A Computation-Efficient Decentralized Algorithm for Composite Constrained Optimization
This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning...
Saved in:
Published in | IEEE transactions on signal and information processing over networks Vol. 6; pp. 774 - 789 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2373-776X 2373-7778 |
DOI | 10.1109/TSIPN.2020.3037837 |
Cover
Abstract | This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm. |
---|---|
AbstractList | This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm. This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms ([Formula Omitted] norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm. |
Author | Lu, Qingguo Huang, Tingwen Li, Huaqing Liao, Xiaofeng |
Author_xml | – sequence: 1 givenname: Qingguo orcidid: 0000-0003-3602-0946 surname: Lu fullname: Lu, Qingguo email: lvqingguo886@126.com organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, PR. China – sequence: 2 givenname: Xiaofeng orcidid: 0000-0002-3566-8161 surname: Liao fullname: Liao, Xiaofeng email: xfliao@cqu.edu.cn organization: College of Computer, Chongqing University, Chongqing, PR. China – sequence: 3 givenname: Huaqing orcidid: 0000-0001-6310-8965 surname: Li fullname: Li, Huaqing email: huaqingli@swu.edu.cn organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, PR. China – sequence: 4 givenname: Tingwen orcidid: 0000-0001-9610-846X surname: Huang fullname: Huang, Tingwen email: tingwen.huang@qatar.tamu.edu organization: Science Program, Texas A&M University at Qatar, Doha, Qatar |
BookMark | eNp9kE1PwjAYxxuDiYh8Ab0s8TzsG2t7JIhKQsRENN6a0nVasq2zKwf59BZGOHjw9DyH_-95-V2CXu1qA8A1giOEoLhbvc5fnkcYYjgikDBO2BnoY8JIyhjjvVOffVyAYdtuIIRozCgTog_eJ8nUVc02qGBdnc6Kwmpr6pDcGx2LV6XdmTyZlJ_O2_BVJYXzB8K1NpjY1W0M2Tpmlk2wld0dBl2B80KVrRke6wC8PcxW06d0sXycTyeLVJMMhXSNoaA6Q0xTLXLIyVgVmaFrrjg3AimoKc-R1ibHeE2xUFBgTDARjJgcYUMG4Lab23j3vTVtkBu39XVcKTFlBGc82ogp3qW0d23rTSG17R7e315KBOVepDyIlHuR8igyovgP2nhbKf_zP3TTQdYYcwIEHnOKBPkFsVeBnQ |
CODEN | ITSIBW |
CitedBy_id | crossref_primary_10_1109_TC_2021_3117127 crossref_primary_10_1007_s00521_021_06348_1 crossref_primary_10_1109_ACCESS_2021_3074968 crossref_primary_10_1109_TSMC_2022_3144187 crossref_primary_10_1109_TSIPN_2021_3122302 crossref_primary_10_1002_oca_2949 crossref_primary_10_1109_TSIPN_2022_3151242 crossref_primary_10_1109_ACCESS_2021_3076436 crossref_primary_10_1109_TSIPN_2023_3265892 crossref_primary_10_1109_TSIPN_2024_3407660 |
Cites_doi | 10.1109/TSIPN.2019.2945631 10.1109/TAC.2020.3009363 10.1109/TNSE.2019.2933177 10.1016/j.arcontrol.2019.05.006 10.1016/j.automatica.2018.07.020 10.1109/TCNS.2019.2921284 10.1007/s10957-010-9737-7 10.1109/TAC.2019.2942513 10.1109/TSP.2018.2872003 10.1016/j.neunet.2019.10.008 10.1109/MNET.2016.7389830 10.1109/TC.2015.2470255 10.1137/16M1084316 10.1109/TSIPN.2020.2964214 10.1109/TSP.2014.2367458 10.1137/14096668X 10.1109/TSIPN.2018.2797806 10.1002/0471787779 10.1109/TCYB.2020.2973221 10.1109/Allerton.2012.6483273 10.1109/TAC.2019.2917023 10.1109/TAC.2011.2161027 10.1109/MSP.2020.2975210 10.1109/TSP.2020.3031071 10.1016/j.automatica.2017.12.053 10.1109/TAC.2008.2009515 10.1109/TSP.2019.2926022 10.1109/TIE.2016.2617832 10.1109/CDC.2015.7402509 10.1109/JSTSP.2015.2505682 10.1109/TSIPN.2019.2892055 10.1109/TAC.2017.2672698 10.1109/TAC.2017.2681200 10.1109/IEEECONF44664.2019.9049065 10.1007/s10107-016-1030-6 10.1109/TSIPN.2020.2975369 10.1109/MSP.2020.2974267 10.1146/annurev-control-060117-105131 10.1109/CDC40024.2019.9029217 10.1109/TCNS.2018.2795703 10.1109/TCNS.2020.2976273 10.1109/ICASSP.2018.8461448 10.1109/TSIPN.2020.2967143 10.1109/TSP.2015.2461520 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TSIPN.2020.3037837 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-7778 |
EndPage | 789 |
ExternalDocumentID | 10_1109_TSIPN_2020_3037837 9258419 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018M643085 funderid: 10.13039/501100002858 – fundername: Graduate School, Chongqing University; Graduate Scientific Research and Innovation Foundation of Chongqing China grantid: CYB19074 funderid: 10.13039/501100012231 – fundername: National Key R&D Program of China grantid: 2018AAA0100101 funderid: 10.13039/501100013290 – fundername: Qatar National Research Fund grantid: NPRP 9-166-1-031 funderid: 10.13039/100008982 – fundername: National Natural Science Foundation of China grantid: 61932006; 61772434; 61806169 funderid: 10.13039/501100013290 – fundername: Fundamental Research Funds for the Central Universities grantid: XDJK2020D008; XDJK2019C020 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c361t-b2094c617c4c9d0835af6e4b8a88e91a0c48d1cced22b429a0922323973ed12e3 |
IEDL.DBID | RIE |
ISSN | 2373-776X |
IngestDate | Sun Jun 29 15:52:49 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Wed Oct 01 02:19:32 EDT 2025 Wed Aug 27 02:28:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b2094c617c4c9d0835af6e4b8a88e91a0c48d1cced22b429a0922323973ed12e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3566-8161 0000-0001-6310-8965 0000-0003-3602-0946 0000-0001-9610-846X |
PQID | 2473268837 |
PQPubID | 4437207 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TSIPN_2020_3037837 proquest_journals_2473268837 crossref_primary_10_1109_TSIPN_2020_3037837 ieee_primary_9258419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on signal and information processing over networks |
PublicationTitleAbbrev | TSIPN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref59 ref15 ref58 ref14 ref53 defazio (ref41) 0 ref52 ref55 ref11 ref54 ref10 ref16 ref19 alghunaim (ref33) 2019 ref18 li (ref5) 2019; 6 ref51 ref50 ref46 tan (ref43) 0 ref48 lian (ref1) 0 nguyen (ref44) 2017 li (ref8) 2020; 21 zhang (ref17) 0 assran (ref36) 2019 ref7 ref9 ref4 ref3 ref6 ref40 ref34 ref37 swenson (ref35) 0 ref31 ref30 mokhtari (ref45) 2016; 17 ref32 ref2 ref38 dua (ref57) 2017 ram (ref12) 2010; 147 konecny (ref39) 2016; 10 johnson (ref42) 0 ref24 ref23 hendrikx (ref49) 0 ref26 ref20 ref22 ref21 shen (ref47) 2018 ref28 ref27 ref29 ref60 hong (ref25) 2017 |
References_xml | – year: 2018 ident: ref47 article-title: Towards more efficient stochastic decentralized learning: Faster convergence and sparse communication publication-title: arXiv 1805 09969v1 – ident: ref3 doi: 10.1109/TSIPN.2019.2945631 – ident: ref60 doi: 10.1109/TAC.2020.3009363 – ident: ref50 doi: 10.1109/TNSE.2019.2933177 – ident: ref10 doi: 10.1016/j.arcontrol.2019.05.006 – year: 2017 ident: ref57 article-title: UCI machine learning repository – start-page: 1646 year: 0 ident: ref41 article-title: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives publication-title: Proc Adv Neural Inf Process Syst – ident: ref22 doi: 10.1016/j.automatica.2018.07.020 – start-page: 954 year: 0 ident: ref49 article-title: An accelerated decentralized stochastic proximal algorithm for finite sums publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1109/TCNS.2019.2921284 – volume: 147 start-page: 516 year: 2010 ident: ref12 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J Optim Theory Appl doi: 10.1007/s10957-010-9737-7 – ident: ref21 doi: 10.1109/TAC.2019.2942513 – start-page: 2848 year: 2019 ident: ref33 article-title: A linearly convergent proximal gradient algorithm for decentralized optimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref48 doi: 10.1109/TSP.2018.2872003 – ident: ref46 doi: 10.1016/j.neunet.2019.10.008 – ident: ref34 doi: 10.1109/MNET.2016.7389830 – ident: ref56 doi: 10.1109/TC.2015.2470255 – ident: ref20 doi: 10.1137/16M1084316 – volume: 17 start-page: 2165 year: 2016 ident: ref45 article-title: DSA: Decentralized double stochastic averaging gradient algorithm publication-title: J Mach Learn Res – ident: ref26 doi: 10.1109/TSIPN.2020.2964214 – start-page: 315 year: 0 ident: ref42 article-title: Accelerating stochastic gradient descent using predictive variance reduction publication-title: Proc Adv Neural Inf Process Syst – ident: ref30 doi: 10.1109/TSP.2014.2367458 – ident: ref14 doi: 10.1137/14096668X – ident: ref24 doi: 10.1109/TSIPN.2018.2797806 – ident: ref58 doi: 10.1002/0471787779 – ident: ref54 doi: 10.1109/TCYB.2020.2973221 – ident: ref29 doi: 10.1109/Allerton.2012.6483273 – start-page: 685 year: 0 ident: ref43 article-title: Barzilai-Borwein step size for stochastic average gradient publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/TAC.2019.2917023 – ident: ref13 doi: 10.1109/TAC.2011.2161027 – ident: ref6 doi: 10.1109/MSP.2020.2975210 – ident: ref51 doi: 10.1109/TSP.2020.3031071 – year: 0 ident: ref17 article-title: Privacy-preserving decentralized optimization via decomposition – ident: ref37 doi: 10.1016/j.automatica.2017.12.053 – ident: ref11 doi: 10.1109/TAC.2008.2009515 – ident: ref32 doi: 10.1109/TSP.2019.2926022 – ident: ref27 doi: 10.1109/TIE.2016.2617832 – ident: ref19 doi: 10.1109/CDC.2015.7402509 – volume: 10 start-page: 242 year: 2016 ident: ref39 article-title: Mini-batch semi-stochastic gradient descent in the proximal setting publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2015.2505682 – ident: ref16 doi: 10.1109/TSIPN.2019.2892055 – start-page: 5330 year: 0 ident: ref1 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst – volume: 21 start-page: 1 year: 2020 ident: ref8 article-title: Communication-efficient distributed optimization in networks with gradient tracking and variance reduction publication-title: J Mach Learn Res – ident: ref15 doi: 10.1109/TAC.2017.2672698 – ident: ref53 doi: 10.1109/TAC.2017.2681200 – ident: ref52 doi: 10.1109/IEEECONF44664.2019.9049065 – start-page: 1529 year: 2017 ident: ref25 article-title: Prox-PDA: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref40 doi: 10.1007/s10107-016-1030-6 – ident: ref7 doi: 10.1109/TSIPN.2020.2975369 – ident: ref2 doi: 10.1109/MSP.2020.2974267 – ident: ref4 doi: 10.1146/annurev-control-060117-105131 – ident: ref38 doi: 10.1109/CDC40024.2019.9029217 – ident: ref59 doi: 10.1109/TCNS.2018.2795703 – year: 0 ident: ref35 article-title: Distributed stochastic gradient descent and convergence to local minima – ident: ref55 doi: 10.1109/TCNS.2020.2976273 – start-page: 2613 year: 2017 ident: ref44 article-title: SARAH: A novel method for machine learning problems using stochastic recursive gradient publication-title: Proc 34th Int Conf Mach Learn – ident: ref18 doi: 10.1109/ICASSP.2018.8461448 – ident: ref9 doi: 10.1109/TSIPN.2020.2967143 – volume: 6 start-page: 1 year: 2019 ident: ref5 article-title: Resilient distributed diffusion in networks with adversaries publication-title: IEEE Trans Signal Inf Process Over Netw – ident: ref31 doi: 10.1109/TSP.2015.2461520 – start-page: 344 year: 2019 ident: ref36 article-title: Stochastic gradient push for distributed deep learning publication-title: Proc 36th Int Conf Mach Learn |
SSID | ssj0001574799 |
Score | 2.1974688 |
Snippet | This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 774 |
SubjectTerms | Algorithms Composite constrained optimization computation-efficient Computational efficiency Computational geometry Constituents Constraints Convergence Convex analysis Convex functions Convexity Data processing decentralized stochastic algorithm differential privacy Gradient methods Information processing Linear programming Machine learning Optimization Privacy Regularization Task analysis Upper bounds variance reduction |
Title | A Computation-Efficient Decentralized Algorithm for Composite Constrained Optimization |
URI | https://ieeexplore.ieee.org/document/9258419 https://www.proquest.com/docview/2473268837 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2373-7778 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001574799 issn: 2373-776X databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxskGI7zsNjBa0KEgWJFnWLEtuBij5QSZf-es6OUypAiC3DnWX5bN93zt13CJ2zMEtISDJXekHmMuHBPegL7hJGJA3A5WQF22cv6A7Y3dAfVtDlqhZGKWWSz1RTf5p_-XImFvqp7IpTcJea43MjDHlRq_X1nuIDMOa8rIvB_Kr_dPvYgwiQQmCKvTDSrc7XfI9ppvLjBjZupbOD7ssJFdkkb81FnjbF8htX439nvIu2Lb50WsWG2EMVNd1HW2usgzX03HKKXg7GKG7bkEjAMM6Nsqmao6WSTmv8MpuP8teJA7jWaOj8LuXoFp-msQTIPMCFM7GVnAdo0Gn3r7uuba_gCi8guZtSCO0EIBjBBJcaiiVZoFgaJVGkOEmwYJEkQihJaQpuK8EcsAQFAOMpSajyDlF1OpuqI-R4EaYpIQKnEM75knFGMITsQiZ-IFMvqyNSLnwsLPe4nuk4NjEI5rExVqyNFVtj1dHFSue9YN74U7qmV38laRe-jhqlfWN7OD9iykIArRFoHf-udYI29djFS0sDVfP5Qp0C9sjTM7PpPgHwgtbE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADr4IozwxskBI7zsNjBUUFSkGiRWxRYjtQ0Qcq6cKv5-wkpQKE2DL4EsuX-L7PufsO4JgFaUwCktrS9VObCRf3QU9wmzAiqY8hJ83VPjt-q8eun7ynCpzOamGUUib5TNX1pfmXL8diqo_KzjjFcKk1Phc9ZBVBXq31daLiITTmvKyMcfhZ9-HqvoMckCI1ddwg1M3O56KPaafyYw82geVyDW7LKeX5JK_1aZbUxcc3tcb_znkdVguEaTXyV2IDKmq0CStzuoNVeGxYeTcH4xa7aWQk8DbWhSqSNfsfSlqNwfN40s9ehhYiW2OhM7yUpZt8mtYSOOYOt5xhUcu5Bb3LZve8ZRcNFmzh-iSzE4rkTiCGEUxwqcFYnPqKJWEchoqT2BEslEQIJSlNMHDFDkc0QRHCuEoSqtxtWBiNR2oHLDd0aEKIcBIkdJ5knBEHSbuQsefLxE1rQMqFj0ShPq5nOogMC3F4ZJwVaWdFhbNqcDKzecu1N_4cXdWrPxtZLHwN9kv_RsXn-R5RFiBsDdFq93erI1hqdW_bUfuqc7MHy_o5-bnLPixkk6k6QCSSJYfmBfwEYMfaFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computation-Efficient+Decentralized+Algorithm+for+Composite+Constrained+Optimization&rft.jtitle=IEEE+transactions+on+signal+and+information+processing+over+networks&rft.au=Lu%2C+Qingguo&rft.au=Liao%2C+Xiaofeng&rft.au=Li%2C+Huaqing&rft.au=Huang%2C+Tingwen&rft.date=2020&rft.pub=IEEE&rft.eissn=2373-7778&rft.volume=6&rft.spage=774&rft.epage=789&rft_id=info:doi/10.1109%2FTSIPN.2020.3037837&rft.externalDocID=9258419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-776X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-776X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-776X&client=summon |