DOA Estimation Based on Convolutional Autoencoder in the Presence of Array Imperfections
Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect...
Saved in:
Published in | Electronics (Basel) Vol. 12; no. 3; p. 771 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2079-9292 2079-9292 |
DOI | 10.3390/electronics12030771 |
Cover
Abstract | Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect arrays. Deep neural network (DNN)-based methods do not need to rely on pre-modeled antenna array geometries, and have been explored to handle flawed array models because of their better flexibility than model-based methods. The DNN autoencoder (DAE) method has been proposed for the array imperfection problem, which decomposes the input into multiple components in different spatial subregions. These components have more concentrated distributions than the original input, which avoid a large number of connections and nodes used in the layers to realize DOA estimation classifiers. In this paper, we study the convolutional AE (CAE) method that substantially focuses on the learning of local features in a different manner from the previous DAE method. The advantage of the convolutional operation using a kernel in CAE is to capture features in a more efficient manner than the DAE, and thus be able to reduce the number of parameters that are required to be trained in the neural networks. From the numerical evaluation of DOA estimation accuracy, the proposed CAE method is also more resistant to the noise effect than the DAE method such that the CAE method has better accuracy at a lower signal-to-noise ratio. |
---|---|
AbstractList | Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array imperfections, and thus complicated algorithms are usually inevitable for model-based methods to estimate the direction of arrival (DOA) with imperfect arrays. Deep neural network (DNN)-based methods do not need to rely on pre-modeled antenna array geometries, and have been explored to handle flawed array models because of their better flexibility than model-based methods. The DNN autoencoder (DAE) method has been proposed for the array imperfection problem, which decomposes the input into multiple components in different spatial subregions. These components have more concentrated distributions than the original input, which avoid a large number of connections and nodes used in the layers to realize DOA estimation classifiers. In this paper, we study the convolutional AE (CAE) method that substantially focuses on the learning of local features in a different manner from the previous DAE method. The advantage of the convolutional operation using a kernel in CAE is to capture features in a more efficient manner than the DAE, and thus be able to reduce the number of parameters that are required to be trained in the neural networks. From the numerical evaluation of DOA estimation accuracy, the proposed CAE method is also more resistant to the noise effect than the DAE method such that the CAE method has better accuracy at a lower signal-to-noise ratio. |
Audience | Academic |
Author | Liu, Yan-Ting Chang, Dah-Chung |
Author_xml | – sequence: 1 givenname: Dah-Chung surname: Chang fullname: Chang, Dah-Chung – sequence: 2 givenname: Yan-Ting surname: Liu fullname: Liu, Yan-Ting |
