DOA Estimation Based on Convolutional Autoencoder in the Presence of Array Imperfections

Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 3; p. 771
Main Authors Chang, Dah-Chung, Liu, Yan-Ting
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12030771

Cover

Abstract Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect arrays. Deep neural network (DNN)-based methods do not need to rely on pre-modeled antenna array geometries, and have been explored to handle flawed array models because of their better flexibility than model-based methods. The DNN autoencoder (DAE) method has been proposed for the array imperfection problem, which decomposes the input into multiple components in different spatial subregions. These components have more concentrated distributions than the original input, which avoid a large number of connections and nodes used in the layers to realize DOA estimation classifiers. In this paper, we study the convolutional AE (CAE) method that substantially focuses on the learning of local features in a different manner from the previous DAE method. The advantage of the convolutional operation using a kernel in CAE is to capture features in a more efficient manner than the DAE, and thus be able to reduce the number of parameters that are required to be trained in the neural networks. From the numerical evaluation of DOA estimation accuracy, the proposed CAE method is also more resistant to the noise effect than the DAE method such that the CAE method has better accuracy at a lower signal-to-noise ratio.
AbstractList Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect arrays. Deep neural network (DNN)-based methods do not need to rely on pre-modeled antenna array geometries, and have been explored to handle flawed array models because of their better flexibility than model-based methods. The DNN autoencoder (DAE) method has been proposed for the array imperfection problem, which decomposes the input into multiple components in different spatial subregions. These components have more concentrated distributions than the original input, which avoid a large number of connections and nodes used in the layers to realize DOA estimation classifiers. In this paper, we study the convolutional AE (CAE) method that substantially focuses on the learning of local features in a different manner from the previous DAE method. The advantage of the convolutional operation using a kernel in CAE is to capture features in a more efficient manner than the DAE, and thus be able to reduce the number of parameters that are required to be trained in the neural networks. From the numerical evaluation of DOA estimation accuracy, the proposed CAE method is also more resistant to the noise effect than the DAE method such that the CAE method has better accuracy at a lower signal-to-noise ratio.
Audience Academic
Author Liu, Yan-Ting
Chang, Dah-Chung
Author_xml – sequence: 1
  givenname: Dah-Chung
  surname: Chang
  fullname: Chang, Dah-Chung
– sequence: 2
  givenname: Yan-Ting
  surname: Liu
  fullname: Liu, Yan-Ting
BookMark eNqNkU1LxDAQhoMoqKu_wEvAczUf7aY91vVrQdCDgreSpBONdJM1SZX992ZdDyIiJocML_NM5p3ZR9vOO0DoiJITzhtyCgPoFLyzOlJGOBGCbqE9RkRTNKxh29_iXXQY4wvJp6G85mQPPZ7ftvgiJruQyXqHz2SEHudg5t2bH8a1KAfcjsmD076HgK3D6RnwXYCYJcDe4DYEucLzxRKCyc1kJh6gHSOHCIdf7wQ9XF7cz66Lm9ur-ay9KTSf0lQoSojStGLAjGak4rRXpiop1axkUgnCha6FqhWZKqC0prSakmyzqkwPSvV8gspN3dEt5epdDkO3DNlNWHWUdOsBdb8MKGPHG2wZ_OsIMXUvfgzZauyYEGVdCsJ4zjrZZD3JATrrjE9B6nx7WFid12Bs1ltRcloS1qwBvgF08DEGMP9spvlBaZs-95G_s8Of7AfaK58e
CitedBy_id crossref_primary_10_1016_j_aeue_2024_155132
crossref_primary_10_3390_electronics12132983
Cites_doi 10.1109/TSP.2013.2243442
10.1109/IWMTS49292.2020.9166332
10.1049/rsn2.12295
10.1109/78.539037
10.1109/JIOT.2019.2907580
10.1109/LCOMM.2020.3047050
10.1109/LSP.2004.842276
10.1109/TAP.1986.1143936
10.1109/TAP.2018.2874430
10.1109/7.575894
10.1109/ACCESS.2017.2720164
10.1109/LAWP.2015.2425423
10.1109/TSP.2014.2354316
10.1109/TVT.2016.2635161
10.1109/ICASSP.2015.7178484
10.1109/MLSP.2016.7738817
10.1109/8.76322
10.1109/JIOT.2019.2956986
10.1109/JSEN.2017.2686448
10.1109/JSTSP.2019.2901664
10.1109/78.330367
10.23919/JCIN.2022.9906943
10.1109/LCOMM.2019.2953851
10.1109/LAWP.2007.903491
10.1109/TAES.2017.2706878
10.1109/78.917801
10.1109/LAWP.2017.2699292
10.1109/TAP.2005.850735
10.1109/TSP.2013.2262682
10.1109/TAP.1986.1143830
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics12030771
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics12030771
A743140293
10_3390_electronics12030771
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
PMFND
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-b100bc152e2fc20531dbf5411c242ab7037c87b8b06be1181156012055fdebbd3
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:42 EDT 2025
Fri Jul 25 01:45:21 EDT 2025
Tue Jun 10 21:07:49 EDT 2025
Thu Apr 24 23:09:29 EDT 2025
Wed Oct 01 02:30:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b100bc152e2fc20531dbf5411c242ab7037c87b8b06be1181156012055fdebbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/12/3/771/pdf?version=1675423510
PQID 2774847023
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics12030771
proquest_journals_2774847023
gale_infotracacademiconefile_A743140293
crossref_primary_10_3390_electronics12030771
crossref_citationtrail_10_3390_electronics12030771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yuen (ref_2) 1996; 44
Pastorino (ref_13) 2005; 53
Randazzo (ref_14) 2007; 6
Jablon (ref_7) 1986; 34
Elbir (ref_28) 2017; 16
Zhang (ref_6) 2020; 24
ref_16
Porat (ref_12) 1997; 33
ref_15
Xie (ref_11) 2017; 17
Yan (ref_3) 2013; 61
Schmidt (ref_1) 1986; 34
Gao (ref_5) 2005; 12
Wang (ref_29) 2017; 53
Chakrabarty (ref_17) 2019; 13
Viberg (ref_10) 1994; 42
ref_25
Liu (ref_9) 2018; 66
Tan (ref_4) 2014; 62
Wang (ref_21) 2017; 66
Dai (ref_20) 2021; 25
Liu (ref_18) 2013; 61
Xiao (ref_23) 2017; 5
Fang (ref_26) 2022; 7
Forster (ref_30) 2001; 49
Friedlander (ref_8) 1991; 39
Ji (ref_27) 2022; 16
Zhao (ref_22) 2019; 6
Wang (ref_19) 2016; 15
Seong (ref_24) 2020; 7
References_xml – volume: 61
  start-page: 1915
  year: 2013
  ident: ref_3
  article-title: Low-Complexity DOA Estimation Based on Compressed MUSIC and Its Performance Analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2243442
– ident: ref_25
  doi: 10.1109/IWMTS49292.2020.9166332
– volume: 16
  start-page: 1761
  year: 2022
  ident: ref_27
  article-title: Robust direction-of-arrival estimation approach using beamspace-based deep neural networks with array imperfections and element failure
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/rsn2.12295
– volume: 44
  start-page: 2537
  year: 1996
  ident: ref_2
  article-title: Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.539037
– volume: 6
  start-page: 5825
  year: 2019
  ident: ref_22
  article-title: An Accurate and Robust Approach of Device-Free Localization With Convolutional Autoencoder
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2907580
– volume: 25
  start-page: 1645
  year: 2021
  ident: ref_20
  article-title: A Gain and Phase Autocalibration Approach for Large-Scale Planar Antenna Arrays
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.3047050
– volume: 12
  start-page: 254
  year: 2005
  ident: ref_5
  article-title: A generalized ESPRIT approach to direction-of-arrival estimation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2004.842276
– volume: 34
  start-page: 996
  year: 1986
  ident: ref_7
  article-title: Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143936
– volume: 66
  start-page: 7315
  year: 2018
  ident: ref_9
  article-title: Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2018.2874430
– volume: 33
  start-page: 545
  year: 1997
  ident: ref_12
  article-title: Accuracy requirements in off-line array calibration
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.575894
– volume: 5
  start-page: 12751
  year: 2017
  ident: ref_23
  article-title: 3-D BLE Indoor Localization Based on Denoising Autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2720164
– volume: 15
  start-page: 12
  year: 2016
  ident: ref_19
  article-title: An Autocalibration Algorithm for Uniform Circular Array With Unknown Mutual Coupling
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2015.2425423
– volume: 62
  start-page: 5565
  year: 2014
  ident: ref_4
  article-title: Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2354316
– volume: 66
  start-page: 6258
  year: 2017
  ident: ref_21
  article-title: Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2635161
– ident: ref_15
  doi: 10.1109/ICASSP.2015.7178484
– ident: ref_16
  doi: 10.1109/MLSP.2016.7738817
– volume: 39
  start-page: 273
  year: 1991
  ident: ref_8
  article-title: Direction finding in the presence of mutual coupling
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/8.76322
– volume: 7
  start-page: 1898
  year: 2020
  ident: ref_24
  article-title: Selective Unsupervised Learning-Based Wi-Fi Fingerprint System Using Autoencoder and GAN
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2956986
– volume: 17
  start-page: 3068
  year: 2017
  ident: ref_11
  article-title: DOA and Gain-Phase Errors Estimation for Noncircular Sources With Central Symmetric Array
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2686448
– volume: 13
  start-page: 8
  year: 2019
  ident: ref_17
  article-title: Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained With Noise Signals
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2901664
– volume: 42
  start-page: 3073
  year: 1994
  ident: ref_10
  article-title: Analysis of the combined effects of finite samples and model errors on array processing performance
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.330367
– volume: 7
  start-page: 296
  year: 2022
  ident: ref_26
  article-title: A Lightweight Deep Learning-Based Algorithm for Array Imperfection Correction and DOA Estimation
  publication-title: J. Commun. Inf. Netw.
  doi: 10.23919/JCIN.2022.9906943
– volume: 24
  start-page: 339
  year: 2020
  ident: ref_6
  article-title: An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2953851
– volume: 6
  start-page: 379
  year: 2007
  ident: ref_14
  article-title: Direction of Arrival Estimation Based on Support Vector Regression: Experimental Validation and Comparison with MUSIC
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2007.903491
– volume: 53
  start-page: 2610
  year: 2017
  ident: ref_29
  article-title: Phase Retrieval Approach for DOA Estimation With Array Errors
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2706878
– volume: 49
  start-page: 972
  year: 2001
  ident: ref_30
  article-title: Generalized rectification of cross spectral matrices for arrays of arbitrary geometry
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.917801
– volume: 16
  start-page: 2118
  year: 2017
  ident: ref_28
  article-title: A Novel Data Transformation Approach for DOA Estimation with 3-D Antenna Arrays in the Presence of Mutual Coupling
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2017.2699292
– volume: 53
  start-page: 2161
  year: 2005
  ident: ref_13
  article-title: A smart antenna system for direction of arrival estimation based on a support vector regression
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2005.850735
– volume: 61
  start-page: 3786
  year: 2013
  ident: ref_18
  article-title: A Unified Framework and Sparse Bayesian Perspective for Direction-of-Arrival Estimation in the Presence of Array Imperfections
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2262682
– volume: 34
  start-page: 276
  year: 1986
  ident: ref_1
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
SSID ssj0000913830
Score 2.2559795
Snippet Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 771
SubjectTerms Accuracy
Algorithms
Antenna arrays
Antennas
Arrays
Artificial neural networks
Deep learning
Defects
Design and construction
Direction of arrival
Localization
Machine learning
Mathematical models
Methods
Neural networks
Neurons
Propagation
Signal processing
Signal to noise ratio
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGB7QMCCKC_5sBIXLGKnidMTAkR5SLvaA0i9RX5KSFVS-gDx75lp3AIrhLjlkNjRPDwztr9vAH5Lm-igjeNa5Z53dAhcW2e5cjJ0fR60zQmc_Odvfn3fue1n_bjhNo7XKudr4myhdrWlPfITqYj1UmGIOR0-cuoaRaersYXGD1gREi2JkOK9q8UeC3FeFmnSkA2lWN2fvPWWGQtJ9q3Eh4D0_7LcgtVpNdQvz3oweBd3euuwFhNGdtZoeAOWfLUJrXc0gr-gjwUeu0RfbWCI7Bwjk2P4cFFXT9G0aIjppCbaSudH7KFimPmxfzPwkfWsDjjDSL-wG0yjR839rGq8Bfe9y7uLax47JnCb5mLCjUgSYzEkexmsJP9yJmQdISxGYm3Qu5UtlClMkhtPkFPCUaMgsiw4b4xLt2G5qiu_A0zZxEiXmyItQqcbRKETLYLBaic1mVHdNsi52Eob6cSpq8WgxLKCZF1-Ius2HC8-GjZsGl-_fkT6KMnXcGyrI2QA_5BYq8ozSn-wAO6mbdifq6yMTjgu30ymDXyhxu9MvPv1cHvwk7rON5e392F5Mpr6A8xNJuZwZoCvpq7nEA
  priority: 102
  providerName: ProQuest
Title DOA Estimation Based on Convolutional Autoencoder in the Presence of Array Imperfections
URI https://www.proquest.com/docview/2774847023
https://www.mdpi.com/2079-9292/12/3/771/pdf?version=1675423510
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeCMCJdoDEhdce9ex1z6htCQURKMIiBRO1j6lisiJEqeo_Hpm6k0pFULAyT54H_a81zPfALwQJlFeaRspmbtooLyPlLEmklb40uVemZyKk08m-fFs8H6ezcOB2yakVWIofnqhpEUiywjtt4i5iNNYSh6vrH99Fk6SeE7tW9OMKqy6Of1g6kB3NpkOv1BHud3YFmooxdg-_tlZZsMFcbfkv5ij60p5D25t65U6_6YWiytWZ3wXqt1-22STrwfbRh-Y79egHP__he7BneCQsmHLQffhhqsfwN4VmMKHMMcAko1QF7RljuwQLZ9leHO0rM8C69IU22ZJsJjWrdlpzdCzZNOL4ibj2NLjCmt1zt6hm75u87_qzSOYjUefj46j0JEhMmnOm0jzJNEGTb4T3giSX6t9NuDcoKVXGrWHNIXUhU5y7aikleq08VNnmbdOa5s-hk69rN0TYNIkWthcF2nhB6XnhUoU9xqjqVRnWpY9EDvCVCbAlVPXjEWFYQtRs_oNNXvw6nLQqkXr-PPjL4niFckyzm1UKEnAHRIqVjUk9woD7DLtwf6OKaog5JtKSAJilej19CC6ZJS_WfjpPz7_DG5Tm_s2W3wfOs16656jM9ToPtwsxm_70B2-OfnwCa-Ho8n0Yz_IwQ-Rwgwm
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6Vcig9VDzV0FL2AOLCqvau47UPCLWlIaEPcWil3Mw-pUqRneZBlT_Fb2QmttOCUMWlNx_Ws9Y8dmbWM98AvBM20kEbx7VKPU90CFxbZ7lyIuQ-Ddqm1Jx8dp72L5Nvw-5wDX61vTBUVtmeicuD2lWW7sj3hSLUS4Uu5vP4mtPUKPq72o7QqNXixC9uMGWbfhp8Qfm-F6J3fHHU581UAW5lGs-4iaPIWHRbXgQrSAedCd0kji16K23QApTNlMlMlBpPbZnUaxzjwm5w3hgnke4jeJxIKQmrP-t9Xd3pEMZmJqMa3EjKPNq_nWUzRRJoTyr-wwH-7QY2YWNejvXiRo9Gd_xc7ylsNQEqO6g16hms-fI5bN6BLXwBQ0wo2TGeDXXbIztET-gYPhxV5c9GlYnEfFYRTKbzE3ZVMow02fdls5P1rAq4w0Qv2ADD9kldD1ZOX8Llg_DyFayXVem3gSkbGeFSk8ksJHmIMx3pOBjMrqTpGpV3QLRsK2wDX05TNEYFpjHE6-IfvO7Ax9VL4xq94_7lH0geBdk20ra6aVHALySUrOKAwi1MuHPZgd1WZEVj9NPiVkU7wFdi_J-NX99P7i1s9C_OTovTwfnJDjyhifd14fgurM8mc_8G46KZ2VsqI4MfD639vwHVXyLl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAJ6QLwqUgrsAcSFVe114rUPFeojUUMhihCVcjP7lJAiO-TRKn-RX8VMvE4LQhWX3izLnrV2Z3Zm1vN9A_BWmEh5pS1XMnW8o7znyljDpRU-d6lXJiVw8pdhenbR-TTujrfgV4OFobLKZk9cb9S2MnRGfiAksV5KouXxoSxidNr_OP3JqYMU_Wlt2mmo0GbBHq7pxgLI49ytrjCdmx8OTnHt3wnR7307OeOh4wA3SRovuI6jSBt0aU54I0g_rfbdThwb9GRKo3VIk0md6SjVjiCbhEOO8cGut05rm6Dce7AtCS_agu3j3nD0dXPiQwycWRLV1EdJkkcH151u5igErU3Gf7jHv53EDjxYllO1ulKTyQ0v2H8Mj0L4yo5qfXsCW658Cjs3SA2fwRjTTdbDnaMGRbJj9JOW4cVJVV4GRScRy0VFJJrWzdiPkmEcykZrKJRxrPI4wkyt2ACD-lldLVbOn8PFnczmLrTKqnQvgEkTaWFTnSWZ7-Q-zlSkYq8x90p0V8u8DaKZtsIEcnPqsTEpMMmhuS7-Mddt-LB5aVpze9z--Htaj4IsH2UbFQAM-IXEoVUcUTCG6XietGG_WbIibAnz4lqB28A3y_g_A-_dLu4N3EdLKD4Phucv4aHAO3VV-T60FrOle4VB00K_DtrI4PtdG8BvAFMtvw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6h9AA9QHmJQKn2gMSFrb3reNc-oVC1KkhUPRApnKx9SlUjJ0qcovLrmak3pVQVKtx82Jc97_XMNwDvpMtNNNZzo1XgIxMjN847rr2MdVDROEXFyV9P1PFk9GVaTtOF2yqlVWIofnalpGWua472W2ZCZkWmtcgWPn68SDdJQlH71qKkCqstRT-YBrA1OTkdf6eOcpu5PdRQgbF99ruzzEpI4m4t_jBHt5XyNjxctwtz-cPMZjesztETaDbn7ZNNzvfXnd13P29BOf7_C-3A4-SQsnHPQU_hQWifwfYNmMLnMMUAkh2iLujLHNkntHye4cPBvL1IrEtLrLs5wWL6sGRnLUPPkp1eFTe5wOYRd1iaS_YZ3fRln__Vrl7A5Ojw28ExTx0ZuCuU6LgVeW4dmvwgo5Mkv97GciSEQ0tvLGoP7SptK5srG6ikleq08VOXZfTBWl-8hEE7b8MrYNrlVnplq6KKozqKyuRGRIvRVGFLq-shyA1hGpfgyqlrxqzBsIWo2dxBzSF8uJ606NE6_j78PVG8IVnGtZ1JJQl4QkLFasbkXmGAXRdD2N0wRZOEfNVITUCsGr2eIfBrRrnPxq__cfwbeERt7vts8V0YdMt1eIvOUGf3Esf_ArzvCBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Estimation+Based+on+Convolutional+Autoencoder+in+the+Presence+of+Array+Imperfections&rft.jtitle=Electronics+%28Basel%29&rft.au=Chang%2C+Dah-Chung&rft.au=Liu%2C+Yan-Ting&rft.date=2023-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=3&rft.spage=771&rft_id=info:doi/10.3390%2Felectronics12030771&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12030771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon