Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms

This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlati...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 21; p. 3518
Main Authors Khan, Faheem, Tarimer, Ilhan, Alwageed, Hathal Salamah, Karadağ, Buse Cennet, Fayaz, Muhammad, Abdusalomov, Akmalbek Bobomirzaevich, Cho, Young-Im
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11213518

Cover

Abstract This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms.
AbstractList This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of Spotify, the most used music listening platform today, was used in the research. In the feature selection stage, features with low correlation were removed from the dataset using the filter feature selection method. Machine learning algorithms using all features produced 95.15% accuracy, while machine learning algorithms using features selected by feature selection produced 95.14% accuracy. The features selected by feature selection were sufficient for classification of popularity in established algorithms. In addition, this dataset contains fewer features, so the computation time is shorter. The reason why Big O time complexity is lower than models constructed without feature selection is that the number of features, which is the most important parameter in time complexity, is low. The statistical analysis was performed on the pre-processed data and meaningful information was produced from the data using machine learning algorithms.
Audience Academic
Author Alwageed, Hathal Salamah
Karadağ, Buse Cennet
Fayaz, Muhammad
Cho, Young-Im
Khan, Faheem
Tarimer, Ilhan
Abdusalomov, Akmalbek Bobomirzaevich
Author_xml – sequence: 1
  givenname: Faheem
  orcidid: 0000-0001-6220-0225
  surname: Khan
  fullname: Khan, Faheem
– sequence: 2
  givenname: Ilhan
  orcidid: 0000-0002-7274-5680
  surname: Tarimer
  fullname: Tarimer, Ilhan
– sequence: 3
  givenname: Hathal Salamah
  surname: Alwageed
  fullname: Alwageed, Hathal Salamah
– sequence: 4
  givenname: Buse Cennet
  surname: Karadağ
  fullname: Karadağ, Buse Cennet
– sequence: 5
  givenname: Muhammad
  surname: Fayaz
  fullname: Fayaz, Muhammad
– sequence: 6
  givenname: Akmalbek Bobomirzaevich
  orcidid: 0000-0001-5923-8695
  surname: Abdusalomov
  fullname: Abdusalomov, Akmalbek Bobomirzaevich
– sequence: 7
  givenname: Young-Im
  orcidid: 0000-0003-0184-7599
  surname: Cho
  fullname: Cho, Young-Im
BookMark eNqNkU1LAzEQhoMoqNVf4CXguZqPTXdzLMUvqCio5yXOzraRNFmTXaT_3rT1ICJoEphheJ9h5s0x2ffBIyFnnF1IqdklOoQ-Bm8hcS64VLzaI0eClXqshRb73_JDcprSG8tHc1lJdkS6q7bNOA0tvUbTDxHp07ahDZ7m1y-RTgGGaGC9Ed0PyQJ9DN3gTLT9ms6cScm2FswWeUnWL-i9gaX1SOdoot8Upm4Rsny5SifkoDUu4elXHJGX66vn2e14_nBzN5vOxyAnvB8DL5lArSo0JWNF-coqWQohQAj-KitkUlYcQBeKKzNhChslG10Uqmhko0DIESl2fQffmfWHca7uol2ZuK45qzfG1b8Yl7HzHdbF8D5g6uu3MESfJ61FKYuJEJVmWXWxUy2Mw9r6NvTZoHwbXFnI39PaXJ-WhVK6rBTPgN4BEENKEdsabL91LIPW_TGS_MH-Z5FPuganRg
CitedBy_id crossref_primary_10_3390_a16020090
crossref_primary_10_3390_electronics12102342
crossref_primary_10_3390_fi15090297
crossref_primary_10_46387_bjesr_1436204
crossref_primary_10_3390_s23063161
crossref_primary_10_3390_s24165200
crossref_primary_10_3390_su15010828
crossref_primary_10_1109_ACCESS_2024_3367440
crossref_primary_10_3389_fnbot_2023_1267561
crossref_primary_10_3390_s22249784
crossref_primary_10_1109_ACCESS_2023_3294613
crossref_primary_10_3390_s23073440
crossref_primary_10_1007_s41060_023_00461_1
crossref_primary_10_1007_s00500_023_08641_8
crossref_primary_10_1109_ACCESS_2023_3263155
crossref_primary_10_1016_j_heliyon_2024_e32092
crossref_primary_10_54097_hset_v47i_8162
crossref_primary_10_3390_s23010502
crossref_primary_10_3390_s22228704
crossref_primary_10_3390_app14177658
crossref_primary_10_1177_14727978251318800
crossref_primary_10_3390_e27030216
crossref_primary_10_3233_JIFS_235478
crossref_primary_10_1142_S0219477524400212
crossref_primary_10_3390_s23031512
crossref_primary_10_1016_j_eswa_2024_126097
crossref_primary_10_3390_life13020349
crossref_primary_10_1007_s11036_023_02245_0
Cites_doi 10.1177/102986490100500102
10.1109/INFCOM.2013.6566767
10.1109/ICIS.2017.7960070
10.18653/v1/2020.winlp-1.16
10.1016/j.knosys.2020.105746
10.1109/UBMYK48245.2019.8965647
10.1145/2959100.2959120
10.33965/is2019_201905L025
10.1109/P2P.2011.6038737
10.1201/b11041
10.1007/978-3-540-28647-9_60
10.1109/SIU.2017.7960694
10.1023/A:1010933404324
10.1109/TSA.2002.800560
10.3390/s22145247
10.1007/s10489-021-02302-9
10.1017/CBO9780511921803
10.1080/02664763.2020.1803810
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11213518
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11213518
A745597851
10_3390_electronics11213518
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-c1702e958ea70047b0837222c221b38e03381cc94515a605ed53d94454d3d5c23
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 04:15:55 EDT 2025
Mon Jul 14 08:28:34 EDT 2025
Mon Oct 20 17:18:13 EDT 2025
Thu Oct 16 04:42:28 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-c1702e958ea70047b0837222c221b38e03381cc94515a605ed53d94454d3d5c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5923-8695
0000-0001-6220-0225
0000-0002-7274-5680
0000-0003-0184-7599
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/21/3518/pdf?version=1667032203
PQID 2734622890
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11213518
proquest_journals_2734622890
gale_infotracacademiconefile_A745597851
crossref_citationtrail_10_3390_electronics11213518
crossref_primary_10_3390_electronics11213518
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Prabhu (ref_3) 2018; 738
Khan (ref_6) 2022; 71
ref_14
ref_12
ref_11
Duru (ref_19) 2019; 3
Hu (ref_30) 2020; 195
ref_33
ref_10
Tzanetakis (ref_41) 2002; 10
Alan (ref_40) 2020; 32
Ayvaz (ref_7) 2022; 71
ref_18
ref_17
ref_39
ref_38
Jiang (ref_36) 2004; 3173
Vonderau (ref_13) 2017; 20
Efe (ref_15) 2019; 2
ref_25
ref_24
ref_22
Bircan (ref_31) 2004; 8
Iqbal (ref_8) 2022; 71
ref_20
Sciandra (ref_21) 2022; 49
ref_1
Sloboda (ref_2) 2001; 5
Pareek (ref_23) 2022; 9
Canyakan (ref_16) 2017; 10
ref_28
ref_27
ref_26
ref_9
Pan (ref_29) 2021; 51
Cover (ref_35) 1967; 13
ref_5
ref_4
(ref_32) 2018; 19
Breiman (ref_34) 2001; 45
Veranyurt (ref_37) 2020; 6
References_xml – ident: ref_28
– volume: 71
  start-page: 5911
  year: 2022
  ident: ref_6
  article-title: Emotion Based Signal Enhancement Through Multisensory Integration Using Machine Learning
  publication-title: CMC-Comput. Mater. Contin.
– volume: 3
  start-page: 150
  year: 2019
  ident: ref_19
  article-title: Data Cleaning for Data Mining and Applications on Turkish Classical Music Data
  publication-title: J. Econ. Adm. Sci.
– ident: ref_5
– ident: ref_24
– volume: 32
  start-page: 531
  year: 2020
  ident: ref_40
  article-title: Evaluation of the Factors Affecting Performance on the Datasets—Classification Relationship
  publication-title: Fırat Univ. J. Eng. Sci.
– ident: ref_26
– volume: 738
  start-page: 397
  year: 2018
  ident: ref_3
  article-title: Music genre classification using data mining and machine learning
  publication-title: Inf. Technol. -New Gener.
– volume: 5
  start-page: 9
  year: 2001
  ident: ref_2
  article-title: Functions of music in everyday life: An exploratory study using the Experience Sampling Method
  publication-title: Music. Sci.
  doi: 10.1177/102986490100500102
– ident: ref_11
– ident: ref_10
  doi: 10.1109/INFCOM.2013.6566767
– ident: ref_17
  doi: 10.1109/ICIS.2017.7960070
– ident: ref_18
  doi: 10.18653/v1/2020.winlp-1.16
– volume: 71
  start-page: 4767
  year: 2022
  ident: ref_8
  article-title: Mobile Devices Interface Adaptivity Using Ontologies
  publication-title: CMC-Comput. Mater. Contin.
– volume: 8
  start-page: 185
  year: 2004
  ident: ref_31
  article-title: Logistic Regression Analysis: An Application on Medical Data
  publication-title: Kocaeli Univ. J. Soc. Sci.
– volume: 195
  start-page: 105746
  year: 2020
  ident: ref_30
  article-title: Improved binary grey wolf optimizer and its application for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105746
– volume: 6
  start-page: 275
  year: 2020
  ident: ref_37
  article-title: Disease Classification by Machine Learning Techniques: Random Forest, K-Nearest Neighbor and Adaboost Algorithms Applications
  publication-title: Int. J. Health Manag. Strateg. Res.
– ident: ref_33
  doi: 10.1109/UBMYK48245.2019.8965647
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_35
  article-title: Nearest Neighbor Pattern Classification. Information Theory
  publication-title: IEEE Trans.
– volume: 2
  start-page: 131
  year: 2019
  ident: ref_15
  article-title: Example Of Online Music Platform as A Display Advertising Space: Spotify
  publication-title: Int. J. Public Relat. Advert. Stud.
– ident: ref_14
  doi: 10.1145/2959100.2959120
– ident: ref_22
  doi: 10.33965/is2019_201905L025
– ident: ref_12
  doi: 10.1109/P2P.2011.6038737
– ident: ref_1
  doi: 10.1201/b11041
– volume: 3173
  start-page: 356
  year: 2004
  ident: ref_36
  article-title: Editing Training Data For Knn Classifiers with Neural Network Ensemble
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-28647-9_60
– ident: ref_20
  doi: 10.1109/SIU.2017.7960694
– ident: ref_25
– ident: ref_4
– ident: ref_27
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_34
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  start-page: 293
  year: 2002
  ident: ref_41
  article-title: Musical genre classification of audio signals
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/TSA.2002.800560
– ident: ref_9
  doi: 10.3390/s22145247
– volume: 10
  start-page: 171
  year: 2017
  ident: ref_16
  article-title: Audio History: Audio-Specific Music Technology and Origin
  publication-title: Uşak Univ. J. Soc. Sci.
– ident: ref_38
– volume: 51
  start-page: 8661
  year: 2021
  ident: ref_29
  article-title: Improved binary pigeon-inspired optimization and its application for feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02302-9
– ident: ref_39
  doi: 10.1017/CBO9780511921803
– volume: 71
  start-page: 5511
  year: 2022
  ident: ref_7
  article-title: Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning
  publication-title: CMC-Comput. Mater. Contin.
– volume: 9
  start-page: 10
  year: 2022
  ident: ref_23
  article-title: Predicting Music Popularity Using Machine Learning Algorithm and Music Metrics Available in Spotify
  publication-title: J. Dev. Econ. Manag. Res. Stud. JDMS
– volume: 19
  start-page: 51
  year: 2018
  ident: ref_32
  article-title: Potential Distribution Modelling and Mapping Using Random Forest Method: An Example of Yukarigökdere District
  publication-title: Turk. J. For.
– volume: 20
  start-page: 3
  year: 2017
  ident: ref_13
  article-title: The Spotify Effect: Digital Distribution and Financial Growth
  publication-title: SAGE J.
– volume: 49
  start-page: 214
  year: 2022
  ident: ref_21
  article-title: A model-based approach to Spotify data analysis: A Beta GLMM
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1803810
SSID ssj0000913830
Score 2.4355423
Snippet This research aims to analyze the effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. The data of...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3518
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Classification
Complexity
Data mining
Datasets
Feature selection
Lyrics
Machine learning
Musical performances
Online music
Popular music
Popularity
Statistical analysis
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UutAuxCdWq2QhuHHoJPPsQqSKIoJFfEB3QybJ6GJsax9I_95705m2iBRhlplMmJPHuUnuOQBnKs4E0tTM0RnPSFQ7daTGwNWPNK0voa8jyh1-7IT3b_5DN-hWoFPmwtC1ynJOtBO17ivaI2-SDEso6FjsavDlkGsUna6WFhqysFbQl1ZibA3WBSljVWH9-rbz9DzfdSEVzNhzZ_JDHsb7zYXbzIiTvFlA9h9LS9TviboGG5PeQE6_ZZ4vrUR327BVUEjWnmG-AxXT24XakrDgHgxmosSsnzHieJOhYS-2CYgCwwdZH2srNRlKNaVC1u2ZPVkzL3KzY9Yrk24RWeCYvVjAHu3FS8MKTdZ31s7f8ReNPz5H-_B2d_t6c-8U3gqO8kI-dhSPXGFaQWwkCdxHKVKxCLmCEoKnXmxcDF25Ui0f-Y7EkMfowNMtH8HUng6U8A6g2uv3zCEw7acmEqGSOtM-lzxNhStdrML1Yi15WAdR_s5EFcLj5H-RJxiAEAbJHxjU4WL-0mCmu7G6-DnhlNCoxLqVLJILsIWkb5W0I59CJ6SXdWiUUCbFcB0li85VB2cO738-fLS6umPYFJQvYZMXG1AdDyfmBFnMOD0tuuYPi_r0VA
  priority: 102
  providerName: ProQuest
Title Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms
URI https://www.proquest.com/docview/2734622890
https://www.mdpi.com/2079-9292/11/21/3518/pdf?version=1667032203
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6C9gA7wPgxrTAqH5B2IUvsJE56QgG1m5BaVYNK4xQ5trNNlLZqm6Fx4G_nPSfdqmlCIKRcIj07sfxsfy957_sA3uq0FAhTS8-UvCRS7cJTBgPXKDF0vsjIJFQ7PBzJk0n06Sw-26rip7RKDMUv3SYtgqTn4fktfM59wf0w5qm_MOX7q-ZbEpcSPVYIovtsyxjReAvak9E4-0qacpvWNdlQiNG9f6sts-JEZhaT2MfWgXR3W96BR9Vsoa5_qOl069wZPAW1eeM63eTbUbUujvTPO2SO_zOkXXjSgFKW1V70DB7Y2XPY2aIqfAGLmuaYzUtGqLFaWvbZDRN7Y3ghjmSZ1tVS6WsycvrRbOzkwUgfjzn1TcpLcq7AXKoCG7pUTssaltdzlk3P52h-8X31EiaD_pePJ16j1uDpUPK1p3kSCNuLU6uIMj8pENwliD60ELwIUxtgMMy17kWIoBQGUdbEoelF6B4mNLEW4R60ZvOZ3QdmosImQmplShNxxYtCBCrALoIwNYrLDojNlOW6oTInRY1pjiENzXN-zzx34N1No0XN5PFn80PyhZzWOfatVVOugG9IjFl5lkQUjCFg7cDBxl3yZgNY5cQaJAX9xe2Ad-NCf_PgV_9o_xoeCyrJcPWRB9BaLyv7BoHSuujCw3Rw3IX2h_5ofIp3w1_9brM-fgMwTBNJ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOFAOqE81hbZ7aNVLLbwPvw6oCi0oFBKhFiRu7np3TQ8hCXkI5c_1tzGzWYeoqlAvSD6u1_bOeB67M98H8MHktcAwtY5szWsC1a4ibTFxVZkl_5Iqm1HvcLeXdi7U98vkcg3-NL0wVFbZ2ERvqO3Q0B75HsGwpIKOxb6MbiJijaLT1YZCQwdqBbvvIcZCY8eJm99iCjfZP_6G8v4oxNHh-ddOFFgGIiNTPo0Mz2LhiiR3mqDeswqDkgy9phGCVzJ3MSZx3JhCoefXGPw7m0hbKPwsK21iCPgAXcCGkqrA5G_j4LB39mO5y0Oom7mMF3BHUhbx3j27zYQTnFpCdCMrLvFvx7AFm7PBSM9vdb-_4vmOnsJ2CFlZe6Fjz2DNDZ7D1gqQ4QsYLUCQ2bBmFFPOxo799K-AUmd4YZTJ2sbMxtrMaZBnl2ZnnjyM2POY5-akqiWvKMwXMrCuL_R0LGDAXrF2_wpFMv19PXkJF4-yyq9gfTAcuNfArKpcJlKjbW0V17yqRKxjnCKWudU8bYFolrM0Aeic-Db6JSY8JIPyHzJoweflTaMFzsfDwz-RnEqyAji30aGZAd-Q8LTKdqYoVcNwtgW7jSjLYB4m5b0ytyBaivd_Hvzm4enew2bnvHtanh73TnbgiaBeDd84uQvr0_HMvcUIalq9C2rK4Ndj_xl3bqAuVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EwcdBfOL6zEHxYrFJn3sQWdT1LYIK3mqapHpYd9d9IPvX_HXOpO26iIgXocc0TTOTzEwy830A2yrOBLqpmaMznhGodupIjYGrH2myL6GvI6odvr4Jzx78i8fgcQw-yloYSqss90S7UeuWojPyfYJhCQVdi-1nRVrE7XH9sP3mEIMU3bSWdBq5ilyawTuGb92D82OU9Y4Q9ZP7ozOnYBhwlBfynqN45ApTDWIjCeY9StEhidBiKiF46sXGxQCOK1X10epLdPyNDjxd9fGXtKcDRaAHuP1PRITiTlXq9dPh-Q7hbcaemwMdeR4O-4vXpssJSC0gopERY_jdJMzAVL_ZloN32WiM2Lz6HMwWziqr5do1D2OmuQAzIxCGi9DO4Y9ZK2PkTfY7ht3ZIaC8GT7oX7KaUv2OVANqZHml2a2lDSPePGZZOSlfyaoIsykM7NqmeBpWoL8-s1rjGQXQe3ntLsHDv8zxMow3W02zAkz7qYlEqKTOtM8lT1PhShe7cL1YSx5WQJTTmagC4pyYNhoJhjokg-QHGVRgb_hSO0f4-L35LskpofWPfStZlDHgCAlJK6lFPgVp6MhWYL0UZVJsDN3kS40r4AzF-5cPr_7e3RZM4npIrs5vLtdgWlCRhq2YXIfxXqdvNtB16qWbVkcZPP33ovgEKmYr7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5N5WHjARhjosCQHybxsjSxkzjpE4rQEEKiqgSVuqfIsR2GKG3VNiD49dw5KavQhIYm5fHs2PLZ_i65-z6A7zotBcLU0jMlL4lUu_CUwcA1SgzdLzIyCdUOX_Tk2SA6H8bDlSp-SqvEUPzGHdIiSLoe3t_C59wX3A9jnvpTUx7fN9-SuJTosUIQ3eeajBGNt2Bt0Otnv0hTbtm6JhsKMbr3_2jLzDmRmcUk9rFyIb0-ltfhYzWeqscHNRqt3Dunm6CWI67TTW471aLo6KdXZI7_M6Ut2GhAKctqL_oMH-x4G9ZXqAq_wLSmOWaTkhFqrGaWXbppYm8MH8SRLNO6min9SEZOP5r1nTwY6eMxp75JeUnOFZhLVWAXLpXTsobl9Zplo-sJmv--m-_A4PTn1cmZ16g1eDqUfOFpngTCduPUKqLMTwoEdwmiDy0EL8LUBhgMc627ESIohUGUNXFouhG6hwlNrEX4FVrjydjuAjNRYRMhtTKlibjiRSECFWAXQZgaxWUbxHLJct1QmZOixijHkIbWOf_LOrfhx0ujac3k8bb5EflCTvsc-9aqKVfAERJjVp4lEQVjCFjbcLB0l7w5AOY5sQZJQX9x2-C9uNC_vHjvnfb78ElQSYarjzyA1mJW2W8IlBbFYbMXngHb6w-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Feature+Selection+on+the+Accuracy+of+Music+Popularity+Classification+Using+Machine+Learning+Algorithms&rft.jtitle=Electronics+%28Basel%29&rft.au=Khan%2C+Faheem&rft.au=Tarimer%2C+Ilhan&rft.au=Alwageed%2C+Hathal+Salamah&rft.au=Karadag%2C+Buse+Cennet&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=21&rft_id=info:doi/10.3390%2Felectronics11213518&rft.externalDocID=A745597851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon