A Computation-Efficient Decentralized Algorithm for Composite Constrained Optimization

This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal and information processing over networks Vol. 6; pp. 774 - 789
Main Authors Lu, Qingguo, Liao, Xiaofeng, Li, Huaqing, Huang, Tingwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2373-776X
2373-7778
DOI10.1109/TSIPN.2020.3037837

Cover

Abstract This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm.
AbstractList This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms (ℓ 1 norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm.
This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization terms ([Formula Omitted] norm) subject to locally general constraints. Motivated by the modern large-scale information processing problems in machine learning (the samples of a training dataset are randomly decentralized across multiple computing nodes), each of the smooth objective functions is further considered as the average of several constituent functions. To address the problem in a decentralized fashion, we propose a novel computation-efficient decentralized stochastic gradient algorithm, which leverages the variance reduction technique and the decentralized stochastic gradient projection method with constant step-size. Theoretical analysis indicates that if the constant step-size is less than an explicitly estimated upper bound, the proposed algorithm can find the exact optimal solution in expectation when each constituent function (smooth) is strongly convex. Concerning the existing decentralized schemes, the proposed algorithm not only is suitable for solving the general constrained optimization problems but also possesses low computation cost in terms of the total number of local gradient evaluations. Furthermore, the proposed algorithm via differential privacy strategy can effectively mask the privacy of each constituent function, which is more practical in applications involving sensitive messages, such as military affairs or medical treatment. Finally, numerical evidence is provided to demonstrate the appealing performance of the proposed algorithm.
Author Lu, Qingguo
Huang, Tingwen
Li, Huaqing
Liao, Xiaofeng
Author_xml – sequence: 1
  givenname: Qingguo
  orcidid: 0000-0003-3602-0946
  surname: Lu
  fullname: Lu, Qingguo
  email: lvqingguo886@126.com
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, PR. China
– sequence: 2
  givenname: Xiaofeng
  orcidid: 0000-0002-3566-8161
  surname: Liao
  fullname: Liao, Xiaofeng
  email: xfliao@cqu.edu.cn
  organization: College of Computer, Chongqing University, Chongqing, PR. China
– sequence: 3
  givenname: Huaqing
  orcidid: 0000-0001-6310-8965
  surname: Li
  fullname: Li, Huaqing
  email: huaqingli@swu.edu.cn
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, PR. China
– sequence: 4
  givenname: Tingwen
  orcidid: 0000-0001-9610-846X
  surname: Huang
  fullname: Huang, Tingwen
  email: tingwen.huang@qatar.tamu.edu
  organization: Science Program, Texas A&M University at Qatar, Doha, Qatar
BookMark eNp9kE1PwjAYxxuDiYh8Ab0s8TzsG2t7JIhKQsRENN6a0nVasq2zKwf59BZGOHjw9DyH_-95-V2CXu1qA8A1giOEoLhbvc5fnkcYYjgikDBO2BnoY8JIyhjjvVOffVyAYdtuIIRozCgTog_eJ8nUVc02qGBdnc6Kwmpr6pDcGx2LV6XdmTyZlJ_O2_BVJYXzB8K1NpjY1W0M2Tpmlk2wld0dBl2B80KVrRke6wC8PcxW06d0sXycTyeLVJMMhXSNoaA6Q0xTLXLIyVgVmaFrrjg3AimoKc-R1ibHeE2xUFBgTDARjJgcYUMG4Lab23j3vTVtkBu39XVcKTFlBGc82ogp3qW0d23rTSG17R7e315KBOVepDyIlHuR8igyovgP2nhbKf_zP3TTQdYYcwIEHnOKBPkFsVeBnQ
CODEN ITSIBW
CitedBy_id crossref_primary_10_1109_TC_2021_3117127
crossref_primary_10_1007_s00521_021_06348_1
crossref_primary_10_1109_ACCESS_2021_3074968
crossref_primary_10_1109_TSMC_2022_3144187
crossref_primary_10_1109_TSIPN_2021_3122302
crossref_primary_10_1002_oca_2949
crossref_primary_10_1109_TSIPN_2022_3151242
crossref_primary_10_1109_ACCESS_2021_3076436
crossref_primary_10_1109_TSIPN_2023_3265892
crossref_primary_10_1109_TSIPN_2024_3407660
Cites_doi 10.1109/TSIPN.2019.2945631
10.1109/TAC.2020.3009363
10.1109/TNSE.2019.2933177
10.1016/j.arcontrol.2019.05.006
10.1016/j.automatica.2018.07.020
10.1109/TCNS.2019.2921284
10.1007/s10957-010-9737-7
10.1109/TAC.2019.2942513
10.1109/TSP.2018.2872003
10.1016/j.neunet.2019.10.008
10.1109/MNET.2016.7389830
10.1109/TC.2015.2470255
10.1137/16M1084316
10.1109/TSIPN.2020.2964214
10.1109/TSP.2014.2367458
10.1137/14096668X
10.1109/TSIPN.2018.2797806
10.1002/0471787779
10.1109/TCYB.2020.2973221
10.1109/Allerton.2012.6483273
10.1109/TAC.2019.2917023
10.1109/TAC.2011.2161027
10.1109/MSP.2020.2975210
10.1109/TSP.2020.3031071
10.1016/j.automatica.2017.12.053
10.1109/TAC.2008.2009515
10.1109/TSP.2019.2926022
10.1109/TIE.2016.2617832
10.1109/CDC.2015.7402509
10.1109/JSTSP.2015.2505682
10.1109/TSIPN.2019.2892055
10.1109/TAC.2017.2672698
10.1109/TAC.2017.2681200
10.1109/IEEECONF44664.2019.9049065
10.1007/s10107-016-1030-6
10.1109/TSIPN.2020.2975369
10.1109/MSP.2020.2974267
10.1146/annurev-control-060117-105131
10.1109/CDC40024.2019.9029217
10.1109/TCNS.2018.2795703
10.1109/TCNS.2020.2976273
10.1109/ICASSP.2018.8461448
10.1109/TSIPN.2020.2967143
10.1109/TSP.2015.2461520
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TSIPN.2020.3037837
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-7778
EndPage 789
ExternalDocumentID 10_1109_TSIPN_2020_3037837
9258419
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018M643085
  funderid: 10.13039/501100002858
– fundername: Graduate School, Chongqing University; Graduate Scientific Research and Innovation Foundation of Chongqing China
  grantid: CYB19074
  funderid: 10.13039/501100012231
– fundername: National Key R&D Program of China
  grantid: 2018AAA0100101
  funderid: 10.13039/501100013290
– fundername: Qatar National Research Fund
  grantid: NPRP 9-166-1-031
  funderid: 10.13039/100008982
– fundername: National Natural Science Foundation of China
  grantid: 61932006; 61772434; 61806169
  funderid: 10.13039/501100013290
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XDJK2020D008; XDJK2019C020
  funderid: 10.13039/501100012226
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c361t-b2094c617c4c9d0835af6e4b8a88e91a0c48d1cced22b429a0922323973ed12e3
IEDL.DBID RIE
ISSN 2373-776X
IngestDate Sun Jun 29 15:52:49 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Wed Oct 01 02:19:32 EDT 2025
Wed Aug 27 02:28:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b2094c617c4c9d0835af6e4b8a88e91a0c48d1cced22b429a0922323973ed12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3566-8161
0000-0001-6310-8965
0000-0003-3602-0946
0000-0001-9610-846X
PQID 2473268837
PQPubID 4437207
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TSIPN_2020_3037837
proquest_journals_2473268837
crossref_primary_10_1109_TSIPN_2020_3037837
ieee_primary_9258419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on signal and information processing over networks
PublicationTitleAbbrev TSIPN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref59
ref15
ref58
ref14
ref53
defazio (ref41) 0
ref52
ref55
ref11
ref54
ref10
ref16
ref19
alghunaim (ref33) 2019
ref18
li (ref5) 2019; 6
ref51
ref50
ref46
tan (ref43) 0
ref48
lian (ref1) 0
nguyen (ref44) 2017
li (ref8) 2020; 21
zhang (ref17) 0
assran (ref36) 2019
ref7
ref9
ref4
ref3
ref6
ref40
ref34
ref37
swenson (ref35) 0
ref31
ref30
mokhtari (ref45) 2016; 17
ref32
ref2
ref38
dua (ref57) 2017
ram (ref12) 2010; 147
konecny (ref39) 2016; 10
johnson (ref42) 0
ref24
ref23
hendrikx (ref49) 0
ref26
ref20
ref22
ref21
shen (ref47) 2018
ref28
ref27
ref29
ref60
hong (ref25) 2017
References_xml – year: 2018
  ident: ref47
  article-title: Towards more efficient stochastic decentralized learning: Faster convergence and sparse communication
  publication-title: arXiv 1805 09969v1
– ident: ref3
  doi: 10.1109/TSIPN.2019.2945631
– ident: ref60
  doi: 10.1109/TAC.2020.3009363
– ident: ref50
  doi: 10.1109/TNSE.2019.2933177
– ident: ref10
  doi: 10.1016/j.arcontrol.2019.05.006
– year: 2017
  ident: ref57
  article-title: UCI machine learning repository
– start-page: 1646
  year: 0
  ident: ref41
  article-title: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref22
  doi: 10.1016/j.automatica.2018.07.020
– start-page: 954
  year: 0
  ident: ref49
  article-title: An accelerated decentralized stochastic proximal algorithm for finite sums
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/TCNS.2019.2921284
– volume: 147
  start-page: 516
  year: 2010
  ident: ref12
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-010-9737-7
– ident: ref21
  doi: 10.1109/TAC.2019.2942513
– start-page: 2848
  year: 2019
  ident: ref33
  article-title: A linearly convergent proximal gradient algorithm for decentralized optimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref48
  doi: 10.1109/TSP.2018.2872003
– ident: ref46
  doi: 10.1016/j.neunet.2019.10.008
– ident: ref34
  doi: 10.1109/MNET.2016.7389830
– ident: ref56
  doi: 10.1109/TC.2015.2470255
– ident: ref20
  doi: 10.1137/16M1084316
– volume: 17
  start-page: 2165
  year: 2016
  ident: ref45
  article-title: DSA: Decentralized double stochastic averaging gradient algorithm
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1109/TSIPN.2020.2964214
– start-page: 315
  year: 0
  ident: ref42
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TSP.2014.2367458
– ident: ref14
  doi: 10.1137/14096668X
– ident: ref24
  doi: 10.1109/TSIPN.2018.2797806
– ident: ref58
  doi: 10.1002/0471787779
– ident: ref54
  doi: 10.1109/TCYB.2020.2973221
– ident: ref29
  doi: 10.1109/Allerton.2012.6483273
– start-page: 685
  year: 0
  ident: ref43
  article-title: Barzilai-Borwein step size for stochastic average gradient
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/TAC.2019.2917023
– ident: ref13
  doi: 10.1109/TAC.2011.2161027
– ident: ref6
  doi: 10.1109/MSP.2020.2975210
– ident: ref51
  doi: 10.1109/TSP.2020.3031071
– year: 0
  ident: ref17
  article-title: Privacy-preserving decentralized optimization via decomposition
– ident: ref37
  doi: 10.1016/j.automatica.2017.12.053
– ident: ref11
  doi: 10.1109/TAC.2008.2009515
– ident: ref32
  doi: 10.1109/TSP.2019.2926022
– ident: ref27
  doi: 10.1109/TIE.2016.2617832
– ident: ref19
  doi: 10.1109/CDC.2015.7402509
– volume: 10
  start-page: 242
  year: 2016
  ident: ref39
  article-title: Mini-batch semi-stochastic gradient descent in the proximal setting
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2015.2505682
– ident: ref16
  doi: 10.1109/TSIPN.2019.2892055
– start-page: 5330
  year: 0
  ident: ref1
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 21
  start-page: 1
  year: 2020
  ident: ref8
  article-title: Communication-efficient distributed optimization in networks with gradient tracking and variance reduction
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1109/TAC.2017.2672698
– ident: ref53
  doi: 10.1109/TAC.2017.2681200
– ident: ref52
  doi: 10.1109/IEEECONF44664.2019.9049065
– start-page: 1529
  year: 2017
  ident: ref25
  article-title: Prox-PDA: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref40
  doi: 10.1007/s10107-016-1030-6
– ident: ref7
  doi: 10.1109/TSIPN.2020.2975369
– ident: ref2
  doi: 10.1109/MSP.2020.2974267
– ident: ref4
  doi: 10.1146/annurev-control-060117-105131
– ident: ref38
  doi: 10.1109/CDC40024.2019.9029217
– ident: ref59
  doi: 10.1109/TCNS.2018.2795703
– year: 0
  ident: ref35
  article-title: Distributed stochastic gradient descent and convergence to local minima
– ident: ref55
  doi: 10.1109/TCNS.2020.2976273
– start-page: 2613
  year: 2017
  ident: ref44
  article-title: SARAH: A novel method for machine learning problems using stochastic recursive gradient
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref18
  doi: 10.1109/ICASSP.2018.8461448
– ident: ref9
  doi: 10.1109/TSIPN.2020.2967143
– volume: 6
  start-page: 1
  year: 2019
  ident: ref5
  article-title: Resilient distributed diffusion in networks with adversaries
  publication-title: IEEE Trans Signal Inf Process Over Netw
– ident: ref31
  doi: 10.1109/TSP.2015.2461520
– start-page: 344
  year: 2019
  ident: ref36
  article-title: Stochastic gradient push for distributed deep learning
  publication-title: Proc 36th Int Conf Mach Learn
SSID ssj0001574799
Score 2.1974688
Snippet This paper focuses on solving the problem of composite constrained convex optimization with a sum of smooth convex functions and non-smooth regularization...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 774
SubjectTerms Algorithms
Composite constrained optimization
computation-efficient
Computational efficiency
Computational geometry
Constituents
Constraints
Convergence
Convex analysis
Convex functions
Convexity
Data processing
decentralized stochastic algorithm
differential privacy
Gradient methods
Information processing
Linear programming
Machine learning
Optimization
Privacy
Regularization
Task analysis
Upper bounds
variance reduction
Title A Computation-Efficient Decentralized Algorithm for Composite Constrained Optimization
URI https://ieeexplore.ieee.org/document/9258419
https://www.proquest.com/docview/2473268837
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001574799
  issn: 2373-776X
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxskGI7zsNjBa0KEgWJFnWLEtuBij5QSZf-es6OUypAiC3DnWX5bN93zt13CJ2zMEtISDJXekHmMuHBPegL7hJGJA3A5WQF22cv6A7Y3dAfVtDlqhZGKWWSz1RTf5p_-XImFvqp7IpTcJea43MjDHlRq_X1nuIDMOa8rIvB_Kr_dPvYgwiQQmCKvTDSrc7XfI9ppvLjBjZupbOD7ssJFdkkb81FnjbF8htX439nvIu2Lb50WsWG2EMVNd1HW2usgzX03HKKXg7GKG7bkEjAMM6Nsqmao6WSTmv8MpuP8teJA7jWaOj8LuXoFp-msQTIPMCFM7GVnAdo0Gn3r7uuba_gCi8guZtSCO0EIBjBBJcaiiVZoFgaJVGkOEmwYJEkQihJaQpuK8EcsAQFAOMpSajyDlF1OpuqI-R4EaYpIQKnEM75knFGMITsQiZ-IFMvqyNSLnwsLPe4nuk4NjEI5rExVqyNFVtj1dHFSue9YN74U7qmV38laRe-jhqlfWN7OD9iykIArRFoHf-udYI29djFS0sDVfP5Qp0C9sjTM7PpPgHwgtbE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADr4IozwxskBI7zsNjBUUFSkGiRWxRYjtQ0Qcq6cKv5-wkpQKE2DL4EsuX-L7PufsO4JgFaUwCktrS9VObCRf3QU9wmzAiqY8hJ83VPjt-q8eun7ynCpzOamGUUib5TNX1pfmXL8diqo_KzjjFcKk1Phc9ZBVBXq31daLiITTmvKyMcfhZ9-HqvoMckCI1ddwg1M3O56KPaafyYw82geVyDW7LKeX5JK_1aZbUxcc3tcb_znkdVguEaTXyV2IDKmq0CStzuoNVeGxYeTcH4xa7aWQk8DbWhSqSNfsfSlqNwfN40s9ehhYiW2OhM7yUpZt8mtYSOOYOt5xhUcu5Bb3LZve8ZRcNFmzh-iSzE4rkTiCGEUxwqcFYnPqKJWEchoqT2BEslEQIJSlNMHDFDkc0QRHCuEoSqtxtWBiNR2oHLDd0aEKIcBIkdJ5knBEHSbuQsefLxE1rQMqFj0ShPq5nOogMC3F4ZJwVaWdFhbNqcDKzecu1N_4cXdWrPxtZLHwN9kv_RsXn-R5RFiBsDdFq93erI1hqdW_bUfuqc7MHy_o5-bnLPixkk6k6QCSSJYfmBfwEYMfaFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computation-Efficient+Decentralized+Algorithm+for+Composite+Constrained+Optimization&rft.jtitle=IEEE+transactions+on+signal+and+information+processing+over+networks&rft.au=Lu%2C+Qingguo&rft.au=Liao%2C+Xiaofeng&rft.au=Li%2C+Huaqing&rft.au=Huang%2C+Tingwen&rft.date=2020&rft.pub=IEEE&rft.eissn=2373-7778&rft.volume=6&rft.spage=774&rft.epage=789&rft_id=info:doi/10.1109%2FTSIPN.2020.3037837&rft.externalDocID=9258419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-776X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-776X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-776X&client=summon