BookMark | eNqNkU1LxDAQhoMoqKu_wEvAczUf7aY91vVrQdCDgreSpBONdJM1SZX992ZdDyIiJocML_NM5p3ZR9vOO0DoiJITzhtyCgPoFLyzOlJGOBGCbqE9RkRTNKxh29_iXXQY4wvJp6G85mQPPZ7ftvgiJruQyXqHz2SEHudg5t2bH8a1KAfcjsmD076HgK3D6RnwXYCYJcDe4DYEucLzxRKCyc1kJh6gHSOHCIdf7wQ9XF7cz66Lm9ur-ay9KTSf0lQoSojStGLAjGak4rRXpiop1axkUgnCha6FqhWZKqC0prSakmyzqkwPSvV8gspN3dEt5epdDkO3DNlNWHWUdOsBdb8MKGPHG2wZ_OsIMXUvfgzZauyYEGVdCsJ4zjrZZD3JATrrjE9B6nx7WFid12Bs1ltRcloS1qwBvgF08DEGMP9spvlBaZs-95G_s8Of7AfaK58e |
CitedBy_id | crossref_primary_10_1016_j_aeue_2024_155132 crossref_primary_10_3390_electronics12132983 |
Cites_doi | 10.1109/TSP.2013.2243442 10.1109/IWMTS49292.2020.9166332 10.1049/rsn2.12295 10.1109/78.539037 10.1109/JIOT.2019.2907580 10.1109/LCOMM.2020.3047050 10.1109/LSP.2004.842276 10.1109/TAP.1986.1143936 10.1109/TAP.2018.2874430 10.1109/7.575894 10.1109/ACCESS.2017.2720164 10.1109/LAWP.2015.2425423 10.1109/TSP.2014.2354316 10.1109/TVT.2016.2635161 10.1109/ICASSP.2015.7178484 10.1109/MLSP.2016.7738817 10.1109/8.76322 10.1109/JIOT.2019.2956986 10.1109/JSEN.2017.2686448 10.1109/JSTSP.2019.2901664 10.1109/78.330367 10.23919/JCIN.2022.9906943 10.1109/LCOMM.2019.2953851 10.1109/LAWP.2007.903491 10.1109/TAES.2017.2706878 10.1109/78.917801 10.1109/LAWP.2017.2699292 10.1109/TAP.2005.850735 10.1109/TSP.2013.2262682 10.1109/TAP.1986.1143830 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
DOI | 10.3390/electronics12030771 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-9292 |
ExternalDocumentID | 10.3390/electronics12030771 A743140293 10_3390_electronics12030771 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO PMFND 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c361t-b100bc152e2fc20531dbf5411c242ab7037c87b8b06be1181156012055fdebbd3 |
IEDL.DBID | UNPAY |
ISSN | 2079-9292 |
IngestDate | Tue Aug 19 23:21:42 EDT 2025 Fri Jul 25 01:45:21 EDT 2025 Tue Jun 10 21:07:49 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 Wed Oct 01 02:30:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-b100bc152e2fc20531dbf5411c242ab7037c87b8b06be1181156012055fdebbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/12/3/771/pdf?version=1675423510 |
PQID | 2774847023 |
PQPubID | 2032404 |
ParticipantIDs | unpaywall_primary_10_3390_electronics12030771 proquest_journals_2774847023 gale_infotracacademiconefile_A743140293 crossref_primary_10_3390_electronics12030771 crossref_citationtrail_10_3390_electronics12030771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Electronics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yuen (ref_2) 1996; 44 Pastorino (ref_13) 2005; 53 Randazzo (ref_14) 2007; 6 Jablon (ref_7) 1986; 34 Elbir (ref_28) 2017; 16 Zhang (ref_6) 2020; 24 ref_16 Porat (ref_12) 1997; 33 ref_15 Xie (ref_11) 2017; 17 Yan (ref_3) 2013; 61 Schmidt (ref_1) 1986; 34 Gao (ref_5) 2005; 12 Wang (ref_29) 2017; 53 Chakrabarty (ref_17) 2019; 13 Viberg (ref_10) 1994; 42 ref_25 Liu (ref_9) 2018; 66 Tan (ref_4) 2014; 62 Wang (ref_21) 2017; 66 Dai (ref_20) 2021; 25 Liu (ref_18) 2013; 61 Xiao (ref_23) 2017; 5 Fang (ref_26) 2022; 7 Forster (ref_30) 2001; 49 Friedlander (ref_8) 1991; 39 Ji (ref_27) 2022; 16 Zhao (ref_22) 2019; 6 Wang (ref_19) 2016; 15 Seong (ref_24) 2020; 7 |
References_xml | – volume: 61 start-page: 1915 year: 2013 ident: ref_3 article-title: Low-Complexity DOA Estimation Based on Compressed MUSIC and Its Performance Analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2243442 – ident: ref_25 doi: 10.1109/IWMTS49292.2020.9166332 – volume: 16 start-page: 1761 year: 2022 ident: ref_27 article-title: Robust direction-of-arrival estimation approach using beamspace-based deep neural networks with array imperfections and element failure publication-title: IET Radar Sonar Navig. doi: 10.1049/rsn2.12295 – volume: 44 start-page: 2537 year: 1996 ident: ref_2 article-title: Asymptotic performance analysis of ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.539037 – volume: 6 start-page: 5825 year: 2019 ident: ref_22 article-title: An Accurate and Robust Approach of Device-Free Localization With Convolutional Autoencoder publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2907580 – volume: 25 start-page: 1645 year: 2021 ident: ref_20 article-title: A Gain and Phase Autocalibration Approach for Large-Scale Planar Antenna Arrays publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2020.3047050 – volume: 12 start-page: 254 year: 2005 ident: ref_5 article-title: A generalized ESPRIT approach to direction-of-arrival estimation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2004.842276 – volume: 34 start-page: 996 year: 1986 ident: ref_7 article-title: Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1986.1143936 – volume: 66 start-page: 7315 year: 2018 ident: ref_9 article-title: Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2018.2874430 – volume: 33 start-page: 545 year: 1997 ident: ref_12 article-title: Accuracy requirements in off-line array calibration publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.575894 – volume: 5 start-page: 12751 year: 2017 ident: ref_23 article-title: 3-D BLE Indoor Localization Based on Denoising Autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2720164 – volume: 15 start-page: 12 year: 2016 ident: ref_19 article-title: An Autocalibration Algorithm for Uniform Circular Array With Unknown Mutual Coupling publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2015.2425423 – volume: 62 start-page: 5565 year: 2014 ident: ref_4 article-title: Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2354316 – volume: 66 start-page: 6258 year: 2017 ident: ref_21 article-title: Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2635161 – ident: ref_15 doi: 10.1109/ICASSP.2015.7178484 – ident: ref_16 doi: 10.1109/MLSP.2016.7738817 – volume: 39 start-page: 273 year: 1991 ident: ref_8 article-title: Direction finding in the presence of mutual coupling publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/8.76322 – volume: 7 start-page: 1898 year: 2020 ident: ref_24 article-title: Selective Unsupervised Learning-Based Wi-Fi Fingerprint System Using Autoencoder and GAN publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2956986 – volume: 17 start-page: 3068 year: 2017 ident: ref_11 article-title: DOA and Gain-Phase Errors Estimation for Noncircular Sources With Central Symmetric Array publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2686448 – volume: 13 start-page: 8 year: 2019 ident: ref_17 article-title: Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained With Noise Signals publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2901664 – volume: 42 start-page: 3073 year: 1994 ident: ref_10 article-title: Analysis of the combined effects of finite samples and model errors on array processing performance publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.330367 – volume: 7 start-page: 296 year: 2022 ident: ref_26 article-title: A Lightweight Deep Learning-Based Algorithm for Array Imperfection Correction and DOA Estimation publication-title: J. Commun. Inf. Netw. doi: 10.23919/JCIN.2022.9906943 – volume: 24 start-page: 339 year: 2020 ident: ref_6 article-title: An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2953851 – volume: 6 start-page: 379 year: 2007 ident: ref_14 article-title: Direction of Arrival Estimation Based on Support Vector Regression: Experimental Validation and Comparison with MUSIC publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2007.903491 – volume: 53 start-page: 2610 year: 2017 ident: ref_29 article-title: Phase Retrieval Approach for DOA Estimation With Array Errors publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2706878 – volume: 49 start-page: 972 year: 2001 ident: ref_30 article-title: Generalized rectification of cross spectral matrices for arrays of arbitrary geometry publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.917801 – volume: 16 start-page: 2118 year: 2017 ident: ref_28 article-title: A Novel Data Transformation Approach for DOA Estimation with 3-D Antenna Arrays in the Presence of Mutual Coupling publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2017.2699292 – volume: 53 start-page: 2161 year: 2005 ident: ref_13 article-title: A smart antenna system for direction of arrival estimation based on a support vector regression publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2005.850735 – volume: 61 start-page: 3786 year: 2013 ident: ref_18 article-title: A Unified Framework and Sparse Bayesian Perspective for Direction-of-Arrival Estimation in the Presence of Array Imperfections publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2262682 – volume: 34 start-page: 276 year: 1986 ident: ref_1 article-title: Multiple emitter location and signal parameter estimation publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1986.1143830 |
SSID | ssj0000913830 |
Score | 2.2559795 |
Snippet | Array imperfections may exist in an antenna system subject to non-ideal design and practical limitations. It is difficult to accurately model array... |
SourceID | unpaywall proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 771 |
SubjectTerms | Accuracy Algorithms Antenna arrays Antennas Arrays Artificial neural networks Deep learning Defects Design and construction Direction of arrival Localization Machine learning Mathematical models Methods Neural networks Neurons Propagation Signal processing Signal to noise ratio |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGB7QMCCKC_5sBIXLGKnidMTAkR5SLvaA0i9RX5KSFVS-gDx75lp3AIrhLjlkNjRPDwztr9vAH5Lm-igjeNa5Z53dAhcW2e5cjJ0fR60zQmc_Odvfn3fue1n_bjhNo7XKudr4myhdrWlPfITqYj1UmGIOR0-cuoaRaersYXGD1gREi2JkOK9q8UeC3FeFmnSkA2lWN2fvPWWGQtJ9q3Eh4D0_7LcgtVpNdQvz3oweBd3euuwFhNGdtZoeAOWfLUJrXc0gr-gjwUeu0RfbWCI7Bwjk2P4cFFXT9G0aIjppCbaSudH7KFimPmxfzPwkfWsDjjDSL-wG0yjR839rGq8Bfe9y7uLax47JnCb5mLCjUgSYzEkexmsJP9yJmQdISxGYm3Qu5UtlClMkhtPkFPCUaMgsiw4b4xLt2G5qiu_A0zZxEiXmyItQqcbRKETLYLBaic1mVHdNsi52Eob6cSpq8WgxLKCZF1-Ius2HC8-GjZsGl-_fkT6KMnXcGyrI2QA_5BYq8ozSn-wAO6mbdifq6yMTjgu30ymDXyhxu9MvPv1cHvwk7rON5e392F5Mpr6A8xNJuZwZoCvpq7nEA priority: 102 providerName: ProQuest |
Title | DOA Estimation Based on Convolutional Autoencoder in the Presence of Array Imperfections |
URI | https://www.proquest.com/docview/2774847023 https://www.mdpi.com/2079-9292/12/3/771/pdf?version=1675423510 |
UnpaywallVersion | publishedVersion |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcoAeeCMCJdoDEhdce9ex1z6htCQURKMIiBRO1j6lisiJEqeo_Hpm6k0pFULAyT54H_a81zPfALwQJlFeaRspmbtooLyPlLEmklb40uVemZyKk08m-fFs8H6ezcOB2yakVWIofnqhpEUiywjtt4i5iNNYSh6vrH99Fk6SeE7tW9OMKqy6Of1g6kB3NpkOv1BHud3YFmooxdg-_tlZZsMFcbfkv5ij60p5D25t65U6_6YWiytWZ3wXqt1-22STrwfbRh-Y79egHP__he7BneCQsmHLQffhhqsfwN4VmMKHMMcAko1QF7RljuwQLZ9leHO0rM8C69IU22ZJsJjWrdlpzdCzZNOL4ibj2NLjCmt1zt6hm75u87_qzSOYjUefj46j0JEhMmnOm0jzJNEGTb4T3giSX6t9NuDcoKVXGrWHNIXUhU5y7aikleq08VNnmbdOa5s-hk69rN0TYNIkWthcF2nhB6XnhUoU9xqjqVRnWpY9EDvCVCbAlVPXjEWFYQtRs_oNNXvw6nLQqkXr-PPjL4niFckyzm1UKEnAHRIqVjUk9woD7DLtwf6OKaog5JtKSAJilej19CC6ZJS_WfjpPz7_DG5Tm_s2W3wfOs16656jM9ToPtwsxm_70B2-OfnwCa-Ho8n0Yz_IwQ-Rwgwm |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6Vcig9VDzV0FL2AOLCqvau47UPCLWlIaEPcWil3Mw-pUqRneZBlT_Fb2QmttOCUMWlNx_Ws9Y8dmbWM98AvBM20kEbx7VKPU90CFxbZ7lyIuQ-Ddqm1Jx8dp72L5Nvw-5wDX61vTBUVtmeicuD2lWW7sj3hSLUS4Uu5vP4mtPUKPq72o7QqNXixC9uMGWbfhp8Qfm-F6J3fHHU581UAW5lGs-4iaPIWHRbXgQrSAedCd0kji16K23QApTNlMlMlBpPbZnUaxzjwm5w3hgnke4jeJxIKQmrP-t9Xd3pEMZmJqMa3EjKPNq_nWUzRRJoTyr-wwH-7QY2YWNejvXiRo9Gd_xc7ylsNQEqO6g16hms-fI5bN6BLXwBQ0wo2TGeDXXbIztET-gYPhxV5c9GlYnEfFYRTKbzE3ZVMow02fdls5P1rAq4w0Qv2ADD9kldD1ZOX8Llg_DyFayXVem3gSkbGeFSk8ksJHmIMx3pOBjMrqTpGpV3QLRsK2wDX05TNEYFpjHE6-IfvO7Ax9VL4xq94_7lH0geBdk20ra6aVHALySUrOKAwi1MuHPZgd1WZEVj9NPiVkU7wFdi_J-NX99P7i1s9C_OTovTwfnJDjyhifd14fgurM8mc_8G46KZ2VsqI4MfD639vwHVXyLl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAJ6QLwqUgrsAcSFVe114rUPFeojUUMhihCVcjP7lJAiO-TRKn-RX8VMvE4LQhWX3izLnrV2Z3Zm1vN9A_BWmEh5pS1XMnW8o7znyljDpRU-d6lXJiVw8pdhenbR-TTujrfgV4OFobLKZk9cb9S2MnRGfiAksV5KouXxoSxidNr_OP3JqYMU_Wlt2mmo0GbBHq7pxgLI49ytrjCdmx8OTnHt3wnR7307OeOh4wA3SRovuI6jSBt0aU54I0g_rfbdThwb9GRKo3VIk0md6SjVjiCbhEOO8cGut05rm6Dce7AtCS_agu3j3nD0dXPiQwycWRLV1EdJkkcH151u5igErU3Gf7jHv53EDjxYllO1ulKTyQ0v2H8Mj0L4yo5qfXsCW658Cjs3SA2fwRjTTdbDnaMGRbJj9JOW4cVJVV4GRScRy0VFJJrWzdiPkmEcykZrKJRxrPI4wkyt2ACD-lldLVbOn8PFnczmLrTKqnQvgEkTaWFTnSWZ7-Q-zlSkYq8x90p0V8u8DaKZtsIEcnPqsTEpMMmhuS7-Mddt-LB5aVpze9z--Htaj4IsH2UbFQAM-IXEoVUcUTCG6XietGG_WbIibAnz4lqB28A3y_g_A-_dLu4N3EdLKD4Phucv4aHAO3VV-T60FrOle4VB00K_DtrI4PtdG8BvAFMtvw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6h9AA9QHmJQKn2gMSFrb3reNc-oVC1KkhUPRApnKx9SlUjJ0qcovLrmak3pVQVKtx82Jc97_XMNwDvpMtNNNZzo1XgIxMjN847rr2MdVDROEXFyV9P1PFk9GVaTtOF2yqlVWIofnalpGWua472W2ZCZkWmtcgWPn68SDdJQlH71qKkCqstRT-YBrA1OTkdf6eOcpu5PdRQgbF99ruzzEpI4m4t_jBHt5XyNjxctwtz-cPMZjesztETaDbn7ZNNzvfXnd13P29BOf7_C-3A4-SQsnHPQU_hQWifwfYNmMLnMMUAkh2iLujLHNkntHye4cPBvL1IrEtLrLs5wWL6sGRnLUPPkp1eFTe5wOYRd1iaS_YZ3fRln__Vrl7A5Ojw28ExTx0ZuCuU6LgVeW4dmvwgo5Mkv97GciSEQ0tvLGoP7SptK5srG6ikleq08VOXZfTBWl-8hEE7b8MrYNrlVnplq6KKozqKyuRGRIvRVGFLq-shyA1hGpfgyqlrxqzBsIWo2dxBzSF8uJ606NE6_j78PVG8IVnGtZ1JJQl4QkLFasbkXmGAXRdD2N0wRZOEfNVITUCsGr2eIfBrRrnPxq__cfwbeERt7vts8V0YdMt1eIvOUGf3Esf_ArzvCBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Estimation+Based+on+Convolutional+Autoencoder+in+the+Presence+of+Array+Imperfections&rft.jtitle=Electronics+%28Basel%29&rft.au=Chang%2C+Dah-Chung&rft.au=Liu%2C+Yan-Ting&rft.date=2023-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=3&rft.spage=771&rft_id=info:doi/10.3390%2Felectronics12030771&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12030771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |