Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation

The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control appro...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 11; no. 12; p. 3346
Main Authors Kazda, Jonas, Cutululis, Nicolaos Antonio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en11123346

Cover

Abstract The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control.
AbstractList The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate these, wind farm control should be able to account for those interactions, typically using model-based approaches. Such model-based control approaches benefit from computationally fast, linear models and therefore, in this work, we introduce the Dynamic Flow Predictor. It is a fast, control-oriented, dynamic, linear model of wind farm flow and operation that provides predictions of wind speed and turbine power. The model estimates wind turbine aerodynamic interaction using a linearized engineering wake model in combination with a delay process. The Dynamic Flow Predictor was tested on a two-turbine array to illustrate its main characteristics and on a large-scale wind farm, comparable to modern offshore wind farms, to illustrate its scalability and accuracy in a more realistic scale. The simulations were performed in SimWindFarm with wind turbines represented using the NREL 5 MW model. The results showed the suitability, accuracy, and computational speed of the modeling approach. In the study on the large-scale wind farm, rotor effective wind speed was estimated with a root-mean-square error ranging between 0.8% and 4.1%. In the same study, the computation time per iteration of the model was, on average, 2.1 × 10 − 5 s. It is therefore concluded that the presented modeling approach is well suited for use in wind farm control.
[...]wind farm-scale flow models used in power controllers can provide accurate predictions of wind speed at wind turbines, which can be employed to estimate a turbine’s available power or fatigue load dynamically. [...]a matrix update is performed if the following condition is satisfied: ϵupd<|x−x0|x0, where x represents a relevant system condition, such as wind conditions and turbine operation point, and x0 the linearization point of that condition. ϵupd is the update limit. [...]it is the aim to choose the update limit so that deviations from the operation point are small and the linear model remains representative of the behavior of the real system. [...]the two-turbine case study, the above investigations show the benefit of the Kalman filter and the dynamic model update, and the suitability of the DFP for different wake situations. 3.2.
Author Cutululis, Nicolaos Antonio
Kazda, Jonas
Author_xml – sequence: 1
  givenname: Jonas
  orcidid: 0000-0002-1532-7255
  surname: Kazda
  fullname: Kazda, Jonas
– sequence: 2
  givenname: Nicolaos Antonio
  orcidid: 0000-0003-2438-1429
  surname: Cutululis
  fullname: Cutululis, Nicolaos Antonio
BookMark eNp9kMFqGzEQhkVwII7jS55A0FvDptJK1q6OxY0TFwdfEnIUs9JskVlLrlYm-O2zsUNbSqkuo5n552PmvySjEAMScs3ZrRCafcHAOS-FkOqMjLnWquCsEqM__hdk2vcbNjwhuBBiTL4voM90HkNOsSvWyWPI6Oi3Q4Ctt3TlA0Kij9FhR2NLX3xwdAFpSxddfKUwZOsdJsg-hity3kLX4_QjTsjz4u5p_lCs1vfL-ddVYYXiubDK1rpqYKax1KxpNEBjXcWksxwaUJpZjgiuZjPe8kZqUVpX49DSA0AzMSHLE9dF2Jhd8ltIBxPBm2Mhph8GUva2Q8MAUFV1g7VTssGylq1kTs1K6SqFVg-smxNrH3ZweIWu-wXkzLy7an67Oqg_ndS7FH_usc9mE_cpDMeaUnAlSz7TclCxk8qm2PcJW2N9PjqUE_ju3-DPf438Z4s3Qb2UuA
CitedBy_id crossref_primary_10_5194_wes_5_439_2020
crossref_primary_10_1049_rpg2_13149
crossref_primary_10_1109_TCST_2019_2923779
crossref_primary_10_1049_rpg2_12160
crossref_primary_10_1063_1_5127268
Cites_doi 10.5194/wes-3-11-2018
10.1016/0167-6105(95)00033-X
10.1109/TCST.2016.2572170
10.1016/j.jweia.2012.04.024
10.1088/1742-6596/524/1/012186
10.1002/we.1564
10.1088/1742-6596/753/3/032005
10.1088/1742-6596/1104/1/012036
10.1016/j.rser.2013.12.054
10.1002/we.1891
10.1002/we.1822
10.1002/we.1594
10.1016/j.energy.2015.08.045
10.1016/j.jweia.2016.04.004
10.2172/947422
10.3390/en10060742
10.1002/we.189
10.1002/we.2279
10.23919/ACC.2018.8431764
10.1002/we.1805
10.1109/ACC.2009.5160195
10.1016/j.renene.2005.05.011
10.1002/we.491
10.5194/wes-3-75-2018
10.1109/ACC.2015.7170978
10.1115/1.3658902
10.1016/j.paerosci.2006.10.002
10.1002/we.1533
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/en11123346
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9
10.3390/en11123346
10_3390_en11123346
GeographicLocations Denmark
United States--US
GeographicLocations_xml – name: Denmark
– name: United States--US
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
ADTOC
C1A
ITC
UNPAY
ID FETCH-LOGICAL-c361t-c6c897ba59e290bb9aabcd704dc1aba690c1eead8051f1b4932cd8eaba9c36903
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 14 19:03:00 EDT 2025
Tue Aug 19 09:19:28 EDT 2025
Mon Oct 20 02:52:24 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Thu Oct 16 04:22:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c6c897ba59e290bb9aabcd704dc1aba690c1eead8051f1b4932cd8eaba9c36903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2438-1429
0000-0002-1532-7255
OpenAccessLink https://doaj.org/article/0aae678be8d64be284f40d6524d76ec9
PQID 2316421594
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9
unpaywall_primary_10_3390_en11123346
proquest_journals_2316421594
crossref_citationtrail_10_3390_en11123346
crossref_primary_10_3390_en11123346
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kalman (ref_33) 1961; 83
Annoni (ref_6) 2016; 19
Crespo (ref_14) 1996; 61
ref_36
ref_13
Shapiro (ref_23) 2018; 3
ref_35
Kazda (ref_5) 2016; 154
ref_34
ref_11
Schlipf (ref_17) 2013; 16
ref_30
Soleimanzadeh (ref_10) 2012; 107–108
Boersma (ref_26) 2018; 3
ref_39
Mikkelsen (ref_16) 2013; 16
ref_38
ref_37
Knudsen (ref_20) 2011; 14
Soleimanzadeh (ref_19) 2014; 17
Pao (ref_8) 2017; 50
Gebraad (ref_24) 2014; 524
Riverso (ref_15) 2017; 25
Hansen (ref_3) 2006; 42
Jung (ref_22) 2014; 31
ref_25
ref_1
Gebraad (ref_12) 2016; 19
Wang (ref_21) 2015; 93
ref_2
ref_29
Frandsen (ref_32) 2006; 9
ref_28
ref_27
Kazda (ref_9) 2018; 1104
Hansen (ref_7) 2006; 31
Machefaux (ref_31) 2015; 18
ref_4
Boersma (ref_18) 2016; 753
References_xml – ident: ref_30
– volume: 3
  start-page: 11
  year: 2018
  ident: ref_23
  article-title: Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-3-11-2018
– ident: ref_34
– ident: ref_11
– volume: 61
  start-page: 71
  year: 1996
  ident: ref_14
  article-title: Turbulence characteristics in wind-turbine wakes
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(95)00033-X
– volume: 25
  start-page: 535
  year: 2017
  ident: ref_15
  article-title: Model predictive controllers for reduction of mechanical fatigue in wind farms
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2572170
– volume: 107–108
  start-page: 256
  year: 2012
  ident: ref_10
  article-title: An optimization framework for load and power distribution in wind farms
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2012.04.024
– volume: 524
  start-page: 012186
  year: 2014
  ident: ref_24
  article-title: A Control-oriented dynamic model for wakes in wind plants
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/524/1/012186
– volume: 50
  start-page: 4484
  year: 2017
  ident: ref_8
  article-title: Active power control of waked wind farms
  publication-title: IFAC-PapersOnLine
– ident: ref_39
– volume: 16
  start-page: 625
  year: 2013
  ident: ref_16
  article-title: A Spinner-integrated wind lidar for enhanced wind turbine control
  publication-title: Wind Energy
  doi: 10.1002/we.1564
– ident: ref_37
– ident: ref_1
– volume: 753
  start-page: 032005
  year: 2016
  ident: ref_18
  article-title: A control-oriented dynamic wind farm flow model: “WFSim”
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/753/3/032005
– ident: ref_35
– volume: 1104
  start-page: 012036
  year: 2018
  ident: ref_9
  article-title: Mitigating turbine mechanical loads using engineering model predictive wind farm controller
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1104/1/012036
– volume: 31
  start-page: 762
  year: 2014
  ident: ref_22
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.054
– volume: 19
  start-page: 1135
  year: 2016
  ident: ref_6
  article-title: Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model
  publication-title: Wind Energy
  doi: 10.1002/we.1891
– volume: 19
  start-page: 95
  year: 2016
  ident: ref_12
  article-title: Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study
  publication-title: Wind Energy
  doi: 10.1002/we.1822
– volume: 17
  start-page: 627
  year: 2014
  ident: ref_19
  article-title: State-space representation of the wind flow model in wind farms
  publication-title: Wind Energy
  doi: 10.1002/we.1594
– volume: 93
  start-page: 41
  year: 2015
  ident: ref_21
  article-title: A robust combination approach for short-term wind speed forecasting and analysis—Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) Forecasts Using a GPR (Gaussian Process Regression) Model
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
– volume: 154
  start-page: 76
  year: 2016
  ident: ref_5
  article-title: Mitigating adverse wake effects in a wind farm using non-optimum operational conditions
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2016.04.004
– ident: ref_36
  doi: 10.2172/947422
– ident: ref_29
– ident: ref_2
  doi: 10.3390/en10060742
– volume: 9
  start-page: 39
  year: 2006
  ident: ref_32
  article-title: Analytical modelling of wind speed deficit in large offshore wind farms
  publication-title: Wind Energy
  doi: 10.1002/we.189
– ident: ref_25
  doi: 10.1002/we.2279
– ident: ref_28
  doi: 10.23919/ACC.2018.8431764
– volume: 18
  start-page: 2085
  year: 2015
  ident: ref_31
  article-title: Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements
  publication-title: Wind Energy
  doi: 10.1002/we.1805
– ident: ref_4
  doi: 10.1109/ACC.2009.5160195
– ident: ref_13
– volume: 31
  start-page: 935
  year: 2006
  ident: ref_7
  article-title: Centralised power control of wind farm with doubly fed induction generators
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.05.011
– ident: ref_38
– volume: 14
  start-page: 877
  year: 2011
  ident: ref_20
  article-title: Prediction models for wind speed at turbine locations in a wind farm
  publication-title: Wind Energy
  doi: 10.1002/we.491
– volume: 3
  start-page: 75
  year: 2018
  ident: ref_26
  article-title: A Control-oriented dynamic wind farm model: WFSim
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-3-75-2018
– ident: ref_27
  doi: 10.1109/ACC.2015.7170978
– volume: 83
  start-page: 95
  year: 1961
  ident: ref_33
  article-title: New results in linear filtering and prediction theory
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3658902
– volume: 42
  start-page: 285
  year: 2006
  ident: ref_3
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2006.10.002
– volume: 16
  start-page: 1107
  year: 2013
  ident: ref_17
  article-title: Nonlinear model predictive control of wind turbines using LIDAR
  publication-title: Wind Energy
  doi: 10.1002/we.1533
SSID ssj0000331333
Score 2.2066903
Snippet The aerodynamic interaction between wind turbines grouped in wind farms results in wake-induced power loss and fatigue loads of wind turbines. To mitigate...
[...]wind farm-scale flow models used in power controllers can provide accurate predictions of wind speed at wind turbines, which can be employed to estimate a...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3346
SubjectTerms Alternative energy sources
control
Control algorithms
dynamic flow model
Energy industry
Engineering
Kalman filter
Kalman filters
Laboratories
linear
Offshore
Optimization
Power plants
prediction
Turbines
wind farm
Wind farms
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC50POgexCc7uyoNevHQ2El3Hn1YxJk1iOAoougt9CteYjI7joj_3upJMo6weEzSNKG6quurfnwfwBFifCwCmKQJ5g7qOaSo5sJSlWC-iphJksLfd74axRf34vIxelyCUXcXxh-r7ObE2URta-PXyE8Qh_g7mZEUp-N_1KtG-d3VTkJDtdIK9s-MYmwZVkLPjNWDlcH56OZ2vurCOMeijDc8pRzr_RNXYbSHnHsEvJCZZgT-X1Dn6ms1Vu9vqiwXElC2AestciRnzVBvwpKrtuDHAp_gNlxm6mVKhs3pc3rtKYwRUJK_jeo8wboT_Zp4-bOS1AV5wHqcZGryTLKyfiMKn67HrnGJHbjPzu-GF7QVS6CGx8GUmtikMtEqki6UTGuplDY2YcKaQGmFRbAJHLpNilFYBFogbjM2dfhJYgeS8V3oVXXlfgIJLStszLgo4kR4KmMjOXaaBipQhpuoD8edoXLTMol7QYsyx4rCGzX_NGofDudtxw1_xn9bDby95y085_XsRT15ytsQyplSDlOrdqmNhXaYVwvBbByFwiaxM7IPe91o5W0gvuSfbtOHo_kIfvMrv77v5TesIWRKmwMte9CbTl7dPsKSqT5ofe0DdCDf0w
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAc-EYsFGSJXjiksWPHjk-oFKKqEi0HVpRT5K9UiJBdbbNU8OsZJ9llixBC4phkYjmamcx7yfgZYA8xPpIAqhOFtSOJGlKJ5cInRmG9yqlTqo7rnd-dyKOZOD7Lz7ZW8ce2SqTin_uXdN8hi_yEp4ylLEs5FzJd-PrVt_FbEtb_qNaiOL8OOzJHND6BndnJ-4NP_c_k8e5BlZQju09Di7mdxXGu1KFerv8Kxryxahfm-6Vpmq1yU94Bs57o0GXyZX_V2X334zcNx_95krtwe8Si5GAInntwLbT34daWQuEDOC7NRUcOh3725DSKIiNEJW-GfewJMlnMFBI3VGvIvCYfkeGT0iy_krKZXxKDR6eLMATZQ5iVbz8cHiXj9guJ45J1iZOu0MqaXIdMU2u1MdZ5RYV3zFiDtNqxgIFYYF7XzApEgs4XAS9pHEBT_ggm7bwNj4FkntZeUi5qqUQUR3aa46AFM8w47vIpvFw7o3KjNnncIqOpkKNEx1W_HDeFFxvbxaDI8Uer19GnG4uoot2fmC_PqzEpK2pMwGJtQ-GlsAErdS2ol3kmvJLB6SnsriOiGlP7okJAHBcH51pMYW8TJX-ZypN_M3sKNxGMFUOrzC5MuuUqPEPA09nnY0z_BACi91w
  priority: 102
  providerName: Unpaywall
Title Fast Control-Oriented Dynamic Linear Model of Wind Farm Flow and Operation
URI https://www.proquest.com/docview/2316421594
https://www.mdpi.com/1996-1073/11/12/3346/pdf?version=1543578733
https://doaj.org/article/0aae678be8d64be284f40d6524d76ec9
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HNSD-MT1sQT04qGYbtJHjr6qCK4iLq6nkldPtbvoivjvnTR1rSB68VJoEkKYSTLfB5NvAA4Q4yMJoCJIMHYETkMqUIybQCYYryKqk6Rw752v-_HlgF8No2Gr1JfLCfPywN5wR1RKixeqsqmJubJ4mxacmjjqcZPEVtdP92gqWmSqvoMZQ_LFvB4pQ15_ZCs81T3GHNJtRaBaqP8bulx4rcby_U2WZSvQZCuw3CBEcuxXtgoztlqDpZZu4DpcZfJlQk59lnlw46SKETiSM19dniC_xP1LXJmzkowK8oC8m2Ty-Ylk5eiNSPy7GVvv-g0YZOf3p5dBUxQh0CwOJ4GOdSoSJSNhe4IqJaRU2iSUGx1KJZHs6tDi9kjxtBWh4ojPtEktdgmcQFC2CXPVqLJbQHqGFiamjBdxwp1ksRYMJ01DGUrNdNSBw09D5bpRDHeFK8ocmYMzav5l1A7sT8eOvU7Gj6NOnL2nI5y2dd2AHs8bj-d_ebwDu5_eypsD95IjTHVPdiPBO3Aw9eAvS9n-j6XswCICqNSnt-zC3OT51e4hSJmoLsym2UUX5k_O-7d33Xp34vdiGGLboH97_PgBAhXnjw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOFfShbkvBUumhBwsndh4-oKo8ouW1VBWo3FK_wiVNtruLVvy5_raON8mySIgbxyTWKBqPPd8knu8D2EGMj0UAkzTB3EE9hxTVXFiqEsxXETNJUvh-5_NB3L8SJ9fR9RL863ph_LHKbk-cbdS2Nv4b-S7iEN-TGUnxbfiXetUo_3e1k9BQrbSC3ZtRjLWNHafubool3Hjv-BDn-0sYZkeXB33aqgxQw-NgQk1sUploFUkXSqa1VEobmzBhTaC0wurRBA79nWL4FoEWCHiMTR0-kmhAMo52X8CK4EJi8beyfzT48XP-lYdxjkUgb3hROZds11W4u4Sce8S9kAlnggEPUO7qbTVUd1NVlgsJL1uHVy1SJd-b0NqAJVe9hrUF_sI3cJKp8YQcNKfd6YWnTEYASw4blXuCdS46iHi5tZLUBfmF9T_J1OgPycp6ShReXQxdE4Jv4epZ3PYOlqu6cu-BhJYVNmZcFHEiPHWykRyNpoEKlOEm6sHXzlG5aZnLvYBGmWMF452a3zu1B5_nY4cNX8ejo_a9v-cjPMf27EY9usnbJZszpRymcu1SGwvtMI8Xgtk4CoVNYmdkDza72crbhT_O78O0BzvzGXziVT48bWUbVvuX52f52fHg9CO8RLiWNodpNmF5Mrp1nxASTfRWG3cEfj93qP8H4cUfHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9VDzFlgKWKAcO1jqxE8cHVEGX0Ae0HKjoLfUrXNJku7vVqn-NX8d4k2wXCfXWYxJrFI0_e75JPN8A7CDHxySAKSoxdtCgIUUNF45qifEqYVbKMtQ7fz9O90_F4VlytgZ_-lqYcKyy3xMXG7VrbPhGPkQeEmoyEyWGZXcs4sco3x1f0tBBKvxp7dtptBA58tdzTN-mHw9GONfv4zj_8nNvn3YdBqjlaTSjNrWZkkYnyseKGaO0NtZJJpyNtNGYOdrIo68zhG4ZGYFkx7rM4yOFBhTjaPce3JdBxT1Uqedfl993GOeY_vFWEZVzxYa-xn0l5jxw7ZUYuGgV8A-_fXhVj_X1XFfVSqjLH8Nmx1HJpxZUT2DN109hY0W58Bkc5no6I3vtOXd6EsSSkbqSUdvfnmCGi-4hodFaRZqS_MLMn-R6ckHyqpkTjVcnY9-C7zmc3onTXsB63dT-JZDYsdKljIsylSKIJlvF0WgW6UhbbpMBfOgdVdhOszy0zqgKzF2CU4sbpw7g3XLsuFXq-O-oz8HfyxFBXXtxo5n8LrrFWjCtPQZx4zOXCuMxgpeCuTSJhZOpt2oA2_1sFd2SnxY3AB3AznIGb3mVrdutvIUHCPDi28Hx0St4hDwta0_RbMP6bHLlXyMXmpk3C9AROL9rlP8FE7Uctg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3B9gAc-EYsFGSJXjiksWPHjk-oFKKqEi0HVpRT5K9UiJBdbbNU8OsZJ9llixBC4phkYjmamcx7yfgZYA8xPpIAqhOFtSOJGlKJ5cInRmG9yqlTqo7rnd-dyKOZOD7Lz7ZW8ce2SqTin_uXdN8hi_yEp4ylLEs5FzJd-PrVt_FbEtb_qNaiOL8OOzJHND6BndnJ-4NP_c_k8e5BlZQju09Di7mdxXGu1KFerv8Kxryxahfm-6Vpmq1yU94Bs57o0GXyZX_V2X334zcNx_95krtwe8Si5GAInntwLbT34daWQuEDOC7NRUcOh3725DSKIiNEJW-GfewJMlnMFBI3VGvIvCYfkeGT0iy_krKZXxKDR6eLMATZQ5iVbz8cHiXj9guJ45J1iZOu0MqaXIdMU2u1MdZ5RYV3zFiDtNqxgIFYYF7XzApEgs4XAS9pHEBT_ggm7bwNj4FkntZeUi5qqUQUR3aa46AFM8w47vIpvFw7o3KjNnncIqOpkKNEx1W_HDeFFxvbxaDI8Uer19GnG4uoot2fmC_PqzEpK2pMwGJtQ-GlsAErdS2ol3kmvJLB6SnsriOiGlP7okJAHBcH51pMYW8TJX-ZypN_M3sKNxGMFUOrzC5MuuUqPEPA09nnY0z_BACi91w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Control-Oriented+Dynamic+Linear+Model+of+Wind+Farm+Flow+and+Operation&rft.jtitle=Energies+%28Basel%29&rft.au=Jonas+Kazda&rft.au=Nicolaos+Antonio+Cutululis&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=11&rft.issue=12&rft.spage=3346&rft_id=info:doi/10.3390%2Fen11123346&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0aae678be8d64be284f40d6524d76ec9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon