Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms
This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlati...
        Saved in:
      
    
          | Published in | Electronics (Basel) Vol. 11; no. 21; p. 3518 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.11.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-9292 2079-9292  | 
| DOI | 10.3390/electronics11213518 | 
Cover
| Abstract | This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms. | 
    
|---|---|
| AbstractList | This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms. | 
    
| Audience | Academic | 
    
| Author | Alwageed, Hathal Salamah Karadağ, Buse Cennet Fayaz, Muhammad Cho, Young-Im Khan, Faheem Tarimer, Ilhan Abdusalomov, Akmalbek Bobomirzaevich  | 
    
| Author_xml | – sequence: 1 givenname: Faheem orcidid: 0000-0001-6220-0225 surname: Khan fullname: Khan, Faheem – sequence: 2 givenname: Ilhan orcidid: 0000-0002-7274-5680 surname: Tarimer fullname: Tarimer, Ilhan – sequence: 3 givenname: Hathal Salamah surname: Alwageed fullname: Alwageed, Hathal Salamah – sequence: 4 givenname: Buse Cennet surname: Karadağ fullname: Karadağ, Buse Cennet – sequence: 5 givenname: Muhammad surname: Fayaz fullname: Fayaz, Muhammad – sequence: 6 givenname: Akmalbek Bobomirzaevich orcidid: 0000-0001-5923-8695 surname: Abdusalomov fullname: Abdusalomov, Akmalbek Bobomirzaevich – sequence: 7 givenname: Young-Im orcidid: 0000-0003-0184-7599 surname: Cho fullname: Cho, Young-Im  | 
    
| BookMark | eNqNkU1LAzEQhoMoqNVf4CXguZqPTXdzLMUvqCio5yXOzraRNFmTXaT_3rT1ICJoEphheJ9h5s0x2ffBIyFnnF1IqdklOoQ-Bm8hcS64VLzaI0eClXqshRb73_JDcprSG8tHc1lJdkS6q7bNOA0tvUbTDxHp07ahDZ7m1y-RTgGGaGC9Ed0PyQJ9DN3gTLT9ms6cScm2FswWeUnWL-i9gaX1SOdoot8Upm4Rsny5SifkoDUu4elXHJGX66vn2e14_nBzN5vOxyAnvB8DL5lArSo0JWNF-coqWQohQAj-KitkUlYcQBeKKzNhChslG10Uqmhko0DIESl2fQffmfWHca7uol2ZuK45qzfG1b8Yl7HzHdbF8D5g6uu3MESfJ61FKYuJEJVmWXWxUy2Mw9r6NvTZoHwbXFnI39PaXJ-WhVK6rBTPgN4BEENKEdsabL91LIPW_TGS_MH-Z5FPuganRg | 
    
| CitedBy_id | crossref_primary_10_3390_a16020090 crossref_primary_10_3390_electronics12102342 crossref_primary_10_3390_fi15090297 crossref_primary_10_46387_bjesr_1436204 crossref_primary_10_3390_s23063161 crossref_primary_10_3390_s24165200 crossref_primary_10_3390_su15010828 crossref_primary_10_1109_ACCESS_2024_3367440 crossref_primary_10_3389_fnbot_2023_1267561 crossref_primary_10_3390_s22249784 crossref_primary_10_1109_ACCESS_2023_3294613 crossref_primary_10_3390_s23073440 crossref_primary_10_1007_s41060_023_00461_1 crossref_primary_10_1007_s00500_023_08641_8 crossref_primary_10_1109_ACCESS_2023_3263155 crossref_primary_10_1016_j_heliyon_2024_e32092 crossref_primary_10_54097_hset_v47i_8162 crossref_primary_10_3390_s23010502 crossref_primary_10_3390_s22228704 crossref_primary_10_3390_app14177658 crossref_primary_10_1177_14727978251318800 crossref_primary_10_3390_e27030216 crossref_primary_10_3233_JIFS_235478 crossref_primary_10_1142_S0219477524400212 crossref_primary_10_3390_s23031512 crossref_primary_10_1016_j_eswa_2024_126097 crossref_primary_10_3390_life13020349 crossref_primary_10_1007_s11036_023_02245_0  | 
    
| Cites_doi | 10.1177/102986490100500102 10.1109/INFCOM.2013.6566767 10.1109/ICIS.2017.7960070 10.18653/v1/2020.winlp-1.16 10.1016/j.knosys.2020.105746 10.1109/UBMYK48245.2019.8965647 10.1145/2959100.2959120 10.33965/is2019_201905L025 10.1109/P2P.2011.6038737 10.1201/b11041 10.1007/978-3-540-28647-9_60 10.1109/SIU.2017.7960694 10.1023/A:1010933404324 10.1109/TSA.2002.800560 10.3390/s22145247 10.1007/s10489-021-02302-9 10.1017/CBO9780511921803 10.1080/02664763.2020.1803810  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/electronics11213518 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2079-9292 | 
    
| ExternalDocumentID | 10.3390/electronics11213518 A745597851 10_3390_electronics11213518  | 
    
| GeographicLocations | South Korea | 
    
| GeographicLocations_xml | – name: South Korea | 
    
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c361t-c1702e958ea70047b0837222c221b38e03381cc94515a605ed53d94454d3d5c23 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2079-9292 | 
    
| IngestDate | Sun Oct 26 04:15:55 EDT 2025 Mon Jul 14 08:28:34 EDT 2025 Mon Oct 20 17:18:13 EDT 2025 Thu Oct 16 04:42:28 EDT 2025 Thu Apr 24 22:57:45 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c361t-c1702e958ea70047b0837222c221b38e03381cc94515a605ed53d94454d3d5c23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5923-8695 0000-0001-6220-0225 0000-0002-7274-5680 0000-0003-0184-7599  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/21/3518/pdf?version=1667032203 | 
    
| PQID | 2734622890 | 
    
| PQPubID | 2032404 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_electronics11213518 proquest_journals_2734622890 gale_infotracacademiconefile_A745597851 crossref_citationtrail_10_3390_electronics11213518 crossref_primary_10_3390_electronics11213518  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-11-01 | 
    
| PublicationDateYYYYMMDD | 2022-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Electronics (Basel) | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Prabhu (ref_3) 2018; 738 Khan (ref_6) 2022; 71 ref_14 ref_12 ref_11 Duru (ref_19) 2019; 3 Hu (ref_30) 2020; 195 ref_33 ref_10 Tzanetakis (ref_41) 2002; 10 Alan (ref_40) 2020; 32 Ayvaz (ref_7) 2022; 71 ref_18 ref_17 ref_39 ref_38 Jiang (ref_36) 2004; 3173 Vonderau (ref_13) 2017; 20 Efe (ref_15) 2019; 2 ref_25 ref_24 ref_22 Bircan (ref_31) 2004; 8 Iqbal (ref_8) 2022; 71 ref_20 Sciandra (ref_21) 2022; 49 ref_1 Sloboda (ref_2) 2001; 5 Pareek (ref_23) 2022; 9 Canyakan (ref_16) 2017; 10 ref_28 ref_27 ref_26 ref_9 Pan (ref_29) 2021; 51 Cover (ref_35) 1967; 13 ref_5 ref_4 (ref_32) 2018; 19 Breiman (ref_34) 2001; 45 Veranyurt (ref_37) 2020; 6  | 
    
| References_xml | – ident: ref_28 – volume: 71 start-page: 5911 year: 2022 ident: ref_6 article-title: Emotion Based Signal Enhancement Through Multisensory Integration Using Machine Learning publication-title: CMC-Comput. Mater. Contin. – volume: 3 start-page: 150 year: 2019 ident: ref_19 article-title: Data Cleaning for Data Mining and Applications on Turkish Classical Music Data publication-title: J. Econ. Adm. Sci. – ident: ref_5 – ident: ref_24 – volume: 32 start-page: 531 year: 2020 ident: ref_40 article-title: Evaluation of the Factors Affecting Performance on the Datasets—Classification Relationship publication-title: Fırat Univ. J. Eng. Sci. – ident: ref_26 – volume: 738 start-page: 397 year: 2018 ident: ref_3 article-title: Music genre classification using data mining and machine learning publication-title: Inf. Technol. -New Gener. – volume: 5 start-page: 9 year: 2001 ident: ref_2 article-title: Functions of music in everyday life: An exploratory study using the Experience Sampling Method publication-title: Music. Sci. doi: 10.1177/102986490100500102 – ident: ref_11 – ident: ref_10 doi: 10.1109/INFCOM.2013.6566767 – ident: ref_17 doi: 10.1109/ICIS.2017.7960070 – ident: ref_18 doi: 10.18653/v1/2020.winlp-1.16 – volume: 71 start-page: 4767 year: 2022 ident: ref_8 article-title: Mobile Devices Interface Adaptivity Using Ontologies publication-title: CMC-Comput. Mater. Contin. – volume: 8 start-page: 185 year: 2004 ident: ref_31 article-title: Logistic Regression Analysis: An Application on Medical Data publication-title: Kocaeli Univ. J. Soc. Sci. – volume: 195 start-page: 105746 year: 2020 ident: ref_30 article-title: Improved binary grey wolf optimizer and its application for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105746 – volume: 6 start-page: 275 year: 2020 ident: ref_37 article-title: Disease Classification by Machine Learning Techniques: Random Forest, K-Nearest Neighbor and Adaboost Algorithms Applications publication-title: Int. J. Health Manag. Strateg. Res. – ident: ref_33 doi: 10.1109/UBMYK48245.2019.8965647 – volume: 13 start-page: 21 year: 1967 ident: ref_35 article-title: Nearest Neighbor Pattern Classification. Information Theory publication-title: IEEE Trans. – volume: 2 start-page: 131 year: 2019 ident: ref_15 article-title: Example Of Online Music Platform as A Display Advertising Space: Spotify publication-title: Int. J. Public Relat. Advert. Stud. – ident: ref_14 doi: 10.1145/2959100.2959120 – ident: ref_22 doi: 10.33965/is2019_201905L025 – ident: ref_12 doi: 10.1109/P2P.2011.6038737 – ident: ref_1 doi: 10.1201/b11041 – volume: 3173 start-page: 356 year: 2004 ident: ref_36 article-title: Editing Training Data For Knn Classifiers with Neural Network Ensemble publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-28647-9_60 – ident: ref_20 doi: 10.1109/SIU.2017.7960694 – ident: ref_25 – ident: ref_4 – ident: ref_27 – volume: 45 start-page: 5 year: 2001 ident: ref_34 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 10 start-page: 293 year: 2002 ident: ref_41 article-title: Musical genre classification of audio signals publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/TSA.2002.800560 – ident: ref_9 doi: 10.3390/s22145247 – volume: 10 start-page: 171 year: 2017 ident: ref_16 article-title: Audio History: Audio-Specific Music Technology and Origin publication-title: Uşak Univ. J. Soc. Sci. – ident: ref_38 – volume: 51 start-page: 8661 year: 2021 ident: ref_29 article-title: Improved binary pigeon-inspired optimization and its application for feature selection publication-title: Appl. Intell. doi: 10.1007/s10489-021-02302-9 – ident: ref_39 doi: 10.1017/CBO9780511921803 – volume: 71 start-page: 5511 year: 2022 ident: ref_7 article-title: Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning publication-title: CMC-Comput. Mater. Contin. – volume: 9 start-page: 10 year: 2022 ident: ref_23 article-title: Predicting Music Popularity Using Machine Learning Algorithm and Music Metrics Available in Spotify publication-title: J. Dev. Econ. Manag. Res. Stud. JDMS – volume: 19 start-page: 51 year: 2018 ident: ref_32 article-title: Potential Distribution Modelling and Mapping Using Random Forest Method: An Example of Yukarigökdere District publication-title: Turk. J. For. – volume: 20 start-page: 3 year: 2017 ident: ref_13 article-title: The Spotify Effect: Digital Distribution and Financial Growth publication-title: SAGE J. – volume: 49 start-page: 214 year: 2022 ident: ref_21 article-title: A model-based approach to Spotify data analysis: A Beta GLMM publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1803810  | 
    
| SSID | ssj0000913830 | 
    
| Score | 2.4355423 | 
    
| Snippet | This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 3518 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Classification Complexity Data mining Datasets Feature selection Lyrics Machine learning Musical performances Online music Popular music Popularity Statistical analysis Variables  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UutAuxCdWq2QhuHHoJPPsQqSKIoJFfEB3QybJ6GJsax9I_95705m2iBRhlplMmJPHuUnuOQBnKs4E0tTM0RnPSFQ7daTGwNWPNK0voa8jyh1-7IT3b_5DN-hWoFPmwtC1ynJOtBO17ivaI2-SDEso6FjsavDlkGsUna6WFhqysFbQl1ZibA3WBSljVWH9-rbz9DzfdSEVzNhzZ_JDHsb7zYXbzIiTvFlA9h9LS9TviboGG5PeQE6_ZZ4vrUR327BVUEjWnmG-AxXT24XakrDgHgxmosSsnzHieJOhYS-2CYgCwwdZH2srNRlKNaVC1u2ZPVkzL3KzY9Yrk24RWeCYvVjAHu3FS8MKTdZ31s7f8ReNPz5H-_B2d_t6c-8U3gqO8kI-dhSPXGFaQWwkCdxHKVKxCLmCEoKnXmxcDF25Ui0f-Y7EkMfowNMtH8HUng6U8A6g2uv3zCEw7acmEqGSOtM-lzxNhStdrML1Yi15WAdR_s5EFcLj5H-RJxiAEAbJHxjU4WL-0mCmu7G6-DnhlNCoxLqVLJILsIWkb5W0I59CJ6SXdWiUUCbFcB0li85VB2cO738-fLS6umPYFJQvYZMXG1AdDyfmBFnMOD0tuuYPi_r0VA priority: 102 providerName: ProQuest  | 
    
| Title | Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms | 
    
| URI | https://www.proquest.com/docview/2734622890 https://www.mdpi.com/2079-9292/11/21/3518/pdf?version=1667032203  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6C9gA7wPgxrTAqH5B2IUvsJE56QgG1m5BaVYNK4xQ5trNNlLZqm6Fx4G_nPSfdqmlCIKRcIj07sfxsfy957_sA3uq0FAhTS8-UvCRS7cJTBgPXKDF0vsjIJFQ7PBzJk0n06Sw-26rip7RKDMUv3SYtgqTn4fktfM59wf0w5qm_MOX7q-ZbEpcSPVYIovtsyxjReAvak9E4-0qacpvWNdlQiNG9f6sts-JEZhaT2MfWgXR3W96BR9Vsoa5_qOl069wZPAW1eeM63eTbUbUujvTPO2SO_zOkXXjSgFKW1V70DB7Y2XPY2aIqfAGLmuaYzUtGqLFaWvbZDRN7Y3ghjmSZ1tVS6WsycvrRbOzkwUgfjzn1TcpLcq7AXKoCG7pUTssaltdzlk3P52h-8X31EiaD_pePJ16j1uDpUPK1p3kSCNuLU6uIMj8pENwliD60ELwIUxtgMMy17kWIoBQGUdbEoelF6B4mNLEW4R60ZvOZ3QdmosImQmplShNxxYtCBCrALoIwNYrLDojNlOW6oTInRY1pjiENzXN-zzx34N1No0XN5PFn80PyhZzWOfatVVOugG9IjFl5lkQUjCFg7cDBxl3yZgNY5cQaJAX9xe2Ad-NCf_PgV_9o_xoeCyrJcPWRB9BaLyv7BoHSuujCw3Rw3IX2h_5ofIp3w1_9brM-fgMwTBNJ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOFAOqE81hbZ7aNVLLbwPvw6oCi0oFBKhFiRu7np3TQ8hCXkI5c_1tzGzWYeoqlAvSD6u1_bOeB67M98H8MHktcAwtY5szWsC1a4ibTFxVZkl_5Iqm1HvcLeXdi7U98vkcg3-NL0wVFbZ2ERvqO3Q0B75HsGwpIKOxb6MbiJijaLT1YZCQwdqBbvvIcZCY8eJm99iCjfZP_6G8v4oxNHh-ddOFFgGIiNTPo0Mz2LhiiR3mqDeswqDkgy9phGCVzJ3MSZx3JhCoefXGPw7m0hbKPwsK21iCPgAXcCGkqrA5G_j4LB39mO5y0Oom7mMF3BHUhbx3j27zYQTnFpCdCMrLvFvx7AFm7PBSM9vdb-_4vmOnsJ2CFlZe6Fjz2DNDZ7D1gqQ4QsYLUCQ2bBmFFPOxo799K-AUmd4YZTJ2sbMxtrMaZBnl2ZnnjyM2POY5-akqiWvKMwXMrCuL_R0LGDAXrF2_wpFMv19PXkJF4-yyq9gfTAcuNfArKpcJlKjbW0V17yqRKxjnCKWudU8bYFolrM0Aeic-Db6JSY8JIPyHzJoweflTaMFzsfDwz-RnEqyAji30aGZAd-Q8LTKdqYoVcNwtgW7jSjLYB4m5b0ytyBaivd_Hvzm4enew2bnvHtanh73TnbgiaBeDd84uQvr0_HMvcUIalq9C2rK4Ndj_xl3bqAuVQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EwcdBfOL6zEHxYrFJn3sQWdT1LYIK3mqapHpYd9d9IPvX_HXOpO26iIgXocc0TTOTzEwy830A2yrOBLqpmaMznhGodupIjYGrH2myL6GvI6odvr4Jzx78i8fgcQw-yloYSqss90S7UeuWojPyfYJhCQVdi-1nRVrE7XH9sP3mEIMU3bSWdBq5ilyawTuGb92D82OU9Y4Q9ZP7ozOnYBhwlBfynqN45ApTDWIjCeY9StEhidBiKiF46sXGxQCOK1X10epLdPyNDjxd9fGXtKcDRaAHuP1PRITiTlXq9dPh-Q7hbcaemwMdeR4O-4vXpssJSC0gopERY_jdJMzAVL_ZloN32WiM2Lz6HMwWziqr5do1D2OmuQAzIxCGi9DO4Y9ZK2PkTfY7ht3ZIaC8GT7oX7KaUv2OVANqZHml2a2lDSPePGZZOSlfyaoIsykM7NqmeBpWoL8-s1rjGQXQe3ntLsHDv8zxMow3W02zAkz7qYlEqKTOtM8lT1PhShe7cL1YSx5WQJTTmagC4pyYNhoJhjokg-QHGVRgb_hSO0f4-L35LskpofWPfStZlDHgCAlJK6lFPgVp6MhWYL0UZVJsDN3kS40r4AzF-5cPr_7e3RZM4npIrs5vLtdgWlCRhq2YXIfxXqdvNtB16qWbVkcZPP33ovgEKmYr7w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5N5WHjARhjosCQHybxsjSxkzjpE4rQEEKiqgSVuqfIsR2GKG3VNiD49dw5KavQhIYm5fHs2PLZ_i65-z6A7zotBcLU0jMlL4lUu_CUwcA1SgzdLzIyCdUOX_Tk2SA6H8bDlSp-SqvEUPzGHdIiSLoe3t_C59wX3A9jnvpTUx7fN9-SuJTosUIQ3eeajBGNt2Bt0Otnv0hTbtm6JhsKMbr3_2jLzDmRmcUk9rFyIb0-ltfhYzWeqscHNRqt3Dunm6CWI67TTW471aLo6KdXZI7_M6Ut2GhAKctqL_oMH-x4G9ZXqAq_wLSmOWaTkhFqrGaWXbppYm8MH8SRLNO6min9SEZOP5r1nTwY6eMxp75JeUnOFZhLVWAXLpXTsobl9Zplo-sJmv--m-_A4PTn1cmZ16g1eDqUfOFpngTCduPUKqLMTwoEdwmiDy0EL8LUBhgMc627ESIohUGUNXFouhG6hwlNrEX4FVrjydjuAjNRYRMhtTKlibjiRSECFWAXQZgaxWUbxHLJct1QmZOixijHkIbWOf_LOrfhx0ujac3k8bb5EflCTvsc-9aqKVfAERJjVp4lEQVjCFjbcLB0l7w5AOY5sQZJQX9x2-C9uNC_vHjvnfb78ElQSYarjzyA1mJW2W8IlBbFYbMXngHb6w-Y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Feature+Selection+on+the+Accuracy+of+Music+Popularity+Classification+Using+Machine+Learning+Algorithms&rft.jtitle=Electronics+%28Basel%29&rft.au=Khan%2C+Faheem&rft.au=Tarimer%2C+Ilhan&rft.au=Alwageed%2C+Hathal+Salamah&rft.au=Karadag%2C+Buse+Cennet&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=21&rft_id=info:doi/10.3390%2Felectronics11213518&rft.externalDocID=A745597851 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |