model

This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on poin...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 18; p. 3259
Main Authors Gruszczyński, Wojciech, Puniach, Edyta, Ćwiąkała, Paweł, Matwij, Wojciech
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2025
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs17183259

Cover

Abstract This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%.
AbstractList What are the main findings? * The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. * Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. What is the implication of the main finding? * The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. * The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%.
What are the main findings? The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal influence of vegetation. Among the tested conventional ground filters, Adaptive TIN achieved the best performance subsidence determination task. What is the implication of the main finding? The proposed approach provides slightly better performance than conventional ground filters in determining subsidence over agricultural areas. The accuracy and data density achieved with the U-Net model are sufficient for reliable assessment of subsidence-related risks in agricultural areas. This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%.
This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle (UAV)-photogrammetry point clouds, offering an alternative to traditional ground filtering methods. Unlike conventional ground filters that rely on point cloud classification, the proposed approach employs heteroscedastic regression. The U-Net model predicts the conditional expected values of the elevation corrections, aiming to reduce the impact of vegetation on determined ground surface elevations. Concurrently, it estimates the logarithm of the elevation correction variance, allowing for direct quantification of the uncertainty associated with each elevation correction value. The algorithm was evaluated using three metrics: the root mean square error (RMSE) of vertical displacements, the percentage of nodes with determined displacement values, and the percentage of outliers among those values. Performance was assessed using the technique for order of preference by similarity to ideal solution (TOPSIS) method and compared against several ground-filter-based algorithms across four datasets, each including at least two time intervals. In most cases, the U-Net-based approach demonstrated a slight performance advantage over traditional ground filtering techniques. For example, for the U-Net-based algorithm, for one of the test datasets, the RMSE of the determined subsidences was 6.1 cm, the percentage of nodes with determined subsidences was 80.5%, and the percentage of outliers was 0.2%. For the same case, the algorithm based on the next best model (SMRF) allowed an RMSE of 7.7 cm to be obtained; for 77.3% of nodes, the subsidences were determined; and the percentage of outliers was 0.3%.
Audience Academic
Author Ćwiąkała, Paweł
Matwij, Wojciech
Gruszczyński, Wojciech
Puniach, Edyta
Author_xml – sequence: 1
  givenname: Wojciech
  orcidid: 0000-0001-7810-5855
  surname: Gruszczyński
  fullname: Gruszczyński, Wojciech
– sequence: 2
  givenname: Edyta
  orcidid: 0000-0003-0607-0432
  surname: Puniach
  fullname: Puniach, Edyta
– sequence: 3
  givenname: Paweł
  orcidid: 0000-0001-5526-0908
  surname: Ćwiąkała
  fullname: Ćwiąkała, Paweł
– sequence: 4
  givenname: Wojciech
  orcidid: 0000-0002-4008-2704
  surname: Matwij
  fullname: Matwij, Wojciech
BookMark eNp9UU1v1DAQjVCRKKUXfoElbqAUf-TLx6gLtNJW7aHbqzVxxsGrJA52omr59TgNAk7Ykseaee95xu9tcja6EZPkPaNXQkj62QdWskrwXL5KzjkteZpxyc_-ub9JLkM40riEYJJm58nPHc7oBzvasSNP6GeroSc7G6YeNA44zsQZUnfe6qWfFx-LtUcI5BBWxqF-Sh--u9l1HoYBZ38iMLYEyM0q64LGFkLUJDvEiewR_MtDd67F_l3y2kAf8PJ3vEgOX788Xt-k-_tvt9f1PtWiYHOqdUWLpqKm0AXSXFacCSEqRlsh17NqWImlLnIwJYgMqKECJcccc2pMA-Iiud10WwdHNXk7gD8pB1a9JJzvFKxz96hEg5lhwnBG80wiaxgi5KClRixMK6LWp01rGSc4PUPf_xFkVK0uqL8uRPSHDT1592PBMKujW_wYh1WxnhUiq3gZUVcbqoPYgh2Nmz3ouFscrI4WGxvzdZWXpciilZHwcSPo-MPBo_lfD78A4JGmvw
Cites_doi 10.1117/1.JRS.15.024505
10.1007/978-3-319-24574-4_28
10.1109/ICNN.1994.374138
10.1016/j.measurement.2025.117431
10.1109/ACCESS.2020.2967410
10.1016/j.isprsjprs.2023.06.005
10.1111/phor.12490
10.3390/rs16224283
10.1016/j.measurement.2024.115944
10.1016/j.isprsjprs.2014.02.014
10.1109/JSTARS.2011.2132793
10.1016/j.isprsjprs.2012.12.002
10.1109/TGRS.2006.890412
10.3390/rs8060501
10.1109/CVPR46437.2021.01427
10.5194/isprs-annals-IV-1-W1-3-2017
10.1016/0305-0548(93)90109-V
10.1016/j.measurement.2021.109482
10.3390/rs14020421
10.5194/isprsannals-III-3-177-2016
10.1016/S0924-2716(98)00009-4
10.14358/PERS.74.5.625
10.1109/CVPR42600.2020.01112
10.3390/rs12111733
10.1038/nature14539
10.1109/TGRS.2003.810682
10.1016/j.enggeo.2022.106939
10.1109/ICCV.2019.00651
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs17183259
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3be4f13f210549e1b1eea5ac9cee6fd3
10.3390/rs17183259
A857734207
10_3390_rs17183259
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-cc806b80f6c6e059821333810d39810d8b17e7c65af7a34a0f03e92e5e50ffba3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Tue Oct 14 19:03:01 EDT 2025
Thu Sep 25 05:41:35 EDT 2025
Fri Sep 26 22:45:39 EDT 2025
Tue Oct 07 10:03:46 EDT 2025
Thu Oct 16 04:34:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-cc806b80f6c6e059821333810d39810d8b17e7c65af7a34a0f03e92e5e50ffba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5526-0908
0000-0003-0607-0432
0000-0001-7810-5855
0000-0002-4008-2704
OpenAccessLink https://www.proquest.com/docview/3254634827?pq-origsite=%requestingapplication%&accountid=15518
PQID 3254634827
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3be4f13f210549e1b1eea5ac9cee6fd3
unpaywall_primary_10_3390_rs17183259
proquest_journals_3254634827
gale_infotracacademiconefile_A857734207
crossref_primary_10_3390_rs17183259
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_7) 2025; 242
Puniach (ref_25) 2022; 60
Zhang (ref_11) 2003; 41
Zhan (ref_5) 2024; 39
ref_19
ref_18
Puniach (ref_32) 2023; 312
ref_17
Shao (ref_13) 2008; 5
Zhou (ref_2) 2020; 8
Pingel (ref_15) 2013; 77
Matwij (ref_31) 2021; 180
Hu (ref_16) 2014; 92
(ref_34) 2019; 16
ref_23
ref_22
ref_21
ref_20
Hwang (ref_30) 1993; 20
LeCun (ref_27) 2015; 521
Evans (ref_12) 2007; 45
Zoej (ref_14) 2011; 4
ref_1
Qin (ref_24) 2023; 202
ref_29
Kraus (ref_10) 1998; 53
ref_28
Puniach (ref_33) 2025; 253
ref_26
ref_9
Lian (ref_3) 2021; 15
ref_8
ref_4
ref_6
References_xml – volume: 15
  start-page: 024505
  year: 2021
  ident: ref_3
  article-title: Time-series unmanned aerial vehicle photogrammetry monitoring method without ground control points to measure mining subsidence
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.15.024505
– ident: ref_9
– ident: ref_26
  doi: 10.1007/978-3-319-24574-4_28
– volume: 60
  start-page: 5601518
  year: 2022
  ident: ref_25
  article-title: Correction of Low Vegetation Impact on UAV-Derived Point Cloud Heights with U-Net Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_28
  doi: 10.1109/ICNN.1994.374138
– volume: 253
  start-page: 117431
  year: 2025
  ident: ref_33
  article-title: Determining ground surface deformation indices in urbanized mining areas based on UAV-photogrammetry products
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.117431
– volume: 8
  start-page: 16372
  year: 2020
  ident: ref_2
  article-title: Unmanned Aerial Vehicle (UAV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2967410
– volume: 202
  start-page: 246
  year: 2023
  ident: ref_24
  article-title: Deep learning for filtering the ground fromALS point clouds: A dataset, evaluations and issues
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.06.005
– volume: 39
  start-page: 373
  year: 2024
  ident: ref_5
  article-title: Comparative analysis of surface deformation monitoring in a mining area based on UAV-lidar and UAV photogrammetry
  publication-title: Photogramm. Rec.
  doi: 10.1111/phor.12490
– ident: ref_6
  doi: 10.3390/rs16224283
– volume: 242
  start-page: 115944
  year: 2025
  ident: ref_7
  article-title: UAV-MSSH: A novel UAV photogrammetry-based framework for mining surface three-dimensional movement basin monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115944
– volume: 92
  start-page: 98
  year: 2014
  ident: ref_16
  article-title: An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.02.014
– volume: 4
  start-page: 836
  year: 2011
  ident: ref_14
  article-title: A Novel Filtering Algorithm for Bare-Earth Extraction From Airborne Laser Scanning Data Using an Artificial Neural Network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2132793
– volume: 77
  start-page: 21
  year: 2013
  ident: ref_15
  article-title: An improved simple morphological filter for the terrain classification of airborne LIDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.12.002
– volume: 45
  start-page: 1029
  year: 2007
  ident: ref_12
  article-title: A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.890412
– ident: ref_17
  doi: 10.3390/rs8060501
– ident: ref_22
  doi: 10.1109/CVPR46437.2021.01427
– ident: ref_19
  doi: 10.5194/isprs-annals-IV-1-W1-3-2017
– volume: 20
  start-page: 889
  year: 1993
  ident: ref_30
  article-title: A new approach for multiple objective decision making
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(93)90109-V
– volume: 180
  start-page: 109482
  year: 2021
  ident: ref_31
  article-title: Determination of underground mining-induced displacement field using multi-temporal TLS point cloud registration
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109482
– ident: ref_8
– ident: ref_4
  doi: 10.3390/rs14020421
– ident: ref_29
– ident: ref_18
  doi: 10.5194/isprsannals-III-3-177-2016
– volume: 53
  start-page: 193
  year: 1998
  ident: ref_10
  article-title: Determination of terrain models in wooded areas with airborne laser scanner data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(98)00009-4
– volume: 5
  start-page: 625
  year: 2008
  ident: ref_13
  article-title: Automated Searching of Ground Points from Airborne Lidar Data Using a Climbing and Sliding Method
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.5.625
– ident: ref_23
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref_1
  doi: 10.3390/rs12111733
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_27
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 41
  start-page: 872
  year: 2003
  ident: ref_11
  article-title: A Progressive Morphological Filter for Removing Nonground Measurements From Airborne LIDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.810682
– ident: ref_20
– volume: 312
  start-page: 106939
  year: 2023
  ident: ref_32
  article-title: Determination of the coefficient of proportionality between horizontal displacement and tilt change using UAV photogrammetry
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106939
– volume: 16
  start-page: 211
  year: 2019
  ident: ref_34
  article-title: Uncertainty in determining the parameters of the surface deformation model
  publication-title: Acta Geodyn. Et Geomater.
– ident: ref_21
  doi: 10.1109/ICCV.2019.00651
SSID ssj0000331904
Score 2.4092455
Snippet This article introduces an algorithm that uses a U-Net architecture to determine vertical ground surface displacements from unmanned aerial vehicle...
What are the main findings? * The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal...
What are the main findings? The U-Net model predicts elevation corrections and quantifies their uncertainty, enabling subsidence determination with minimal...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3259
SubjectTerms Accuracy
Aerial photography
Algorithms
Classification
Datasets
Deep learning
Drone aircraft
Filters
Filtration
ground filters
heteroscedastic regression
Machine learning
Neural networks
Nodes
performance ranking
Photogrammetry
point cloud
Risk assessment
Root-mean-square errors
Subsidence
U-Net
Uncertainty
Unmanned aerial vehicles
Vegetation
vertical displacements
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUll7SH0vSDbpoGQQM9mcirD9vHbTdhKbT00A25CUkeJYWtd7EdyvbXd0Z2tguF9NKLD0KIQW_08eznN4yd6dIJ4WNEBOI0UwpMVmJTJiBEHWow3hFR_PzFLJbq07W-3iv1RZqwwR54mLhz6UHFXEakJkhlIPc5gNMuVLi7m1gnn09RVntkKu3BElNLqMGPVCKvP2-7vKD0JVPSvRMoGfX_vR0_YYd3zcZtf7rVau-8uXzGno4XRT4bAjxij6B5zg7HmuW32xfs13xUsuDhw6-SPBr7z793SWZFL_34OvLZTbtz18DBwHU8qQT4cnaVfb1d90me9QP6dstdU3PHFzTsugtQO_Jw5nOADR9tWG841U5bvWTLy4tvHxfZWEkhC9LkfRZCKYwvRTTBgCDPPqSm5O1Vy4qepc8LKILRLhZOKieikFBNQYMWMXonX7GDZt3Aa8bxQuW9p6-NXirldaVDNFL5qATkkBcT9u5-du1mMMywSDQIA_sHgwn7QBO_60Em16kBobcj9PZf0E_Ye4LN0lLsWxfc-EcBBkqmVnZW6qKQaiowqJN7ZO24RjsrUykAskGdsLMd2g8Effw_gn7DHk-phHCSqZ2wg769g7d4r-n9aUrh31_r-Dk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWge1g48I0ILMgSK3HK1oljJzmhQllVSKz2QFfLKbKdcXdFaaokBXV_PTNpWiqQEBKXHCzbcjRjz7zk-Q1jxyozQljv0QI-DpMEdJhhUyjAeeVK0NYQUPx0pifT5OOluty7xU-0SoTi190hHYsUx8d5PIzSYZQNJebqw2Xp337vvyVh7MsQz2AIvs0OtMJsfMAOpmfnoy9UU247eqNKKhHdD-smSsmJSZp0Lw51cv1_Hsp32eFqsTTrH2Y-34s6p_eZ2a53Qzb5erJq7Ym7-U3K8X9e6AG716ekfLTxoYfsFiwescO-OvrV-jG7GfecGQxz_KIjYmP_8XXTEbro8yKvPB_N6p2OB04GpuEdH4FPRxfh-VXVdkSwb9DWa24WJTd8QtNWjYPSkFo0HwMseS_4OuNUpW3-hE1PP3x-Pwn7mg2hkzpqQ-cyoW0mvHYaBKkDIggmFbFS5vTMbJRC6rQyPjUyMcILCXkMCpTw3hr5lA0W1QKeMY6pm7WW_mtamSRW5cp5LRPrEwERRGnAXm8tWCw30hwFQhqyc_HLzgF7R8bd9SA57a6hqmdFvzsLaSHxkfSIfxEvQ2QjAKOMyzGF0L6UAXtDrlHQpm9r40x_dwEXSvJZxShTaSoTNG_AjrbeU_SnQVPIrugACa4G7HjnUX9Z9PN_6_aC3YmpHHFHeTtig7ZewUvMkVr7qt8GPwGJxwxn
  priority: 102
  providerName: Unpaywall
Title Determining Vertical Displacement of Agricultural Areas Using UAV-Photogrammetry and a Heteroscedastic Deep Learning Model
URI https://www.proquest.com/docview/3254634827
https://www.mdpi.com/2072-4292/17/18/3259/pdf?version=1758446273
https://doaj.org/article/3be4f13f210549e1b1eea5ac9cee6fd3
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5KHbw9gny9YFwQp7MpUjf-VhDHdpFsYawraU7slI8ikdZHZmu4zsr59OsdPCoC8GCyGEfnc63en0O4CTMJGcK2MsAmbkBQFGXmKbPI7ahDrHSElyFC_m0WwZfL4Krw5g3r2FobTKbk90G3VeaoqRnwpH3E6klR82vz2qGkW3q10JDdmWVsjfO4qxQ-iPiBmrB_2z8_ni6z7qwoUVOR7seEqF9fdPq9qPSayJrPSOZXIE_v9v0w_h6KbYyO0fuV7fsUPTx_CoPUCydIf4EzjA4ikctbXMr7fP4O-kzXCxRoldurRp23_ys3bpVxQMZKVh6aras27YwVDWzGUPsGV66S2uy8albf3CptoyWeRMshkNW9Yac0nczmyCuGEtPeuKUU219XNYTs-_f5x5bYUFT4vIbzytEx6phJtIR8iJy8-6rMT5lYsxfRPlxxjrKJQmliKQ3HCB4xGGGHJjlBQvoFeUBb4EZg9aSim6hVQiCFQ4DrWxeCkTcPTRjwfwtlvdbLMj0sisA0IYZLcYDOCMFn7fg8ivXUNZrbJWlzKhMDC-MBZg692ir3xEGUo9tgY_MrkYwDuCLSMVbSqpZfvSwE6UyK6yNAnjWAQjbid13CGbtbpbZ7eSNoCTPdr3TPrV_aO8hgcjKhrsEtOOoddUN_jGnmQaNYTDZPppCP10cvHl27AV1qGLC9i_5XyR_vgHzGj51w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHLY9VH2KpbS1VKqeIpzYeR1QtXRBS4EVqljELbWd8VJpSbZJENr-uP62erLOglSJG5ccrGhkecbzsMffR8hOmEjGlDFWAybwhIDIS-yQx0CbUOcQKYmF4uk4Gk3E98vwco387d7CYFtl5xNbR52XGs_Id3kL3I6glV_nvz1kjcLb1Y5CQzpqhXyvhRhzDzuOYXFrS7h672ho9f05CA4Pzr-NPMcy4Gke-Y2ndcIilTAT6QgY4tnZsg1xr3Ke4jdRfgyxjkJpYsmFZIZxSAMIIWTGKMmt3CdkQ3CR2uJvY_9gfPZjdcrDuDVxJpa4qJynbLeq_Ri3EYKj3ouELWHA_2HhGendFHO5uJWz2b24d_iCPHcJKx0sLewlWYPiFek57vSrxWvyZ-g6amwQpBdtm7b9f_irbtu98PCRloYOptUK5cMKA1nTtluBTgYX3tlV2bRtYtfQVAsqi5xKOkKxZa0hl4glTYcAc-rgYKcUOdxmb8jkUdb6LVkvygI2CbWJnVIKbz0VF0KFaaiNtQ9lBAMf_LhPPnWrm82XwB2ZLXhQB9mdDvpkHxd-9QeCbbcDZTXN3N7NuAJhfG5sdWyrafCVDyBDqVObYEQm533yBdWWoUtoKqmle9lgJ4rgWtkgCeOYi4DZSW13ms2cr6izO8vuk52Vth-Y9NbDUj6S3uj89CQ7ORofvyNPAyQsbpvitsl6U93Ae5tFNeqDM1VKfj727vgHcrsxFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEE-xUMASRZyidWI7jwNCC8uypVD1wFa9ubYz3iItyZKkqpafxq_Dk022lZB66yUHKxpZnpfH_vwNIXsy1YwZ57wGXBQIAXGQ-qGAgXXS5hAbjYXi98N4OhNfT-TJFvnbv4VBWGUfE9tAnZcWz8iHvCVuR9LKoetgEUfjyYfl7wA7SOFNa99OY20iB7C68OVb_X5_7HX9Noomn398mgZdh4HA8jhsAmtTFpuUudjGwJDLzpdsyHmV8wy_qQkTSGwstUs0F5o5xiGLQIJkzhnNvdxb5HaCLO74Sn3yZXO-w7g3bibWjKicZ2xY1WGCDoS0qFdyYNsq4P-EcI_snBdLvbrQi8WVjDd5QO53W1U6WtvWQ7IFxSOy03VNP1s9Jn_GHZbGpz963AK0_f_jn3UL9MJjR1o6OppXG34PLwx0TVucAp2NjoOjs7JpAWK_oKlWVBc51XSKYsvaQq6RRZqOAZa0I4KdU-zetnhCZjey0k_JdlEW8IxQv6UzxuB9p-FCGJlJ67xlGCcYhBAmA_KmX121XFN2KF_qoA7UpQ4G5CMu_OYPpNluB8pqrjqvVdyAcCF3vi72dTSEJgTQUtvMby1il_MBeYdqUxgMmkpb3b1p8BNFWi01SmWScBExP6ndXrOqixK1urTpAdnbaPuaST-_Xsprcsf7hPq2f3jwgtyNsFNxi4bbJdtNdQ4v_fapMa9aO6Xk9KYd4x8fLS6v
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWge1g48I0ILMgSK3HK1oljJzmhQllVSKz2QFfLKbKdcXdFaaokBXV_PTNpWiqQEBKXHCzbcjRjz7zk-Q1jxyozQljv0QI-DpMEdJhhUyjAeeVK0NYQUPx0pifT5OOluty7xU-0SoTi190hHYsUx8d5PIzSYZQNJebqw2Xp337vvyVh7MsQz2AIvs0OtMJsfMAOpmfnoy9UU247eqNKKhHdD-smSsmJSZp0Lw51cv1_Hsp32eFqsTTrH2Y-34s6p_eZ2a53Qzb5erJq7Ym7-U3K8X9e6AG716ekfLTxoYfsFiwescO-OvrV-jG7GfecGQxz_KIjYmP_8XXTEbro8yKvPB_N6p2OB04GpuEdH4FPRxfh-VXVdkSwb9DWa24WJTd8QtNWjYPSkFo0HwMseS_4OuNUpW3-hE1PP3x-Pwn7mg2hkzpqQ-cyoW0mvHYaBKkDIggmFbFS5vTMbJRC6rQyPjUyMcILCXkMCpTw3hr5lA0W1QKeMY6pm7WW_mtamSRW5cp5LRPrEwERRGnAXm8tWCw30hwFQhqyc_HLzgF7R8bd9SA57a6hqmdFvzsLaSHxkfSIfxEvQ2QjAKOMyzGF0L6UAXtDrlHQpm9r40x_dwEXSvJZxShTaSoTNG_AjrbeU_SnQVPIrugACa4G7HjnUX9Z9PN_6_aC3YmpHHFHeTtig7ZewUvMkVr7qt8GPwGJxwxn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Vertical+Displacement+of+Agricultural+Areas+Using+UAV-Photogrammetry+and+a+Heteroscedastic+Deep+Learning+Model&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gruszczy%C5%84ski+Wojciech&rft.au=Puniach+Edyta&rft.au=%C4%86wi%C4%85ka%C5%82a+Pawe%C5%82&rft.au=Matwij+Wojciech&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=18&rft.spage=3259&rft_id=info:doi/10.3390%2Frs17183259&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon