Modifying NISAR’s Cropland Area Algorithm to Map Cropland Extent Globally
Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computational...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 6; p. 1094 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs17061094 |
Cover
| Abstract | Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computationally expensive algorithms, such as machine learning, that require extensive training datasets, complex data pre-processing, or specialized software. The coefficient of variation (CV) method has been successful in identifying agricultural activity using several SAR sensors and is the basis of the Cropland Area algorithm for the upcoming NASA-Indian Space Research Organization (ISRO) SAR mission. The CV method derives a unique threshold for an AOI by optimizing Youden’s J-Statistic, where pixels above the threshold are classified as crop and pixels below are classified as non-crop, producing a binary crop/non-crop classification. Training this optimization process requires at least some existing cropland classification as an external reference dataset. In this paper, general CV thresholds are derived that can discriminate active agriculture (i.e., fields in use) from other land cover types without requiring a cropland reference dataset. We demonstrate the validity of our approach for three crop types: corn/soybean, wheat, and rice. Using data from the European Space Agency’s (ESA) Sentinel-1, a C-band SAR instrument, nine global AOIs, three for each crop type, were evaluated. Optimal thresholds were calculated and averaged for two AOIs per crop type for 2018–2022, resulting in 0.53, 0.31, and 0.26 thresholds for corn/soybean, wheat, and rice regions, respectively. The crop type average thresholds were then applied to an additional AOI of the same crop type, where they achieved 92%, 84%, and 83% accuracy for corn/soybean, wheat, and rice, respectively, when compared to ESA’s 2021 land cover product, WorldCover. The results of this study indicate that the use of the CV, along with the average crop type thresholds presented, is a fast, simple, and reliable technique to detect active agriculture in areas where either corn/soybean, wheat, or rice is the dominant crop type and where outdated or no reference datasets exist. |
|---|---|
| AbstractList | Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computationally expensive algorithms, such as machine learning, that require extensive training datasets, complex data pre-processing, or specialized software. The coefficient of variation (CV) method has been successful in identifying agricultural activity using several SAR sensors and is the basis of the Cropland Area algorithm for the upcoming NASA-Indian Space Research Organization (ISRO) SAR mission. The CV method derives a unique threshold for an AOI by optimizing Youden’s J-Statistic, where pixels above the threshold are classified as crop and pixels below are classified as non-crop, producing a binary crop/non-crop classification. Training this optimization process requires at least some existing cropland classification as an external reference dataset. In this paper, general CV thresholds are derived that can discriminate active agriculture (i.e., fields in use) from other land cover types without requiring a cropland reference dataset. We demonstrate the validity of our approach for three crop types: corn/soybean, wheat, and rice. Using data from the European Space Agency’s (ESA) Sentinel-1, a C-band SAR instrument, nine global AOIs, three for each crop type, were evaluated. Optimal thresholds were calculated and averaged for two AOIs per crop type for 2018–2022, resulting in 0.53, 0.31, and 0.26 thresholds for corn/soybean, wheat, and rice regions, respectively. The crop type average thresholds were then applied to an additional AOI of the same crop type, where they achieved 92%, 84%, and 83% accuracy for corn/soybean, wheat, and rice, respectively, when compared to ESA’s 2021 land cover product, WorldCover. The results of this study indicate that the use of the CV, along with the average crop type thresholds presented, is a fast, simple, and reliable technique to detect active agriculture in areas where either corn/soybean, wheat, or rice is the dominant crop type and where outdated or no reference datasets exist. |
| Audience | Academic |
| Author | Lucey, Ronan Bell, Jordan R. Pankratz, Hannah G. Meyer, Franz J. Molthan, Andrew L. Schultz, Lori A. Sharp, Kaylee G. |
| Author_xml | – sequence: 1 givenname: Kaylee G. orcidid: 0009-0000-3523-8252 surname: Sharp fullname: Sharp, Kaylee G. – sequence: 2 givenname: Jordan R. orcidid: 0000-0001-7463-2973 surname: Bell fullname: Bell, Jordan R. – sequence: 3 givenname: Hannah G. orcidid: 0000-0002-0941-2576 surname: Pankratz fullname: Pankratz, Hannah G. – sequence: 4 givenname: Lori A. orcidid: 0000-0003-1212-2665 surname: Schultz fullname: Schultz, Lori A. – sequence: 5 givenname: Ronan orcidid: 0000-0002-5086-2261 surname: Lucey fullname: Lucey, Ronan – sequence: 6 givenname: Franz J. orcidid: 0000-0002-2491-526X surname: Meyer fullname: Meyer, Franz J. – sequence: 7 givenname: Andrew L. surname: Molthan fullname: Molthan, Andrew L. |
| BookMark | eNp9Uc1u1DAQtqoitZReeIJIvRVt8c_Ejo_RqrQrWpBoOVsT29l6lY1TJyvYG6_R1-NJcAminJg5zGjm-z7Nz2ty2MfeE_KW0QshNH2fRqaoZFTDATnmVPEFcM0P_8mPyOk4bmg2IZimcEw-3kYX2n3o18Wn1V395eePp7FYpjh02LuiTh6LulvHFKaHbTHF4haHl_bl98n3U3HVxQa7bv-GvGqxG_3pn3hCvn64vF9eL24-X62W9c3CCsmmBTrLGoSGSRS68gq0Q2-Bcm3LBrhUSvsWsGwZNmAbFA6c11IK4I4Bgjghq1nXRdyYIYUtpr2JGMzvQkxrg2kKtvOm1LxUIBloiyAFNsILVQpJJdWt889a72atXT_g_lte468go-b5rOblrBl9NqOHFB93fpzMJu5Sn5c1glWcMaWBZtTFjFpjHiH0bZwS2uzOb4PNP2tDrteVqLiqlKwy4Xwm2BTHMfn2fzP8Ai0TlLg |
| Cites_doi | 10.1016/j.jhydrol.2020.124905 10.1371/journal.pone.0287366 10.11613/BM.2016.034 10.1016/j.rse.2020.112180 10.1016/j.compag.2021.106659 10.3390/rs11010031 10.1016/j.rse.2021.112472 10.1016/j.patrec.2005.10.010 10.20944/preprints202406.1640.v1 10.1016/j.rse.2014.06.025 10.3390/s23208595 10.1016/j.asr.2021.09.019 10.1109/IGARSS47720.2021.9554822 10.3390/app9040655 10.15191/nwajom.2016.0411 10.1016/j.rse.2006.09.002 10.5194/essd-15-3203-2023 10.1109/TGRS.2009.2026052 10.1029/2020EA001363 10.1002/gch2.201600002 10.1080/01431161.2020.1805136 10.1175/JAMC-D-19-0124.1 10.1080/10106049.2011.562309 10.5589/m03-069 10.1109/JSTARS.2021.3096063 10.3390/rs13204155 10.3390/rs13061210 10.3390/rs11161887 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1109/TGRS.2002.803732 10.15191/nwajom.2013.0113 10.3390/rs6032343 10.1596/1813-9450-9306 10.2134/agronj15.0085 10.1175/BAMS-D-21-0023.1 10.1002/2017GL074952 10.1029/2022EA002366 10.3390/rs11192274 10.1109/TGRS.2011.2120616 10.3390/rs10091396 10.5194/isprs-archives-XLII-3-9-2018 10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2 10.1080/07038992.1996.10874649 10.3390/rs6076472 10.1016/j.rse.2008.07.008 10.3390/rs12223783 10.1016/j.still.2013.12.009 10.3390/rs13163300 10.5194/bg-9-703-2012 10.3390/rs4102923 10.1155/2021/8810279 10.1016/j.rse.2017.07.031 10.1080/07352689209382349 10.3390/rs14102312 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.3390/rs17061094 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_5925746149ca463ab3e375360609fde4 10.3390/rs17061094 A838278768 10_3390_rs17061094 |
| GeographicLocations | Myanmar United States China Ukraine Brazil Thailand France India United States--US |
| GeographicLocations_xml | – name: Ukraine – name: India – name: China – name: Myanmar – name: United States – name: Thailand – name: France – name: Brazil – name: United States--US |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-adc1ba4b16a398e749daec4029c5b426779ef4a5f1ab4cba3d4de966342d14a43 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:51:09 EDT 2025 Sun Sep 07 11:15:49 EDT 2025 Fri Jul 25 11:51:13 EDT 2025 Mon Oct 20 16:52:05 EDT 2025 Thu Oct 16 04:21:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-adc1ba4b16a398e749daec4029c5b426779ef4a5f1ab4cba3d4de966342d14a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7463-2973 0000-0003-1212-2665 0000-0002-0941-2576 0000-0002-5086-2261 0000-0002-2491-526X 0009-0000-3523-8252 |
| OpenAccessLink | https://doaj.org/article/5925746149ca463ab3e375360609fde4 |
| PQID | 3182117940 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5925746149ca463ab3e375360609fde4 unpaywall_primary_10_3390_rs17061094 proquest_journals_3182117940 gale_infotracacademiconefile_A838278768 crossref_primary_10_3390_rs17061094 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Huang (ref_42) 2021; 253 Lark (ref_59) 2017; 62 ref_13 Loew (ref_39) 2007; 106 Habibzadeh (ref_31) 2016; 26 ref_54 Small (ref_36) 2011; 49 ref_53 ref_52 Canisius (ref_18) 2018; 210 Tufail (ref_69) 2022; 69 Karthikeyan (ref_1) 2020; 586 Moumni (ref_68) 2021; 2021 Fawcett (ref_28) 2006; 27 Rose (ref_29) 2021; 260 Rotundo (ref_51) 2022; 193 Zheng (ref_62) 2014; 138 Debeurs (ref_10) 2008; 112 Molthan (ref_11) 2013; 1 Forkuor (ref_17) 2014; 6 ref_60 Cable (ref_16) 2014; 6 Bell (ref_20) 2022; 103 McNairn (ref_15) 2004; 30 ref_23 ref_22 ref_66 Kraatz (ref_70) 2021; 8 ref_21 ref_63 Tupin (ref_56) 2002; 40 Sindelar (ref_50) 2015; 107 Gillespie (ref_3) 2017; 1 ref_27 Reschke (ref_57) 2012; 4 Davidson (ref_25) 2020; 41 Bullock (ref_49) 1992; 11 ref_72 Bell (ref_19) 2020; 59 ref_71 Hain (ref_8) 2017; 44 Bartsch (ref_58) 2012; 9 Robertson (ref_4) 2005; 3 ref_34 ref_32 Cigna (ref_55) 2014; 152 Abdullah (ref_9) 2023; 32 ref_38 ref_37 Boryan (ref_33) 2011; 26 Ranjbar (ref_64) 2021; 14 Ajadi (ref_65) 2021; 97 Bell (ref_12) 2016; 04 Abdikan (ref_24) 2018; XLII–3 ref_47 ref_46 ref_45 ref_44 Prudente (ref_14) 2020; 20 ref_41 McNairn (ref_43) 2009; 47 ref_40 McNairn (ref_61) 1996; 22 ref_2 Youden (ref_30) 1950; 3 Shen (ref_67) 2023; 15 Kraatz (ref_35) 2022; 9 ref_48 ref_5 Whelen (ref_26) 2018; 67 ref_7 ref_6 |
| References_xml | – volume: 586 start-page: 124905 year: 2020 ident: ref_1 article-title: A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124905 – volume: 97 start-page: 102294 year: 2021 ident: ref_65 article-title: Large-Scale Crop Type and Crop Area Mapping across Brazil Using Synthetic Aperture Radar and Optical Imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_66 doi: 10.1371/journal.pone.0287366 – volume: 26 start-page: 297 year: 2016 ident: ref_31 article-title: On Determining the Most Appropriate Test Cut-off Value: The Case of Tests with Continuous Results publication-title: Biochem. Med. doi: 10.11613/BM.2016.034 – volume: 253 start-page: 112180 year: 2021 ident: ref_42 article-title: Cropland Mapping with L-Band UAVSAR and Development of NISAR Products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112180 – volume: 193 start-page: 106659 year: 2022 ident: ref_51 article-title: Development of a Decision-Making Application for Optimum Soybean and Maize Fertilization Strategies in Mato Grosso publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106659 – ident: ref_71 doi: 10.3390/rs11010031 – volume: 260 start-page: 112472 year: 2021 ident: ref_29 article-title: Evaluating NISAR’s Cropland Mapping Algorithm over the Conterminous United States Using Sentinel-1 Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112472 – volume: 27 start-page: 861 year: 2006 ident: ref_28 article-title: An Introduction to ROC Analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – ident: ref_38 doi: 10.20944/preprints202406.1640.v1 – volume: 152 start-page: 441 year: 2014 ident: ref_55 article-title: Simulating SAR Geometric Distortions and Predicting Persistent Scatterer Densities for ERS-1/2 and ENVISAT C-Band SAR and InSAR Applications: Nationwide Feasibility Assessment to Monitor the Landmass of Great Britain with SAR Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.025 – ident: ref_32 doi: 10.3390/s23208595 – volume: 69 start-page: 331 year: 2022 ident: ref_69 article-title: A Machine Learning Approach for Accurate Crop Type Mapping Using Combined SAR and Optical Time Series Data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.09.019 – ident: ref_54 doi: 10.1109/IGARSS47720.2021.9554822 – ident: ref_23 doi: 10.3390/app9040655 – volume: 04 start-page: 142 year: 2016 ident: ref_12 article-title: Evaluation of Approaches to Identifying Hail Damage to Crop Vegetation Using Satellite Imagery publication-title: J. Oper. Meteorol. doi: 10.15191/nwajom.2016.0411 – volume: 106 start-page: 337 year: 2007 ident: ref_39 article-title: Generation of Geometrically and Radiometrically Terrain Corrected SAR Image Products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.002 – volume: 15 start-page: 3203 year: 2023 ident: ref_67 article-title: High-Resolution Distribution Maps of Single-Season Rice in China from 2017 to 2022 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-15-3203-2023 – volume: 47 start-page: 3981 year: 2009 ident: ref_43 article-title: The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2026052 – volume: 8 start-page: e2020EA001363 year: 2021 ident: ref_70 article-title: Performance Evaluation of UAVSAR and Simulated NISAR Data for Crop/Noncrop Classification Over Stoneville, MS publication-title: Earth Space Sci. doi: 10.1029/2020EA001363 – volume: 1 start-page: 1600002 year: 2017 ident: ref_3 article-title: Agriculture, Food Systems, and Nutrition: Meeting the Challenge publication-title: Glob. Chall. doi: 10.1002/gch2.201600002 – volume: 41 start-page: 9628 year: 2020 ident: ref_25 article-title: C-Band Synthetic Aperture Radar (SAR) Imagery for the Classification of Diverse Cropping Systems publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1805136 – volume: 59 start-page: 665 year: 2020 ident: ref_19 article-title: Complementing Optical Remote Sensing with Synthetic Aperture Radar Observations of Hail Damage Swaths to Agricultural Crops in the Central United States publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-19-0124.1 – volume: 20 start-page: 100414 year: 2020 ident: ref_14 article-title: Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America publication-title: Remote Sens. Appl. Soc. Environ. – volume: 26 start-page: 341 year: 2011 ident: ref_33 article-title: Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program publication-title: Geocarto Int. doi: 10.1080/10106049.2011.562309 – volume: 30 start-page: 525 year: 2004 ident: ref_15 article-title: The Application of C-Band Polarimetric SAR for Agriculture: A Review publication-title: Can. J. Remote Sens. doi: 10.5589/m03-069 – volume: 14 start-page: 7179 year: 2021 ident: ref_64 article-title: Soil Moisture Change Monitoring from C and L-Band SAR Interferometric Phase Observations publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3096063 – ident: ref_7 doi: 10.3390/rs13204155 – ident: ref_6 doi: 10.3390/rs13061210 – volume: 67 start-page: 114 year: 2018 ident: ref_26 article-title: Coefficient of Variation for Use in Crop Area Classification across Multiple Climates publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_27 – ident: ref_21 doi: 10.3390/rs11161887 – volume: 3 start-page: 32 year: 1950 ident: ref_30 article-title: Index for Rating Diagnostic Tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: ref_48 – volume: 40 start-page: 2405 year: 2002 ident: ref_56 article-title: Road Detection in Dense Urban Areas Using SAR Imagery and the Usefulness of Multiple Views publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.803732 – volume: 1 start-page: 144 year: 2013 ident: ref_11 article-title: Multi-Sensor Examination of Hail Damage Swaths for near Real-Time Applications and Assessment publication-title: J. Oper. Meteorol. doi: 10.15191/nwajom.2013.0113 – ident: ref_13 – ident: ref_45 – ident: ref_72 – volume: 6 start-page: 2343 year: 2014 ident: ref_16 article-title: Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data publication-title: Remote Sens. doi: 10.3390/rs6032343 – ident: ref_53 – volume: 32 start-page: 100996 year: 2023 ident: ref_9 article-title: Present and Future Scopes and Challenges of Plant Pest and Disease (P&D) Monitoring: Remote Sensing, Image Processing, and Artificial Intelligence Perspectives publication-title: Remote Sens. Appl. Soc. Environ. – ident: ref_52 doi: 10.1596/1813-9450-9306 – volume: 107 start-page: 2241 year: 2015 ident: ref_50 article-title: Long-Term Corn and Soybean Response to Crop Rotation and Tillage publication-title: Agron. J. doi: 10.2134/agronj15.0085 – ident: ref_34 – volume: 103 start-page: E1172 year: 2022 ident: ref_20 article-title: Satellite-Based Characterization of Convection and Impacts from the Catastrophic 10 August 2020 Midwest U.S. Derecho publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-21-0023.1 – ident: ref_47 – volume: 44 start-page: 9723 year: 2017 ident: ref_8 article-title: Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074952 – volume: 9 start-page: e2022EA002366 year: 2022 ident: ref_35 article-title: Evaluating the Robustness of NISAR’s Cropland Product to Time of Observation, Observing Mode, and Dithering publication-title: Earth Space Sci. doi: 10.1029/2022EA002366 – ident: ref_41 doi: 10.3390/rs11192274 – volume: 49 start-page: 3081 year: 2011 ident: ref_36 article-title: Flattening Gamma: Radiometric Terrain Correction for SAR Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2120616 – ident: ref_40 doi: 10.3390/rs10091396 – ident: ref_37 – volume: XLII–3 start-page: 9 year: 2018 ident: ref_24 article-title: Backscatter Analysis Using Multi-Temporal Sentinel-1 Sar Data for Crop Growth of Maize in Konya Basin, Turkey publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-9-2018 – volume: 3 start-page: 38 year: 2005 ident: ref_4 article-title: Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2 – ident: ref_44 – volume: 62 start-page: 224 year: 2017 ident: ref_59 article-title: Measuring Land-Use and Land-Cover Change Using the U.S. Department of Agriculture’s Cropland Data Layer: Cautions and Recommendations publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 22 start-page: 154 year: 1996 ident: ref_61 article-title: Identification of Agricultural Tillage Practices from C-Band Radar Backscatter publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10874649 – volume: 6 start-page: 6472 year: 2014 ident: ref_17 article-title: Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa publication-title: Remote Sens. doi: 10.3390/rs6076472 – volume: 112 start-page: 3983 year: 2008 ident: ref_10 article-title: Estimating the Effect of Gypsy Moth Defoliation Using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.07.008 – ident: ref_5 doi: 10.3390/rs12223783 – volume: 138 start-page: 26 year: 2014 ident: ref_62 article-title: Remote Sensing of Crop Residue and Tillage Practices: Present Capabilities and Future Prospects publication-title: Soil Tillage Res. doi: 10.1016/j.still.2013.12.009 – ident: ref_2 – ident: ref_22 doi: 10.3390/rs13163300 – ident: ref_46 – volume: 9 start-page: 703 year: 2012 ident: ref_58 article-title: Detection of Open Water Dynamics with ENVISAT ASAR in Support of Land Surface Modelling at High Latitudes publication-title: Biogeosciences doi: 10.5194/bg-9-703-2012 – volume: 4 start-page: 2923 year: 2012 ident: ref_57 article-title: Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes publication-title: Remote Sens. doi: 10.3390/rs4102923 – volume: 2021 start-page: 1 year: 2021 ident: ref_68 article-title: Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area publication-title: Scientifica doi: 10.1155/2021/8810279 – volume: 210 start-page: 508 year: 2018 ident: ref_18 article-title: Tracking Crop Phenological Development Using Multi-Temporal Polarimetric Radarsat-2 Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.031 – ident: ref_60 – volume: 11 start-page: 309 year: 1992 ident: ref_49 article-title: Crop Rotation publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689209382349 – ident: ref_63 doi: 10.3390/rs14102312 |
| SSID | ssj0000331904 |
| Score | 2.4057987 |
| Snippet | Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1094 |
| SubjectTerms | Accuracy Agricultural land Agriculture Algorithms Artificial satellites in remote sensing Atmospheric conditions backscatter C band Cereal crops Classification Coefficient of variation Corn Crops Datasets Land cover Machine learning Measurement NISAR Optimization Pixels Radiation Remote sensing Rice SAR Soybeans Synthetic aperture radar Thresholds Time series Vegetables Wheat |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7aH0gKCAWChVJCpxiprYjjc-IJRWWxXQrlChUm_W-CNbpGUTsqnQ3vgb_D1-CXbW2S1C6jWJrGRmPPabeN4DOCZK50zwNCZUaN-So2KFmYpNqQgRiou8q0NOpvziin28zq53YNr3wvhjlX1O7BK1qbSvkZ-42CMdnVnyvv4Re9Uo_3e1l9DAIK1g3nUUYw9gl3hmrAHsno6nny83VZeEupBL2JqnlDq8f9IsPYFMmgj2z8rUEfj_n6b3Ye92UePqJ87nd9ah88fwKGwgo2Lt8SewYxcHsF_MmkCiYQ9gLyib36yewqdJZb51vUzR9MOX4vLPr9_L6Kypan-i0Y1iMSrmM_eh7c33qK2iCdbb22NfIW-jtS7AfPUMrs7HX88u4iCgEGvK0zZGo1OFTKUcqcjtiAmDVjvEKHSm3NI8GglbMszKFBXTCqlhxjr8QxkxKUNGn8NgUS3sC4gIMbTkxpLc4SukWV5iQg3HJLcqKzUfwpveeLJe82RIhy-8ieXWxEM49XbdPOG5rbsLVTOTYarITLg0wty2QWhknKKiljpQ5ZBWIkpj3SBvvVekn4FtgxpDI4F7Uc9lJYuc5sTlIZ4P4bB3nAxTcym3gTSE440z73npl_eP8goeEq8J3J1LO4RB29za126j0qqjEH1_AVBO5uU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9FA4UJ4iUJAFlTi52LvrjffoRq0KKBECIpWTNftwWxHiyHGEwom_wd_rL-ms7bSlSBVXe9caze48vvXONwC7TJtUKBmHjCvjS3J0qDHRoS00Y0pLlTbnkKOxPJqID8fJ8Qa8XtfCXPt_zwmOv6sWnt8lJhByBzZlQvl2DzYn40_ZN981Lhqw0PdbanlHb0z4K9I0hPz_ut17sLWczXH1E6fTa3HlcBuGa4na6yTf95a13jO_bpA13i7yA7jfpZVB1u6Dh7DhZo9gq-twfrp6DB9HpT1rapqC8fsv2efz338WwbAq5_5mI81zGGTTk7I6q09_BHUZjHB-9frAn5TXQdsfYLp6ApPDg6_Do7BrpBAaLuM6RGtijULHErlK3UAoi84QclQm0RSiBwPlCoFJEaMWRiO3wjrCQVwwGwsU_Cn0ZuXMPYOAMcsLaR1LCWchT9ICI24lRqnTSWFkH96slZ7PW76MnHCGV0x-pZg-7Pv1uBzhOa6bB6THvDOZPFHkTgSlD8qgkBw1d5zAFSGuSBXW0Ufe-tXMvSXWFRrsCgpIUM9plWcpTxn5I5n2YWe94HlnooucnBlr-PGiPuxeboJbhH7-f8NewF3mewQ399R2oFdXS_eSEpdav-p27gV11ufw priority: 102 providerName: Unpaywall |
| Title | Modifying NISAR’s Cropland Area Algorithm to Map Cropland Extent Globally |
| URI | https://www.proquest.com/docview/3182117940 https://doi.org/10.3390/rs17061094 https://doaj.org/article/5925746149ca463ab3e375360609fde4 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BOZQeEC2gmpbIEpU4WbV315vdo9smtECiqiVSOVmzP24rhThyXFW58Rq8Hk_SXdttg5Dgwsnyj6zRzO7MfKuZbwD2iNKCSZ5EhErtW3JUpDBVkSkUIVJxKZpzyNGYH0_Yp4v0YmXUl68Ja-mBW8Xtp9ItKuaCiNTIOEVFLXUptsu7Y1kY2zCBxkKugKnGB1O3tGLW8pFSh-v3q4UnikliyX6LQA1R_5_ueAPWb2ZzXN7idLoSb4Yv4UWXKIZZK-AmPLGzLdjILquOLMNuwXo3wfxq-Qo-j0pz3fQsheOT8-zs14-fi_CwKue-ctH9xWKYTS_L6rq--h7WZTjC-ePrgT8Jr8OW_3-6fA2T4eDr4XHUDUqINOVJHaHRiUKmEo5UCttn0qDVDhlKnSoXgvt9aQuGaZGgYlohNcxYh3MoIyZhyOgbWJuVM7sNISGGFtxYIhyOQpqKAmNqOMbCqrTQPID398rL5y0fRu5whFdx_qjiAA68Xh--8BzWzQNn2byzbP4vywbwwVsl9zutrlBj1zDgBPWcVXkmqCDO33ARwO694fJuCy5y56xIw38XB7D3YMy_CP32fwi9A8-JnxDcVKntwlpd3dh3Lm2pVQ-eiuHHHjzLjkZfzt31YDA-Pes169bdTcan2bc7oP_tXA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hB6qKCACBSwRBEnq_bu2vEeKpSWVAlpIlRaqTcz--MUKcTBcVXl1tfgZXgYnoRZx0lASL31aluj1czszH7jnW8A9pnSiZBx6DMutWvJUb7CSPkmU4xJFcukqkMOhnH3Qny6jC434NeyF8Zdq1zGxCpQm1y7GvkB-R6r6MyCD9Mfvpsa5f6uLkdoYD1awRxWFGN1Y0ffzm8Iws0Oex_J3u8YO-mcH3f9esqAr3kclj4aHSoUKoyRy8S2hDRoNcEqqSNF-avVkjYTGGUhKqEVciOMJZDABTOhQMFJ7gPYElxIAn9bR53h57NVlSfg5OKBWPCici6Dg2LmCGvCQIp_MmE1MOD_tLANjevJFOc3OB7_lfdOHsFOfWD12gsPewwbdrIL2-1RUZN22F1o1JPUr-ZPoD_Izbeqd8ob9r60z37f_px5x0U-dTcoSYpFrz0ekWLLq-9emXsDnK5fd1xFvvQWcwjG86dwcS-qfAabk3xin4PHmOFZbCxLCM8hj5IMA25iDBKrokzHTXi7VF46XfBypIRnnIrTtYqbcOT0uvrCcWlXD_JilNZbM40khS1BxxSpUcQcFbecQBwhu0BmxpKQ984qqdvxZYEa68YFWqjjzkrbCU8Yxb04acLe0nBpHQpm6dpxm7C_MuYdi35xt5Q30OieD07T096w_xIeMjePuLoTtwebZXFtX9EhqVSva0_04Ot9O_8fzHslFg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIlF6QFBApBSwRBEnK_bueuM9IBTahoaQCAGVenP3zylSGhvHVZUbr8Gr8Dg8CbP-SUBIvfVqW6PV7LczO-OZbwD2idIxEzz0CRXateQoX8lI-SZVhAjFRVzlIccTfnzCPpxGpxvwq-2FcWWVrU2sDLXJtMuRdxF7pKIzC7ppUxbx6XDwNv_uuwlS7k9rO06jhsjILq8wfFu8GR7iXr8iZHD09eDYbyYM-JrysPSl0aGSTIVcUhHbHhNGWo0hldCRQt_V6wmbMhmloVRMK0kNMxYDBMqICZlkFOXegts9x-LuutQH71f5nYAiuANWM6JSKoJusXBUNWEg2D8-sBoV8L9D2Iaty3kul1dyNvvL4w3uw73mqur1a2w9gA0734Ht_rRo6DrsDmw1M9TPlw9hNM7Mt6prypsMv_Q___7xc-EdFFnuaidRipVefzZFNZbnF16ZeWOZr18fuVx86dUTCGbLR3ByI4p8DJvzbG6fgEeIoSk3lsQYyUkaxakMqOEyiK2KUs078LJVXpLXjBwJRjJOxclaxR145_S6-sKxaFcPsmKaNIcyiQQaLIYXFKEl41QqaimGbxjTBSI1FoW8druSuLNeFlLLpmUBF-pYs5J-TGOCFo_HHdhrNy5pjMAiWUO2A_urzbxm0bvXS3kBdxDyycfhZPQU7hI3iLgqhtuDzbK4tM_wdlSq5xUMPTi7adz_Ac5GIrA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9FA4UJ4iUJAFlTi52LvrjffoRq0KKBECIpWTNftwWxHiyHGEwom_wd_rL-ms7bSlSBVXe9caze48vvXONwC7TJtUKBmHjCvjS3J0qDHRoS00Y0pLlTbnkKOxPJqID8fJ8Qa8XtfCXPt_zwmOv6sWnt8lJhByBzZlQvl2DzYn40_ZN981Lhqw0PdbanlHb0z4K9I0hPz_ut17sLWczXH1E6fTa3HlcBuGa4na6yTf95a13jO_bpA13i7yA7jfpZVB1u6Dh7DhZo9gq-twfrp6DB9HpT1rapqC8fsv2efz338WwbAq5_5mI81zGGTTk7I6q09_BHUZjHB-9frAn5TXQdsfYLp6ApPDg6_Do7BrpBAaLuM6RGtijULHErlK3UAoi84QclQm0RSiBwPlCoFJEaMWRiO3wjrCQVwwGwsU_Cn0ZuXMPYOAMcsLaR1LCWchT9ICI24lRqnTSWFkH96slZ7PW76MnHCGV0x-pZg-7Pv1uBzhOa6bB6THvDOZPFHkTgSlD8qgkBw1d5zAFSGuSBXW0Ufe-tXMvSXWFRrsCgpIUM9plWcpTxn5I5n2YWe94HlnooucnBlr-PGiPuxeboJbhH7-f8NewF3mewQ399R2oFdXS_eSEpdav-p27gV11ufw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifying+NISAR%E2%80%99s+Cropland+Area+Algorithm+to+Map+Cropland+Extent+Globally&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kaylee+G.+Sharp&rft.au=Jordan+R.+Bell&rft.au=Hannah+G.+Pankratz&rft.au=Lori+A.+Schultz&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=6&rft.spage=1094&rft_id=info:doi/10.3390%2Frs17061094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5925746149ca463ab3e375360609fde4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |