Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation
The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control appro...
Saved in:
| Published in | Energies (Basel) Vol. 11; no. 12; p. 3346 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en11123346 |
Cover
| Abstract | The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control. |
|---|---|
| AbstractList | The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control. [...]wind farm-scale flow models used in power controllers can provide accurate predictions of wind speed at wind turbines, which can be employed to estimate a turbine’s available power or fatigue load dynamically. [...]a matrix update is performed if the following condition is satisfied: ϵupd<|x−x0|x0, where x represents a relevant system condition, such as wind conditions and turbine operation point, and x0 the linearization point of that condition. ϵupd is the update limit. [...]it is the aim to choose the update limit so that deviations from the operation point are small and the linear model remains representative of the behavior of the real system. [...]the two-turbine case study, the above investigations show the benefit of the Kalman filter and the dynamic model update, and the suitability of the DFP for different wake situations. 3.2. |
| Author | Cutululis, Nicolaos Antonio Kazda, Jonas |
| Author_xml | – sequence: 1 givenname: Jonas orcidid: 0000-0002-1532-7255 surname: Kazda fullname: Kazda, Jonas – sequence: 2 givenname: Nicolaos Antonio orcidid: 0000-0003-2438-1429 surname: Cutululis fullname: Cutululis, Nicolaos Antonio |
| BookMark | eNp9kMFqGzEQhkVwII7jS55A0FvDptJK1q6OxY0TFwdfEnIUs9JskVlLrlYm-O2zsUNbSqkuo5n552PmvySjEAMScs3ZrRCafcHAOS-FkOqMjLnWquCsEqM__hdk2vcbNjwhuBBiTL4voM90HkNOsSvWyWPI6Oi3Q4Ctt3TlA0Kij9FhR2NLX3xwdAFpSxddfKUwZOsdJsg-hity3kLX4_QjTsjz4u5p_lCs1vfL-ddVYYXiubDK1rpqYKax1KxpNEBjXcWksxwaUJpZjgiuZjPe8kZqUVpX49DSA0AzMSHLE9dF2Jhd8ltIBxPBm2Mhph8GUva2Q8MAUFV1g7VTssGylq1kTs1K6SqFVg-smxNrH3ZweIWu-wXkzLy7an67Oqg_ndS7FH_usc9mE_cpDMeaUnAlSz7TclCxk8qm2PcJW2N9PjqUE_ju3-DPf438Z4s3Qb2UuA |
| CitedBy_id | crossref_primary_10_5194_wes_5_439_2020 crossref_primary_10_1049_rpg2_13149 crossref_primary_10_1109_TCST_2019_2923779 crossref_primary_10_1049_rpg2_12160 crossref_primary_10_1063_1_5127268 |
| Cites_doi | 10.5194/wes-3-11-2018 10.1016/0167-6105(95)00033-X 10.1109/TCST.2016.2572170 10.1016/j.jweia.2012.04.024 10.1088/1742-6596/524/1/012186 10.1002/we.1564 10.1088/1742-6596/753/3/032005 10.1088/1742-6596/1104/1/012036 10.1016/j.rser.2013.12.054 10.1002/we.1891 10.1002/we.1822 10.1002/we.1594 10.1016/j.energy.2015.08.045 10.1016/j.jweia.2016.04.004 10.2172/947422 10.3390/en10060742 10.1002/we.189 10.1002/we.2279 10.23919/ACC.2018.8431764 10.1002/we.1805 10.1109/ACC.2009.5160195 10.1016/j.renene.2005.05.011 10.1002/we.491 10.5194/wes-3-75-2018 10.1109/ACC.2015.7170978 10.1115/1.3658902 10.1016/j.paerosci.2006.10.002 10.1002/we.1533 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/en11123346 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9 10.3390/en11123346 10_3390_en11123346 |
| GeographicLocations | Denmark United States--US |
| GeographicLocations_xml | – name: Denmark – name: United States--US |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO IPNFZ KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RIG TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 2XV ADTOC C1A ITC UNPAY |
| ID | FETCH-LOGICAL-c361t-c6c897ba59e290bb9aabcd704dc1aba690c1eead8051f1b4932cd8eaba9c36903 |
| IEDL.DBID | DOA |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:03:00 EDT 2025 Tue Aug 19 09:19:28 EDT 2025 Mon Oct 20 02:52:24 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Thu Oct 16 04:22:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-c6c897ba59e290bb9aabcd704dc1aba690c1eead8051f1b4932cd8eaba9c36903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2438-1429 0000-0002-1532-7255 |
| OpenAccessLink | https://doaj.org/article/0aae678be8d64be284f40d6524d76ec9 |
| PQID | 2316421594 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9 unpaywall_primary_10_3390_en11123346 proquest_journals_2316421594 crossref_citationtrail_10_3390_en11123346 crossref_primary_10_3390_en11123346 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kalman (ref_33) 1961; 83 Annoni (ref_6) 2016; 19 Crespo (ref_14) 1996; 61 ref_36 ref_13 Shapiro (ref_23) 2018; 3 ref_35 Kazda (ref_5) 2016; 154 ref_34 ref_11 Schlipf (ref_17) 2013; 16 ref_30 Soleimanzadeh (ref_10) 2012; 107–108 Boersma (ref_26) 2018; 3 ref_39 Mikkelsen (ref_16) 2013; 16 ref_38 ref_37 Knudsen (ref_20) 2011; 14 Soleimanzadeh (ref_19) 2014; 17 Pao (ref_8) 2017; 50 Gebraad (ref_24) 2014; 524 Riverso (ref_15) 2017; 25 Hansen (ref_3) 2006; 42 Jung (ref_22) 2014; 31 ref_25 ref_1 Gebraad (ref_12) 2016; 19 Wang (ref_21) 2015; 93 ref_2 ref_29 Frandsen (ref_32) 2006; 9 ref_28 ref_27 Kazda (ref_9) 2018; 1104 Hansen (ref_7) 2006; 31 Machefaux (ref_31) 2015; 18 ref_4 Boersma (ref_18) 2016; 753 |
| References_xml | – ident: ref_30 – volume: 3 start-page: 11 year: 2018 ident: ref_23 article-title: Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control publication-title: Wind Energy Sci. doi: 10.5194/wes-3-11-2018 – ident: ref_34 – ident: ref_11 – volume: 61 start-page: 71 year: 1996 ident: ref_14 article-title: Turbulence characteristics in wind-turbine wakes publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(95)00033-X – volume: 25 start-page: 535 year: 2017 ident: ref_15 article-title: Model predictive controllers for reduction of mechanical fatigue in wind farms publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2572170 – volume: 107–108 start-page: 256 year: 2012 ident: ref_10 article-title: An optimization framework for load and power distribution in wind farms publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2012.04.024 – volume: 524 start-page: 012186 year: 2014 ident: ref_24 article-title: A Control-oriented dynamic model for wakes in wind plants publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/524/1/012186 – volume: 50 start-page: 4484 year: 2017 ident: ref_8 article-title: Active power control of waked wind farms publication-title: IFAC-PapersOnLine – ident: ref_39 – volume: 16 start-page: 625 year: 2013 ident: ref_16 article-title: A Spinner-integrated wind lidar for enhanced wind turbine control publication-title: Wind Energy doi: 10.1002/we.1564 – ident: ref_37 – ident: ref_1 – volume: 753 start-page: 032005 year: 2016 ident: ref_18 article-title: A control-oriented dynamic wind farm flow model: “WFSim” publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/753/3/032005 – ident: ref_35 – volume: 1104 start-page: 012036 year: 2018 ident: ref_9 article-title: Mitigating turbine mechanical loads using engineering model predictive wind farm controller publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1104/1/012036 – volume: 31 start-page: 762 year: 2014 ident: ref_22 article-title: Current status and future advances for wind speed and power forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.054 – volume: 19 start-page: 1135 year: 2016 ident: ref_6 article-title: Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model publication-title: Wind Energy doi: 10.1002/we.1891 – volume: 19 start-page: 95 year: 2016 ident: ref_12 article-title: Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study publication-title: Wind Energy doi: 10.1002/we.1822 – volume: 17 start-page: 627 year: 2014 ident: ref_19 article-title: State-space representation of the wind flow model in wind farms publication-title: Wind Energy doi: 10.1002/we.1594 – volume: 93 start-page: 41 year: 2015 ident: ref_21 article-title: A robust combination approach for short-term wind speed forecasting and analysis—Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) Forecasts Using a GPR (Gaussian Process Regression) Model publication-title: Energy doi: 10.1016/j.energy.2015.08.045 – volume: 154 start-page: 76 year: 2016 ident: ref_5 article-title: Mitigating adverse wake effects in a wind farm using non-optimum operational conditions publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2016.04.004 – ident: ref_36 doi: 10.2172/947422 – ident: ref_29 – ident: ref_2 doi: 10.3390/en10060742 – volume: 9 start-page: 39 year: 2006 ident: ref_32 article-title: Analytical modelling of wind speed deficit in large offshore wind farms publication-title: Wind Energy doi: 10.1002/we.189 – ident: ref_25 doi: 10.1002/we.2279 – ident: ref_28 doi: 10.23919/ACC.2018.8431764 – volume: 18 start-page: 2085 year: 2015 ident: ref_31 article-title: Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements publication-title: Wind Energy doi: 10.1002/we.1805 – ident: ref_4 doi: 10.1109/ACC.2009.5160195 – ident: ref_13 – volume: 31 start-page: 935 year: 2006 ident: ref_7 article-title: Centralised power control of wind farm with doubly fed induction generators publication-title: Renew. Energy doi: 10.1016/j.renene.2005.05.011 – ident: ref_38 – volume: 14 start-page: 877 year: 2011 ident: ref_20 article-title: Prediction models for wind speed at turbine locations in a wind farm publication-title: Wind Energy doi: 10.1002/we.491 – volume: 3 start-page: 75 year: 2018 ident: ref_26 article-title: A Control-oriented dynamic wind farm model: WFSim publication-title: Wind Energy Sci. doi: 10.5194/wes-3-75-2018 – ident: ref_27 doi: 10.1109/ACC.2015.7170978 – volume: 83 start-page: 95 year: 1961 ident: ref_33 article-title: New results in linear filtering and prediction theory publication-title: J. Basic Eng. doi: 10.1115/1.3658902 – volume: 42 start-page: 285 year: 2006 ident: ref_3 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2006.10.002 – volume: 16 start-page: 1107 year: 2013 ident: ref_17 article-title: Nonlinear model predictive control of wind turbines using LIDAR publication-title: Wind Energy doi: 10.1002/we.1533 |
| SSID | ssj0000331333 |
| Score | 2.2066903 |
| Snippet | The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate... [...]wind farm-scale flow models used in power controllers can provide accurate predictions of wind speed at wind turbines, which can be employed to estimate a... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3346 |
| SubjectTerms | Alternative energy sources control Control algorithms dynamic flow model Energy industry Engineering Kalman filter Kalman filters Laboratories linear Offshore Optimization Power plants prediction Turbines wind farm Wind farms Wind power |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC50POgexCc7uyoNevHQ2El3Hn1YxJk1iOAoougt9CteYjI7joj_3upJMo6weEzSNKG6quurfnwfwBFifCwCmKQJ5g7qOaSo5sJSlWC-iphJksLfd74axRf34vIxelyCUXcXxh-r7ObE2URta-PXyE8Qh_g7mZEUp-N_1KtG-d3VTkJDtdIK9s-MYmwZVkLPjNWDlcH56OZ2vurCOMeijDc8pRzr_RNXYbSHnHsEvJCZZgT-X1Dn6ms1Vu9vqiwXElC2AestciRnzVBvwpKrtuDHAp_gNlxm6mVKhs3pc3rtKYwRUJK_jeo8wboT_Zp4-bOS1AV5wHqcZGryTLKyfiMKn67HrnGJHbjPzu-GF7QVS6CGx8GUmtikMtEqki6UTGuplDY2YcKaQGmFRbAJHLpNilFYBFogbjM2dfhJYgeS8V3oVXXlfgIJLStszLgo4kR4KmMjOXaaBipQhpuoD8edoXLTMol7QYsyx4rCGzX_NGofDudtxw1_xn9bDby95y085_XsRT15ytsQyplSDlOrdqmNhXaYVwvBbByFwiaxM7IPe91o5W0gvuSfbtOHo_kIfvMrv77v5TesIWRKmwMte9CbTl7dPsKSqT5ofe0DdCDf0w priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAc-EYsFGSJXjiksWPHjk-oFKKqEi0HVpRT5K9UiJBdbbNU8OsZJ9llixBC4phkYjmamcx7yfgZYA8xPpIAqhOFtSOJGlKJ5cInRmG9yqlTqo7rnd-dyKOZOD7Lz7ZW8ce2SqTin_uXdN8hi_yEp4ylLEs5FzJd-PrVt_FbEtb_qNaiOL8OOzJHND6BndnJ-4NP_c_k8e5BlZQju09Di7mdxXGu1KFerv8Kxryxahfm-6Vpmq1yU94Bs57o0GXyZX_V2X334zcNx_95krtwe8Si5GAInntwLbT34daWQuEDOC7NRUcOh3725DSKIiNEJW-GfewJMlnMFBI3VGvIvCYfkeGT0iy_krKZXxKDR6eLMATZQ5iVbz8cHiXj9guJ45J1iZOu0MqaXIdMU2u1MdZ5RYV3zFiDtNqxgIFYYF7XzApEgs4XAS9pHEBT_ggm7bwNj4FkntZeUi5qqUQUR3aa46AFM8w47vIpvFw7o3KjNnncIqOpkKNEx1W_HDeFFxvbxaDI8Uer19GnG4uoot2fmC_PqzEpK2pMwGJtQ-GlsAErdS2ol3kmvJLB6SnsriOiGlP7okJAHBcH51pMYW8TJX-ZypN_M3sKNxGMFUOrzC5MuuUqPEPA09nnY0z_BACi91w priority: 102 providerName: Unpaywall |
| Title | Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation |
| URI | https://www.proquest.com/docview/2316421594 https://www.mdpi.com/1996-1073/11/12/3346/pdf?version=1543578733 https://doaj.org/article/0aae678be8d64be284f40d6524d76ec9 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HNSD-MT1sQT04qGYbtJHjr6qCK4iLq6nkldPtbvoivjvnTR1rSB68VJoEkKYSTLfB5NvAA4Q4yMJoCJIMHYETkMqUIybQCYYryKqk6Rw752v-_HlgF8No2Gr1JfLCfPywN5wR1RKixeqsqmJubJ4mxacmjjqcZPEVtdP92gqWmSqvoMZQ_LFvB4pQ15_ZCs81T3GHNJtRaBaqP8bulx4rcby_U2WZSvQZCuw3CBEcuxXtgoztlqDpZZu4DpcZfJlQk59lnlw46SKETiSM19dniC_xP1LXJmzkowK8oC8m2Ty-Ylk5eiNSPy7GVvv-g0YZOf3p5dBUxQh0CwOJ4GOdSoSJSNhe4IqJaRU2iSUGx1KJZHs6tDi9kjxtBWh4ojPtEktdgmcQFC2CXPVqLJbQHqGFiamjBdxwp1ksRYMJ01DGUrNdNSBw09D5bpRDHeFK8ocmYMzav5l1A7sT8eOvU7Gj6NOnL2nI5y2dd2AHs8bj-d_ebwDu5_eypsD95IjTHVPdiPBO3Aw9eAvS9n-j6XswCICqNSnt-zC3OT51e4hSJmoLsym2UUX5k_O-7d33Xp34vdiGGLboH97_PgBAhXnjw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOFfShbkvBUumhBwsndh4-oKo8ouW1VBWo3FK_wiVNtruLVvy5_raON8mySIgbxyTWKBqPPd8knu8D2EGMj0UAkzTB3EE9hxTVXFiqEsxXETNJUvh-5_NB3L8SJ9fR9RL863ph_LHKbk-cbdS2Nv4b-S7iEN-TGUnxbfiXetUo_3e1k9BQrbSC3ZtRjLWNHafubool3Hjv-BDn-0sYZkeXB33aqgxQw-NgQk1sUploFUkXSqa1VEobmzBhTaC0wurRBA79nWL4FoEWCHiMTR0-kmhAMo52X8CK4EJi8beyfzT48XP-lYdxjkUgb3hROZds11W4u4Sce8S9kAlnggEPUO7qbTVUd1NVlgsJL1uHVy1SJd-b0NqAJVe9hrUF_sI3cJKp8YQcNKfd6YWnTEYASw4blXuCdS46iHi5tZLUBfmF9T_J1OgPycp6ShReXQxdE4Jv4epZ3PYOlqu6cu-BhJYVNmZcFHEiPHWykRyNpoEKlOEm6sHXzlG5aZnLvYBGmWMF452a3zu1B5_nY4cNX8ejo_a9v-cjPMf27EY9usnbJZszpRymcu1SGwvtMI8Xgtk4CoVNYmdkDza72crbhT_O78O0BzvzGXziVT48bWUbVvuX52f52fHg9CO8RLiWNodpNmF5Mrp1nxASTfRWG3cEfj93qP8H4cUfHA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9VDzFlgKWKAcO1jqxE8cHVEGX0Ae0HKjoLfUrXNJku7vVqn-NX8d4k2wXCfXWYxJrFI0_e75JPN8A7CDHxySAKSoxdtCgIUUNF45qifEqYVbKMtQ7fz9O90_F4VlytgZ_-lqYcKyy3xMXG7VrbPhGPkQeEmoyEyWGZXcs4sco3x1f0tBBKvxp7dtptBA58tdzTN-mHw9GONfv4zj_8nNvn3YdBqjlaTSjNrWZkkYnyseKGaO0NtZJJpyNtNGYOdrIo68zhG4ZGYFkx7rM4yOFBhTjaPce3JdBxT1Uqedfl993GOeY_vFWEZVzxYa-xn0l5jxw7ZUYuGgV8A-_fXhVj_X1XFfVSqjLH8Nmx1HJpxZUT2DN109hY0W58Bkc5no6I3vtOXd6EsSSkbqSUdvfnmCGi-4hodFaRZqS_MLMn-R6ckHyqpkTjVcnY9-C7zmc3onTXsB63dT-JZDYsdKljIsylSKIJlvF0WgW6UhbbpMBfOgdVdhOszy0zqgKzF2CU4sbpw7g3XLsuFXq-O-oz8HfyxFBXXtxo5n8LrrFWjCtPQZx4zOXCuMxgpeCuTSJhZOpt2oA2_1sFd2SnxY3AB3AznIGb3mVrdutvIUHCPDi28Hx0St4hDwta0_RbMP6bHLlXyMXmpk3C9AROL9rlP8FE7Uctg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAc-EYsFGSJXjiksWPHjk-oFKKqEi0HVpRT5K9UiJBdbbNU8OsZJ9llixBC4phkYjmamcx7yfgZYA8xPpIAqhOFtSOJGlKJ5cInRmG9yqlTqo7rnd-dyKOZOD7Lz7ZW8ce2SqTin_uXdN8hi_yEp4ylLEs5FzJd-PrVt_FbEtb_qNaiOL8OOzJHND6BndnJ-4NP_c_k8e5BlZQju09Di7mdxXGu1KFerv8Kxryxahfm-6Vpmq1yU94Bs57o0GXyZX_V2X334zcNx_95krtwe8Si5GAInntwLbT34daWQuEDOC7NRUcOh3725DSKIiNEJW-GfewJMlnMFBI3VGvIvCYfkeGT0iy_krKZXxKDR6eLMATZQ5iVbz8cHiXj9guJ45J1iZOu0MqaXIdMU2u1MdZ5RYV3zFiDtNqxgIFYYF7XzApEgs4XAS9pHEBT_ggm7bwNj4FkntZeUi5qqUQUR3aa46AFM8w47vIpvFw7o3KjNnncIqOpkKNEx1W_HDeFFxvbxaDI8Uer19GnG4uoot2fmC_PqzEpK2pMwGJtQ-GlsAErdS2ol3kmvJLB6SnsriOiGlP7okJAHBcH51pMYW8TJX-ZypN_M3sKNxGMFUOrzC5MuuUqPEPA09nnY0z_BACi91w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Control-Oriented+Dynamic+Linear+Model+of+Wind+Farm+Flow+and+Operation&rft.jtitle=Energies+%28Basel%29&rft.au=Jonas+Kazda&rft.au=Nicolaos+Antonio+Cutululis&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=12&rft.spage=3346&rft_id=info:doi/10.3390%2Fen11123346&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |