Computing-in-Memory for Performance and Energy-Efficient Homomorphic Encryption

Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory processi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 28; no. 11; pp. 2300 - 2313
Main Authors Reis, Dayane, Takeshita, Jonathan, Jung, Taeho, Niemier, Michael, Hu, Xiaobo Sharon
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-8210
1557-9999
DOI10.1109/TVLSI.2020.3017595

Cover

Abstract Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory processing (NMP) and computing-in-memory (CiM)-paradigms where computation is done within the memory boundaries-represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications, such as HE. This article introduces CiM-HE, a CiM architecture that can support operations for the Brakerski/Fan-Vercauteren (B/FV) scheme, a somewhat HE scheme for general computation. CiM-HE hardware consists of customized peripherals, such as sense amplifiers, adders, bit shifters, and sequencing circuits. The peripherals are based on CMOS technology and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against: 1) two optimized CPU HE implementations and 2) a field-programmable gate array (FPGA)-based HE accelerator implementation. Compared with a CPU solution, CiM-HE obtains speedups between <inline-formula> <tex-math notation="LaTeX">4.6\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">9.1\times </tex-math></inline-formula> and energy savings between <inline-formula> <tex-math notation="LaTeX">266.4\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">532.8\times </tex-math></inline-formula> for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference, are up to <inline-formula> <tex-math notation="LaTeX">1.1\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">7.7\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">7.1\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">7.5\times </tex-math></inline-formula> faster (and <inline-formula> <tex-math notation="LaTeX">301.1\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">404.6\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">532.3\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">532.8\times </tex-math></inline-formula> more energy efficient). Compared with CPU-based HE in previous work, CiM-HE obtains <inline-formula> <tex-math notation="LaTeX">14.3\times </tex-math></inline-formula> speedup and <inline-formula> <tex-math notation="LaTeX">> 2600\times </tex-math></inline-formula> energy savings. Finally, our design offers <inline-formula> <tex-math notation="LaTeX">2.2\times </tex-math></inline-formula> speedup with <inline-formula> <tex-math notation="LaTeX">88.1\times </tex-math></inline-formula> energy savings compared with a state-of-the-art FPGA-based accelerator.
AbstractList Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory processing (NMP) and computing-in-memory (CiM)—paradigms where computation is done within the memory boundaries—represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications, such as HE. This article introduces CiM-HE, a CiM architecture that can support operations for the Brakerski/Fan–Vercauteren (B/FV) scheme, a somewhat HE scheme for general computation. CiM-HE hardware consists of customized peripherals, such as sense amplifiers, adders, bit shifters, and sequencing circuits. The peripherals are based on CMOS technology and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against: 1) two optimized CPU HE implementations and 2) a field-programmable gate array (FPGA)-based HE accelerator implementation. Compared with a CPU solution, CiM-HE obtains speedups between [Formula Omitted] and [Formula Omitted] and energy savings between [Formula Omitted] and [Formula Omitted] for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference, are up to [Formula Omitted], [Formula Omitted], [Formula Omitted], and [Formula Omitted] faster (and [Formula Omitted], [Formula Omitted], [Formula Omitted], and [Formula Omitted] more energy efficient). Compared with CPU-based HE in previous work, CiM-HE obtains [Formula Omitted] speedup and [Formula Omitted] energy savings. Finally, our design offers [Formula Omitted] speedup with [Formula Omitted] energy savings compared with a state-of-the-art FPGA-based accelerator.
Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be demonstrated. In this regard, the enormous size of ciphertexts involved in HE computations degrades computational efficiency. Near-memory processing (NMP) and computing-in-memory (CiM)-paradigms where computation is done within the memory boundaries-represent architectural solutions for reducing latency and energy associated with data transfers in data-intensive applications, such as HE. This article introduces CiM-HE, a CiM architecture that can support operations for the Brakerski/Fan-Vercauteren (B/FV) scheme, a somewhat HE scheme for general computation. CiM-HE hardware consists of customized peripherals, such as sense amplifiers, adders, bit shifters, and sequencing circuits. The peripherals are based on CMOS technology and could support computations with memory cells of different technologies. Circuit-level simulations are used to evaluate our CiM-HE framework assuming a 6T-SRAM memory. We compare our CiM-HE implementation against: 1) two optimized CPU HE implementations and 2) a field-programmable gate array (FPGA)-based HE accelerator implementation. Compared with a CPU solution, CiM-HE obtains speedups between <inline-formula> <tex-math notation="LaTeX">4.6\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">9.1\times </tex-math></inline-formula> and energy savings between <inline-formula> <tex-math notation="LaTeX">266.4\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">532.8\times </tex-math></inline-formula> for homomorphic multiplications (the most expensive HE operation). Also, a set of four end-to-end tasks, i.e., mean, variance, linear regression, and inference, are up to <inline-formula> <tex-math notation="LaTeX">1.1\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">7.7\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">7.1\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">7.5\times </tex-math></inline-formula> faster (and <inline-formula> <tex-math notation="LaTeX">301.1\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">404.6\times </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">532.3\times </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">532.8\times </tex-math></inline-formula> more energy efficient). Compared with CPU-based HE in previous work, CiM-HE obtains <inline-formula> <tex-math notation="LaTeX">14.3\times </tex-math></inline-formula> speedup and <inline-formula> <tex-math notation="LaTeX">> 2600\times </tex-math></inline-formula> energy savings. Finally, our design offers <inline-formula> <tex-math notation="LaTeX">2.2\times </tex-math></inline-formula> speedup with <inline-formula> <tex-math notation="LaTeX">88.1\times </tex-math></inline-formula> energy savings compared with a state-of-the-art FPGA-based accelerator.
Author Jung, Taeho
Takeshita, Jonathan
Hu, Xiaobo Sharon
Reis, Dayane
Niemier, Michael
Author_xml – sequence: 1
  givenname: Dayane
  orcidid: 0000-0002-8571-1308
  surname: Reis
  fullname: Reis, Dayane
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 2
  givenname: Jonathan
  surname: Takeshita
  fullname: Takeshita, Jonathan
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 3
  givenname: Taeho
  orcidid: 0000-0002-9082-0357
  surname: Jung
  fullname: Jung, Taeho
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 4
  givenname: Michael
  orcidid: 0000-0001-7776-4306
  surname: Niemier
  fullname: Niemier, Michael
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
– sequence: 5
  givenname: Xiaobo Sharon
  orcidid: 0000-0002-6636-9738
  surname: Hu
  fullname: Hu, Xiaobo Sharon
  email: shu@nd.edu
  organization: Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
BookMark eNp9kMFOwzAMhiM0JLbBC8ClEucMJ03W9oimwSYNDYnBtUpTZ2Rak5J2h749HZs4cMA-2JL_z7b-ERk475CQWwYTxiB72Hys3pYTDhwmMbBEZvKCDJmUCc36GPQ9TGOacgZXZNQ0OwAmRAZDsp75qj601m2pdfQFKx-6yPgQvWLoS6Wcxki5Mpo7DNuOzo2x2qJro4Wv-gz1p9X9UIeubq131-TSqH2DN-c6Ju9P881sQVfr5-XscUV1PGUtLXgJBmOUhheMFYyXsUgh5ShkKUGBFrxMoDCqkNMkE4KVSqZJKRJkpsSpjsfk_rS3Dv7rgE2b7_whuP5kzoUUIsmkkL0qPal08E0T0OTatur4ZxuU3ecM8qN9-Y99-dG-_Gxfj_I_aB1spUL3P3R3giwi_gIZSzJgEH8DKn5-UQ
CODEN IEVSE9
CitedBy_id crossref_primary_10_1109_TVLSI_2023_3288754
crossref_primary_10_1145_3689437
crossref_primary_10_1145_3639046
crossref_primary_10_1038_s41467_024_50592_7
crossref_primary_10_1063_5_0191005
crossref_primary_10_3390_s23104746
crossref_primary_10_1109_TC_2024_3371782
crossref_primary_10_1145_3569955
crossref_primary_10_1186_s42400_023_00187_4
crossref_primary_10_1109_TC_2023_3301116
crossref_primary_10_1145_3588920
crossref_primary_10_1109_TVLSI_2024_3462955
crossref_primary_10_1007_s11277_023_10427_y
crossref_primary_10_1038_s41598_022_22804_x
crossref_primary_10_1109_TCSI_2024_3463184
Cites_doi 10.1007/978-3-319-57339-7_11
10.1145/2717764.2717782
10.1007/978-3-642-40041-4_5
10.1007/978-3-662-46800-5_25
10.1007/978-3-319-78381-9_14
10.1109/JSSC.2016.2515510
10.1109/ESSCIRC.2015.7313862
10.23919/DATE.2017.7927134
10.1145/1536414.1536440
10.1007/978-3-662-53018-4_6
10.1109/TCAD.2012.2185930
10.1145/2897937.2898064
10.1145/2749469.2750385
10.1109/TC.2019.2903055
10.1145/3373376.3378523
10.1515/jmc-2015-0016
10.1007/978-3-642-45239-0_4
10.1109/HOTCHIPS.2011.7477494
10.1145/1568318.1568324
10.23919/DATE.2018.8342085
10.1145/2749469.2750386
10.1145/3218603.3218640
10.1109/MSP.2012.2211477
10.1109/JXCDC.2019.2931889
10.1007/978-3-319-70694-8_15
10.1007/978-3-642-19074-2_21
10.1109/ISCA.2018.00039
10.1109/VDAT.2010.5496640
10.1007/978-3-030-12612-4_5
10.1006/jsco.1996.0026
10.1145/2717764.2717783
10.1145/3007787.3001140
10.1109/HPCA.2017.21
10.1007/978-3-662-48324-4_9
10.1145/2488608.2488680
10.1145/2633600
10.1007/978-3-662-48324-4_8
10.1109/HPCA.2019.00052
10.23919/DATE.2019.8715108
10.1109/TVLSI.2013.2281786
10.1145/1536414.1536461
10.1109/TETC.2016.2619669
10.1145/3307650.3322237
10.1109/TCAD.2020.2966484
10.1007/978-3-662-44774-1_14
10.1145/3299874.3319450
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TVLSI.2020.3017595
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1557-9999
EndPage 2313
ExternalDocumentID 10_1109_TVLSI_2020_3017595
9179010
Genre orig-research
GrantInformation_xml – fundername: ASCENT, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) Program sponsored by Defense Advanced Research Projects Agency (DARPA)
  funderid: 10.13039/501100008530
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c361t-b2d0fe3e5f2b11b12d348082e45d50a0c42d70bfab5679441da587d47e1fde6c3
IEDL.DBID RIE
ISSN 1063-8210
IngestDate Mon Jun 30 05:49:56 EDT 2025
Wed Oct 01 02:59:26 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Aug 27 02:31:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b2d0fe3e5f2b11b12d348082e45d50a0c42d70bfab5679441da587d47e1fde6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6636-9738
0000-0001-7776-4306
0000-0002-9082-0357
0000-0002-8571-1308
PQID 2454479545
PQPubID 85424
PageCount 14
ParticipantIDs ieee_primary_9179010
proquest_journals_2454479545
crossref_primary_10_1109_TVLSI_2020_3017595
crossref_citationtrail_10_1109_TVLSI_2020_3017595
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References chillotti (ref22) 2016
ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
chen (ref25) 2017
ref52
ref10
ref17
karatsuba (ref49) 1962; 145
ducas (ref2) 2015
ref16
ref19
ref18
jain (ref11) 2017
bajard (ref31) 2016
ref50
ref46
(ref53) 2019
ref48
ref47
ref42
ref41
ref44
alessandro cilardo (ref43) 2016
ref8
ref7
ref9
wang (ref36) 2014
ref5
martins (ref55) 2015
ref40
(ref62) 2019
ref35
ref34
ref37
ref30
ref33
ref32
ref1
ref39
(ref54) 2018
ref38
langlois (ref45) 2012; 2012
(ref61) 2016
halevi (ref28) 2013; 6
fan (ref3) 2012
ref24
ref23
ref26
ref20
ref21
jeloka (ref6) 2016; 51
ref27
ref29
bos (ref4) 2013
barker (ref51) 2018
ref60
References_xml – ident: ref26
  doi: 10.1007/978-3-319-57339-7_11
– start-page: 617
  year: 2015
  ident: ref2
  article-title: FHEW: Bootstrapping homomorphic encryption in less than a second
  publication-title: Proc EUROCRYPT
– ident: ref59
  doi: 10.1145/2717764.2717782
– ident: ref21
  doi: 10.1007/978-3-642-40041-4_5
– ident: ref35
  doi: 10.1007/978-3-662-46800-5_25
– start-page: 144
  year: 2012
  ident: ref3
  article-title: Somewhat practical fully homomorphic encryption
  publication-title: Proc IACR Cryptol ePrint Arch
– ident: ref34
  doi: 10.1007/978-3-319-78381-9_14
– volume: 51
  start-page: 1009
  year: 2016
  ident: ref6
  article-title: A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory
  publication-title: IEEE J Solid-State Circuits
  doi: 10.1109/JSSC.2016.2515510
– volume: 145
  start-page: 293
  year: 1962
  ident: ref49
  article-title: Multiplication of many-digital numbers by automatic computers
  publication-title: Doklady Akademii Nauk SSSR
– ident: ref24
  doi: 10.1109/ESSCIRC.2015.7313862
– ident: ref38
  doi: 10.23919/DATE.2017.7927134
– ident: ref1
  doi: 10.1145/1536414.1536440
– ident: ref44
  doi: 10.1007/978-3-662-53018-4_6
– year: 2016
  ident: ref22
  publication-title: TFHE Fast Fully Homomorphic Encryption Library
– ident: ref57
  doi: 10.1109/TCAD.2012.2185930
– ident: ref16
  doi: 10.1145/2897937.2898064
– volume: 2012
  start-page: 91
  year: 2012
  ident: ref45
  article-title: Hardness of decision (R)LWE for any modulus
  publication-title: IACR Cryptology ePrint
– ident: ref9
  doi: 10.1145/2749469.2750385
– start-page: 1622
  year: 2016
  ident: ref43
  article-title: Securing the Cloud with Reconfigurable Computing: An FPGA Accelerator for Homomorphic Encryption
  publication-title: Design Automation Test in Europe Conference Exhibition (DATE)
– ident: ref19
  doi: 10.1109/TC.2019.2903055
– ident: ref29
  doi: 10.1145/3373376.3378523
– ident: ref52
  doi: 10.1515/jmc-2015-0016
– start-page: 45
  year: 2013
  ident: ref4
  article-title: Improved security for a ring-based fully homomorphic encryption scheme
  publication-title: Cryptography and Coding 6th IMA Int Conf Proc
  doi: 10.1007/978-3-642-45239-0_4
– ident: ref7
  doi: 10.1109/HOTCHIPS.2011.7477494
– ident: ref47
  doi: 10.1145/1568318.1568324
– ident: ref37
  doi: 10.23919/DATE.2018.8342085
– ident: ref8
  doi: 10.1145/2749469.2750386
– ident: ref17
  doi: 10.1145/3218603.3218640
– ident: ref60
  doi: 10.1109/MSP.2012.2211477
– ident: ref39
  doi: 10.1109/JXCDC.2019.2931889
– ident: ref23
  doi: 10.1007/978-3-319-70694-8_15
– ident: ref48
  doi: 10.1007/978-3-642-19074-2_21
– start-page: 3
  year: 2017
  ident: ref25
  article-title: Simple encrypted arithmetic library-SEAL v2. 1
  publication-title: Eurocrypt
– year: 2018
  ident: ref54
  publication-title: HSPICE
– ident: ref15
  doi: 10.1109/ISCA.2018.00039
– ident: ref58
  doi: 10.1109/VDAT.2010.5496640
– volume: 6
  start-page: 12
  year: 2013
  ident: ref28
  article-title: Design and implementation of a homomorphic-encryption library
  publication-title: IBM Res
– ident: ref32
  doi: 10.1007/978-3-030-12612-4_5
– ident: ref50
  doi: 10.1006/jsco.1996.0026
– start-page: 171
  year: 2015
  ident: ref55
  article-title: Open Cell Library in 15Nm FreePDK Technology
  publication-title: Proc ISPD
  doi: 10.1145/2717764.2717783
– ident: ref14
  doi: 10.1145/3007787.3001140
– ident: ref12
  doi: 10.1109/HPCA.2017.21
– start-page: 1
  year: 2014
  ident: ref36
  article-title: Energy efficient in-memory AES encryption based on nonvolatile domain-wall nanowire
  publication-title: Proc Des Autom Test Eur Conf Exhib
– year: 2019
  ident: ref53
  publication-title: Powerstat a power consumption calculator for Ubuntu
– ident: ref40
  doi: 10.1007/978-3-662-48324-4_9
– start-page: 1
  year: 2017
  ident: ref11
  article-title: Computing in memory with spin-transfer torque magnetic RAM
  publication-title: Proc TVLSI
– ident: ref27
  doi: 10.1145/2488608.2488680
– ident: ref20
  doi: 10.1145/2633600
– ident: ref33
  doi: 10.1007/978-3-662-48324-4_8
– ident: ref5
  doi: 10.1109/HPCA.2019.00052
– ident: ref10
  doi: 10.23919/DATE.2019.8715108
– ident: ref41
  doi: 10.1109/TVLSI.2013.2281786
– start-page: 423
  year: 2016
  ident: ref31
  article-title: A full RNS variant of FV like somewhat homomorphic encryption schemes
  publication-title: Proc Conf Sel Areas Cryptography
– ident: ref46
  doi: 10.1145/1536414.1536461
– ident: ref30
  doi: 10.1109/TETC.2016.2619669
– ident: ref13
  doi: 10.1145/3307650.3322237
– ident: ref56
  doi: 10.1109/TCAD.2020.2966484
– ident: ref42
  doi: 10.1007/978-3-662-44774-1_14
– ident: ref18
  doi: 10.1145/3299874.3319450
– year: 2019
  ident: ref62
  publication-title: Intel Kaby Lake Core i7-7700K i7-7700 i5-7600K i5-7600 Review
– year: 2018
  ident: ref51
  article-title: Transitioning the use of cryptographic algorithms and key lengths
– year: 2016
  ident: ref61
  publication-title: Crypto
SSID ssj0014490
Score 2.4355962
Snippet Homomorphic encryption (HE) allows direct computations on encrypted data. Despite numerous research efforts, the practicality of HE schemes remains to be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2300
SubjectTerms Algorithms
Architecture
Central Processing Unit
Central processing units
Circuits
Cloud computing
CMOS
Computer architecture
computing-in-memory (CiM)
CPUs
Data transfer
encrypted data processing
Encryption
Energy
Field programmable gate arrays
homomorphic encryption (HE)
Sense amplifiers
Static random access memory
Task analysis
Title Computing-in-Memory for Performance and Energy-Efficient Homomorphic Encryption
URI https://ieeexplore.ieee.org/document/9179010
https://www.proquest.com/docview/2454479545
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34FqtV9uBNU_cx2U2OIpUqVgVb8bZsXiDqVrQ96K93kt3WoiKyl8Am2ZCZJDM7-b4h5CC0hQTNLY0luDBjJCgHATRjIJVyJ5JnYupfpb0hXNyz-wY5mmFhjDH-8pnpuKKP5euRmrhfZcfC0Uk5PNVCxtMKqzWLGACIinkgTShHP2YKkAnF8eDu8vYcXcEYPVRUQOZyScwdQj6ryo-t2J8vZyukPx1Zda3ksTMZy476-Eba-N-hr5Ll2tAMTirNWCMNU66TpTn6wQ1yXaV0wDJ9KGnf3bl9D9CIDW6-0ARBUeqg6wGCtOvpJvA7QW_0jA-K6EHhS_X67jeeTTI86w5Oe7ROsEBVkkZjKmMdWpMYZmMZRTKKdQIcbQIDTLOwCBXEOgslipOluG4h0gXjmYbMRFabVCVbpFmOSrNNAiVYrISVwgIHZgvOLXoirlu0KJhOWiSazniuavZxlwTjKfdeSChyL6XcSSmvpdQih7M2LxX3xp-1N9y0z2rWM94i7alg83p5vuUxMIBMoPW483urXbLo-q5Ah23SHL9OzB5aH2O579XuE-Ii1R0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heBh7AAabKDCWB96GSz7OSfyIUFHZ2m7SWtS3KP6SKiBF0D7AX8_ZSbsK0DTlxVLs2PKd7bv4fr8DOAltKVHnlsUS3TVjJFiOAlnGUSrlTiTPxNQfpN0R_hjz8RqcLrEwxhgffGbarujv8vVUzd2vsjPh6KQcnmqDIyKv0VrLOwNEUXMPpAnLyZNZQGRCcTa87v25ImcwJh-VVJC7bBIrx5DPq_JmM_YnzOU29BdjqwNLbtrzmWyr51e0jf87-B3YakzN4LzWjU-wZqpd-LhCQLgHv-qkDlRmk4r1XdTtU0BmbPD7L54gKCsddDxEkHU84QT1E3Snd_SQkCaKXqqHJ7_1fIbRZWd40WVNigWmkjSaMRnr0JrEcBvLKJJRrBPMySowyDUPy1BhrLNQkkB5SisXI13yPNOYmchqk6rkC6xX08rsQ6AEj5WwUljMkdsyzy35Iu6zZFNwnbQgWsx4oRr-cZcG47bwfkgoCi-lwkmpaKTUgu_LNvc1-8Y_a--5aV_WbGa8BUcLwRbNAn0sYiQVygTZjwfvt_oGH7rDfq_oXQ1-HsKm66eGIB7B-uxhbr6SLTKTx14FXwA1ENhq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computing-in-Memory+for+Performance+and+Energy-Efficient+Homomorphic+Encryption&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Reis%2C+Dayane&rft.au=Takeshita%2C+Jonathan&rft.au=Jung%2C+Taeho&rft.au=Niemier%2C+Michael&rft.date=2020-11-01&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=28&rft.issue=11&rft.spage=2300&rft.epage=2313&rft_id=info:doi/10.1109%2FTVLSI.2020.3017595&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVLSI_2020_3017595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon