Modifying NISAR’s Cropland Area Algorithm to Map Cropland Extent Globally

Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computational...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 6; p. 1094
Main Authors Sharp, Kaylee G., Bell, Jordan R., Pankratz, Hannah G., Schultz, Lori A., Lucey, Ronan, Meyer, Franz J., Molthan, Andrew L.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs17061094

Cover

Abstract Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computationally expensive algorithms, such as machine learning, that require extensive training datasets, complex data pre-processing, or specialized software. The coefficient of variation (CV) method has been successful in identifying agricultural activity using several SAR sensors and is the basis of the Cropland Area algorithm for the upcoming NASA-Indian Space Research Organization (ISRO) SAR mission. The CV method derives a unique threshold for an AOI by optimizing Youden’s J-Statistic, where pixels above the threshold are classified as crop and pixels below are classified as non-crop, producing a binary crop/non-crop classification. Training this optimization process requires at least some existing cropland classification as an external reference dataset. In this paper, general CV thresholds are derived that can discriminate active agriculture (i.e., fields in use) from other land cover types without requiring a cropland reference dataset. We demonstrate the validity of our approach for three crop types: corn/soybean, wheat, and rice. Using data from the European Space Agency’s (ESA) Sentinel-1, a C-band SAR instrument, nine global AOIs, three for each crop type, were evaluated. Optimal thresholds were calculated and averaged for two AOIs per crop type for 2018–2022, resulting in 0.53, 0.31, and 0.26 thresholds for corn/soybean, wheat, and rice regions, respectively. The crop type average thresholds were then applied to an additional AOI of the same crop type, where they achieved 92%, 84%, and 83% accuracy for corn/soybean, wheat, and rice, respectively, when compared to ESA’s 2021 land cover product, WorldCover. The results of this study indicate that the use of the CV, along with the average crop type thresholds presented, is a fast, simple, and reliable technique to detect active agriculture in areas where either corn/soybean, wheat, or rice is the dominant crop type and where outdated or no reference datasets exist.
AbstractList Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth observations regardless of solar illumination or atmospheric conditions. Several methods that utilize SAR to identify agriculture rely on computationally expensive algorithms, such as machine learning, that require extensive training datasets, complex data pre-processing, or specialized software. The coefficient of variation (CV) method has been successful in identifying agricultural activity using several SAR sensors and is the basis of the Cropland Area algorithm for the upcoming NASA-Indian Space Research Organization (ISRO) SAR mission. The CV method derives a unique threshold for an AOI by optimizing Youden’s J-Statistic, where pixels above the threshold are classified as crop and pixels below are classified as non-crop, producing a binary crop/non-crop classification. Training this optimization process requires at least some existing cropland classification as an external reference dataset. In this paper, general CV thresholds are derived that can discriminate active agriculture (i.e., fields in use) from other land cover types without requiring a cropland reference dataset. We demonstrate the validity of our approach for three crop types: corn/soybean, wheat, and rice. Using data from the European Space Agency’s (ESA) Sentinel-1, a C-band SAR instrument, nine global AOIs, three for each crop type, were evaluated. Optimal thresholds were calculated and averaged for two AOIs per crop type for 2018–2022, resulting in 0.53, 0.31, and 0.26 thresholds for corn/soybean, wheat, and rice regions, respectively. The crop type average thresholds were then applied to an additional AOI of the same crop type, where they achieved 92%, 84%, and 83% accuracy for corn/soybean, wheat, and rice, respectively, when compared to ESA’s 2021 land cover product, WorldCover. The results of this study indicate that the use of the CV, along with the average crop type thresholds presented, is a fast, simple, and reliable technique to detect active agriculture in areas where either corn/soybean, wheat, or rice is the dominant crop type and where outdated or no reference datasets exist.
Audience Academic
Author Lucey, Ronan
Bell, Jordan R.
Pankratz, Hannah G.
Meyer, Franz J.
Molthan, Andrew L.
Schultz, Lori A.
Sharp, Kaylee G.
Author_xml – sequence: 1
  givenname: Kaylee G.
  orcidid: 0009-0000-3523-8252
  surname: Sharp
  fullname: Sharp, Kaylee G.
– sequence: 2
  givenname: Jordan R.
  orcidid: 0000-0001-7463-2973
  surname: Bell
  fullname: Bell, Jordan R.
– sequence: 3
  givenname: Hannah G.
  orcidid: 0000-0002-0941-2576
  surname: Pankratz
  fullname: Pankratz, Hannah G.
– sequence: 4
  givenname: Lori A.
  orcidid: 0000-0003-1212-2665
  surname: Schultz
  fullname: Schultz, Lori A.
– sequence: 5
  givenname: Ronan
  orcidid: 0000-0002-5086-2261
  surname: Lucey
  fullname: Lucey, Ronan
– sequence: 6
  givenname: Franz J.
  orcidid: 0000-0002-2491-526X
  surname: Meyer
  fullname: Meyer, Franz J.
– sequence: 7
  givenname: Andrew L.
  surname: Molthan
  fullname: Molthan, Andrew L.
BookMark eNp9Uc1u1DAQtqoitZReeIJIvRVt8c_Ejo_RqrQrWpBoOVsT29l6lY1TJyvYG6_R1-NJcAminJg5zGjm-z7Nz2ty2MfeE_KW0QshNH2fRqaoZFTDATnmVPEFcM0P_8mPyOk4bmg2IZimcEw-3kYX2n3o18Wn1V395eePp7FYpjh02LuiTh6LulvHFKaHbTHF4haHl_bl98n3U3HVxQa7bv-GvGqxG_3pn3hCvn64vF9eL24-X62W9c3CCsmmBTrLGoSGSRS68gq0Q2-Bcm3LBrhUSvsWsGwZNmAbFA6c11IK4I4Bgjghq1nXRdyYIYUtpr2JGMzvQkxrg2kKtvOm1LxUIBloiyAFNsILVQpJJdWt889a72atXT_g_lte468go-b5rOblrBl9NqOHFB93fpzMJu5Sn5c1glWcMaWBZtTFjFpjHiH0bZwS2uzOb4PNP2tDrteVqLiqlKwy4Xwm2BTHMfn2fzP8Ai0TlLg
Cites_doi 10.1016/j.jhydrol.2020.124905
10.1371/journal.pone.0287366
10.11613/BM.2016.034
10.1016/j.rse.2020.112180
10.1016/j.compag.2021.106659
10.3390/rs11010031
10.1016/j.rse.2021.112472
10.1016/j.patrec.2005.10.010
10.20944/preprints202406.1640.v1
10.1016/j.rse.2014.06.025
10.3390/s23208595
10.1016/j.asr.2021.09.019
10.1109/IGARSS47720.2021.9554822
10.3390/app9040655
10.15191/nwajom.2016.0411
10.1016/j.rse.2006.09.002
10.5194/essd-15-3203-2023
10.1109/TGRS.2009.2026052
10.1029/2020EA001363
10.1002/gch2.201600002
10.1080/01431161.2020.1805136
10.1175/JAMC-D-19-0124.1
10.1080/10106049.2011.562309
10.5589/m03-069
10.1109/JSTARS.2021.3096063
10.3390/rs13204155
10.3390/rs13061210
10.3390/rs11161887
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1109/TGRS.2002.803732
10.15191/nwajom.2013.0113
10.3390/rs6032343
10.1596/1813-9450-9306
10.2134/agronj15.0085
10.1175/BAMS-D-21-0023.1
10.1002/2017GL074952
10.1029/2022EA002366
10.3390/rs11192274
10.1109/TGRS.2011.2120616
10.3390/rs10091396
10.5194/isprs-archives-XLII-3-9-2018
10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2
10.1080/07038992.1996.10874649
10.3390/rs6076472
10.1016/j.rse.2008.07.008
10.3390/rs12223783
10.1016/j.still.2013.12.009
10.3390/rs13163300
10.5194/bg-9-703-2012
10.3390/rs4102923
10.1155/2021/8810279
10.1016/j.rse.2017.07.031
10.1080/07352689209382349
10.3390/rs14102312
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs17061094
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_5925746149ca463ab3e375360609fde4
10.3390/rs17061094
A838278768
10_3390_rs17061094
GeographicLocations Myanmar
United States
China
Ukraine
Brazil
Thailand
France
India
United States--US
GeographicLocations_xml – name: Ukraine
– name: India
– name: China
– name: Myanmar
– name: United States
– name: Thailand
– name: France
– name: Brazil
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c361t-adc1ba4b16a398e749daec4029c5b426779ef4a5f1ab4cba3d4de966342d14a43
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:51:09 EDT 2025
Sun Sep 07 11:15:49 EDT 2025
Fri Jul 25 11:51:13 EDT 2025
Mon Oct 20 16:52:05 EDT 2025
Thu Oct 16 04:21:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-adc1ba4b16a398e749daec4029c5b426779ef4a5f1ab4cba3d4de966342d14a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7463-2973
0000-0003-1212-2665
0000-0002-0941-2576
0000-0002-5086-2261
0000-0002-2491-526X
0009-0000-3523-8252
OpenAccessLink https://doaj.org/article/5925746149ca463ab3e375360609fde4
PQID 3182117940
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_5925746149ca463ab3e375360609fde4
unpaywall_primary_10_3390_rs17061094
proquest_journals_3182117940
gale_infotracacademiconefile_A838278768
crossref_primary_10_3390_rs17061094
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_42) 2021; 253
Lark (ref_59) 2017; 62
ref_13
Loew (ref_39) 2007; 106
Habibzadeh (ref_31) 2016; 26
ref_54
Small (ref_36) 2011; 49
ref_53
ref_52
Canisius (ref_18) 2018; 210
Tufail (ref_69) 2022; 69
Karthikeyan (ref_1) 2020; 586
Moumni (ref_68) 2021; 2021
Fawcett (ref_28) 2006; 27
Rose (ref_29) 2021; 260
Rotundo (ref_51) 2022; 193
Zheng (ref_62) 2014; 138
Debeurs (ref_10) 2008; 112
Molthan (ref_11) 2013; 1
Forkuor (ref_17) 2014; 6
ref_60
Cable (ref_16) 2014; 6
Bell (ref_20) 2022; 103
McNairn (ref_15) 2004; 30
ref_23
ref_22
ref_66
Kraatz (ref_70) 2021; 8
ref_21
ref_63
Tupin (ref_56) 2002; 40
Sindelar (ref_50) 2015; 107
Gillespie (ref_3) 2017; 1
ref_27
Reschke (ref_57) 2012; 4
Davidson (ref_25) 2020; 41
Bullock (ref_49) 1992; 11
ref_72
Bell (ref_19) 2020; 59
ref_71
Hain (ref_8) 2017; 44
Bartsch (ref_58) 2012; 9
Robertson (ref_4) 2005; 3
ref_34
ref_32
Cigna (ref_55) 2014; 152
Abdullah (ref_9) 2023; 32
ref_38
ref_37
Boryan (ref_33) 2011; 26
Ranjbar (ref_64) 2021; 14
Ajadi (ref_65) 2021; 97
Bell (ref_12) 2016; 04
Abdikan (ref_24) 2018; XLII–3
ref_47
ref_46
ref_45
ref_44
Prudente (ref_14) 2020; 20
ref_41
McNairn (ref_43) 2009; 47
ref_40
McNairn (ref_61) 1996; 22
ref_2
Youden (ref_30) 1950; 3
Shen (ref_67) 2023; 15
Kraatz (ref_35) 2022; 9
ref_48
ref_5
Whelen (ref_26) 2018; 67
ref_7
ref_6
References_xml – volume: 586
  start-page: 124905
  year: 2020
  ident: ref_1
  article-title: A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124905
– volume: 97
  start-page: 102294
  year: 2021
  ident: ref_65
  article-title: Large-Scale Crop Type and Crop Area Mapping across Brazil Using Synthetic Aperture Radar and Optical Imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_66
  doi: 10.1371/journal.pone.0287366
– volume: 26
  start-page: 297
  year: 2016
  ident: ref_31
  article-title: On Determining the Most Appropriate Test Cut-off Value: The Case of Tests with Continuous Results
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2016.034
– volume: 253
  start-page: 112180
  year: 2021
  ident: ref_42
  article-title: Cropland Mapping with L-Band UAVSAR and Development of NISAR Products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112180
– volume: 193
  start-page: 106659
  year: 2022
  ident: ref_51
  article-title: Development of a Decision-Making Application for Optimum Soybean and Maize Fertilization Strategies in Mato Grosso
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106659
– ident: ref_71
  doi: 10.3390/rs11010031
– volume: 260
  start-page: 112472
  year: 2021
  ident: ref_29
  article-title: Evaluating NISAR’s Cropland Mapping Algorithm over the Conterminous United States Using Sentinel-1 Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112472
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_28
  article-title: An Introduction to ROC Analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_38
  doi: 10.20944/preprints202406.1640.v1
– volume: 152
  start-page: 441
  year: 2014
  ident: ref_55
  article-title: Simulating SAR Geometric Distortions and Predicting Persistent Scatterer Densities for ERS-1/2 and ENVISAT C-Band SAR and InSAR Applications: Nationwide Feasibility Assessment to Monitor the Landmass of Great Britain with SAR Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.025
– ident: ref_32
  doi: 10.3390/s23208595
– volume: 69
  start-page: 331
  year: 2022
  ident: ref_69
  article-title: A Machine Learning Approach for Accurate Crop Type Mapping Using Combined SAR and Optical Time Series Data
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.09.019
– ident: ref_54
  doi: 10.1109/IGARSS47720.2021.9554822
– ident: ref_23
  doi: 10.3390/app9040655
– volume: 04
  start-page: 142
  year: 2016
  ident: ref_12
  article-title: Evaluation of Approaches to Identifying Hail Damage to Crop Vegetation Using Satellite Imagery
  publication-title: J. Oper. Meteorol.
  doi: 10.15191/nwajom.2016.0411
– volume: 106
  start-page: 337
  year: 2007
  ident: ref_39
  article-title: Generation of Geometrically and Radiometrically Terrain Corrected SAR Image Products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.002
– volume: 15
  start-page: 3203
  year: 2023
  ident: ref_67
  article-title: High-Resolution Distribution Maps of Single-Season Rice in China from 2017 to 2022
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-15-3203-2023
– volume: 47
  start-page: 3981
  year: 2009
  ident: ref_43
  article-title: The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2026052
– volume: 8
  start-page: e2020EA001363
  year: 2021
  ident: ref_70
  article-title: Performance Evaluation of UAVSAR and Simulated NISAR Data for Crop/Noncrop Classification Over Stoneville, MS
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001363
– volume: 1
  start-page: 1600002
  year: 2017
  ident: ref_3
  article-title: Agriculture, Food Systems, and Nutrition: Meeting the Challenge
  publication-title: Glob. Chall.
  doi: 10.1002/gch2.201600002
– volume: 41
  start-page: 9628
  year: 2020
  ident: ref_25
  article-title: C-Band Synthetic Aperture Radar (SAR) Imagery for the Classification of Diverse Cropping Systems
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1805136
– volume: 59
  start-page: 665
  year: 2020
  ident: ref_19
  article-title: Complementing Optical Remote Sensing with Synthetic Aperture Radar Observations of Hail Damage Swaths to Agricultural Crops in the Central United States
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-19-0124.1
– volume: 20
  start-page: 100414
  year: 2020
  ident: ref_14
  article-title: Limitations of Cloud Cover for Optical Remote Sensing of Agricultural Areas across South America
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 26
  start-page: 341
  year: 2011
  ident: ref_33
  article-title: Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2011.562309
– volume: 30
  start-page: 525
  year: 2004
  ident: ref_15
  article-title: The Application of C-Band Polarimetric SAR for Agriculture: A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m03-069
– volume: 14
  start-page: 7179
  year: 2021
  ident: ref_64
  article-title: Soil Moisture Change Monitoring from C and L-Band SAR Interferometric Phase Observations
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3096063
– ident: ref_7
  doi: 10.3390/rs13204155
– ident: ref_6
  doi: 10.3390/rs13061210
– volume: 67
  start-page: 114
  year: 2018
  ident: ref_26
  article-title: Coefficient of Variation for Use in Crop Area Classification across Multiple Climates
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_27
– ident: ref_21
  doi: 10.3390/rs11161887
– volume: 3
  start-page: 32
  year: 1950
  ident: ref_30
  article-title: Index for Rating Diagnostic Tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: ref_48
– volume: 40
  start-page: 2405
  year: 2002
  ident: ref_56
  article-title: Road Detection in Dense Urban Areas Using SAR Imagery and the Usefulness of Multiple Views
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803732
– volume: 1
  start-page: 144
  year: 2013
  ident: ref_11
  article-title: Multi-Sensor Examination of Hail Damage Swaths for near Real-Time Applications and Assessment
  publication-title: J. Oper. Meteorol.
  doi: 10.15191/nwajom.2013.0113
– ident: ref_13
– ident: ref_45
– ident: ref_72
– volume: 6
  start-page: 2343
  year: 2014
  ident: ref_16
  article-title: Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data
  publication-title: Remote Sens.
  doi: 10.3390/rs6032343
– ident: ref_53
– volume: 32
  start-page: 100996
  year: 2023
  ident: ref_9
  article-title: Present and Future Scopes and Challenges of Plant Pest and Disease (P&D) Monitoring: Remote Sensing, Image Processing, and Artificial Intelligence Perspectives
  publication-title: Remote Sens. Appl. Soc. Environ.
– ident: ref_52
  doi: 10.1596/1813-9450-9306
– volume: 107
  start-page: 2241
  year: 2015
  ident: ref_50
  article-title: Long-Term Corn and Soybean Response to Crop Rotation and Tillage
  publication-title: Agron. J.
  doi: 10.2134/agronj15.0085
– ident: ref_34
– volume: 103
  start-page: E1172
  year: 2022
  ident: ref_20
  article-title: Satellite-Based Characterization of Convection and Impacts from the Catastrophic 10 August 2020 Midwest U.S. Derecho
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-21-0023.1
– ident: ref_47
– volume: 44
  start-page: 9723
  year: 2017
  ident: ref_8
  article-title: Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074952
– volume: 9
  start-page: e2022EA002366
  year: 2022
  ident: ref_35
  article-title: Evaluating the Robustness of NISAR’s Cropland Product to Time of Observation, Observing Mode, and Dithering
  publication-title: Earth Space Sci.
  doi: 10.1029/2022EA002366
– ident: ref_41
  doi: 10.3390/rs11192274
– volume: 49
  start-page: 3081
  year: 2011
  ident: ref_36
  article-title: Flattening Gamma: Radiometric Terrain Correction for SAR Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2120616
– ident: ref_40
  doi: 10.3390/rs10091396
– ident: ref_37
– volume: XLII–3
  start-page: 9
  year: 2018
  ident: ref_24
  article-title: Backscatter Analysis Using Multi-Temporal Sentinel-1 Sar Data for Crop Growth of Maize in Konya Basin, Turkey
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-9-2018
– volume: 3
  start-page: 38
  year: 2005
  ident: ref_4
  article-title: Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2
– ident: ref_44
– volume: 62
  start-page: 224
  year: 2017
  ident: ref_59
  article-title: Measuring Land-Use and Land-Cover Change Using the U.S. Department of Agriculture’s Cropland Data Layer: Cautions and Recommendations
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 22
  start-page: 154
  year: 1996
  ident: ref_61
  article-title: Identification of Agricultural Tillage Practices from C-Band Radar Backscatter
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10874649
– volume: 6
  start-page: 6472
  year: 2014
  ident: ref_17
  article-title: Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa
  publication-title: Remote Sens.
  doi: 10.3390/rs6076472
– volume: 112
  start-page: 3983
  year: 2008
  ident: ref_10
  article-title: Estimating the Effect of Gypsy Moth Defoliation Using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.07.008
– ident: ref_5
  doi: 10.3390/rs12223783
– volume: 138
  start-page: 26
  year: 2014
  ident: ref_62
  article-title: Remote Sensing of Crop Residue and Tillage Practices: Present Capabilities and Future Prospects
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2013.12.009
– ident: ref_2
– ident: ref_22
  doi: 10.3390/rs13163300
– ident: ref_46
– volume: 9
  start-page: 703
  year: 2012
  ident: ref_58
  article-title: Detection of Open Water Dynamics with ENVISAT ASAR in Support of Land Surface Modelling at High Latitudes
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-703-2012
– volume: 4
  start-page: 2923
  year: 2012
  ident: ref_57
  article-title: Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes
  publication-title: Remote Sens.
  doi: 10.3390/rs4102923
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_68
  article-title: Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area
  publication-title: Scientifica
  doi: 10.1155/2021/8810279
– volume: 210
  start-page: 508
  year: 2018
  ident: ref_18
  article-title: Tracking Crop Phenological Development Using Multi-Temporal Polarimetric Radarsat-2 Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.031
– ident: ref_60
– volume: 11
  start-page: 309
  year: 1992
  ident: ref_49
  article-title: Crop Rotation
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689209382349
– ident: ref_63
  doi: 10.3390/rs14102312
SSID ssj0000331904
Score 2.4057987
Snippet Synthetic aperture radar (SAR) is emerging as a valuable dataset for monitoring crops globally. Unlike optical remote sensing, SAR can provide earth...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1094
SubjectTerms Accuracy
Agricultural land
Agriculture
Algorithms
Artificial satellites in remote sensing
Atmospheric conditions
backscatter
C band
Cereal crops
Classification
Coefficient of variation
Corn
Crops
Datasets
Land cover
Machine learning
Measurement
NISAR
Optimization
Pixels
Radiation
Remote sensing
Rice
SAR
Soybeans
Synthetic aperture radar
Thresholds
Time series
Vegetables
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7aH0gKCAWChVJCpxiprYjjc-IJRWWxXQrlChUm_W-CNbpGUTsqnQ3vgb_D1-CXbW2S1C6jWJrGRmPPabeN4DOCZK50zwNCZUaN-So2KFmYpNqQgRiou8q0NOpvziin28zq53YNr3wvhjlX1O7BK1qbSvkZ-42CMdnVnyvv4Re9Uo_3e1l9DAIK1g3nUUYw9gl3hmrAHsno6nny83VZeEupBL2JqnlDq8f9IsPYFMmgj2z8rUEfj_n6b3Ye92UePqJ87nd9ah88fwKGwgo2Lt8SewYxcHsF_MmkCiYQ9gLyib36yewqdJZb51vUzR9MOX4vLPr9_L6Kypan-i0Y1iMSrmM_eh7c33qK2iCdbb22NfIW-jtS7AfPUMrs7HX88u4iCgEGvK0zZGo1OFTKUcqcjtiAmDVjvEKHSm3NI8GglbMszKFBXTCqlhxjr8QxkxKUNGn8NgUS3sC4gIMbTkxpLc4SukWV5iQg3HJLcqKzUfwpveeLJe82RIhy-8ieXWxEM49XbdPOG5rbsLVTOTYarITLg0wty2QWhknKKiljpQ5ZBWIkpj3SBvvVekn4FtgxpDI4F7Uc9lJYuc5sTlIZ4P4bB3nAxTcym3gTSE440z73npl_eP8goeEq8J3J1LO4RB29za126j0qqjEH1_AVBO5uU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9FA4UJ4iUJAFlTi52LvrjffoRq0KKBECIpWTNftwWxHiyHGEwom_wd_rL-ms7bSlSBVXe9caze48vvXONwC7TJtUKBmHjCvjS3J0qDHRoS00Y0pLlTbnkKOxPJqID8fJ8Qa8XtfCXPt_zwmOv6sWnt8lJhByBzZlQvl2DzYn40_ZN981Lhqw0PdbanlHb0z4K9I0hPz_ut17sLWczXH1E6fTa3HlcBuGa4na6yTf95a13jO_bpA13i7yA7jfpZVB1u6Dh7DhZo9gq-twfrp6DB9HpT1rapqC8fsv2efz338WwbAq5_5mI81zGGTTk7I6q09_BHUZjHB-9frAn5TXQdsfYLp6ApPDg6_Do7BrpBAaLuM6RGtijULHErlK3UAoi84QclQm0RSiBwPlCoFJEaMWRiO3wjrCQVwwGwsU_Cn0ZuXMPYOAMcsLaR1LCWchT9ICI24lRqnTSWFkH96slZ7PW76MnHCGV0x-pZg-7Pv1uBzhOa6bB6THvDOZPFHkTgSlD8qgkBw1d5zAFSGuSBXW0Ufe-tXMvSXWFRrsCgpIUM9plWcpTxn5I5n2YWe94HlnooucnBlr-PGiPuxeboJbhH7-f8NewF3mewQ399R2oFdXS_eSEpdav-p27gV11ufw
  priority: 102
  providerName: Unpaywall
Title Modifying NISAR’s Cropland Area Algorithm to Map Cropland Extent Globally
URI https://www.proquest.com/docview/3182117940
https://doi.org/10.3390/rs17061094
https://doaj.org/article/5925746149ca463ab3e375360609fde4
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BOZQeEC2gmpbIEpU4WbV315vdo9smtECiqiVSOVmzP24rhThyXFW58Rq8Hk_SXdttg5Dgwsnyj6zRzO7MfKuZbwD2iNKCSZ5EhErtW3JUpDBVkSkUIVJxKZpzyNGYH0_Yp4v0YmXUl68Ja-mBW8Xtp9ItKuaCiNTIOEVFLXUptsu7Y1kY2zCBxkKugKnGB1O3tGLW8pFSh-v3q4UnikliyX6LQA1R_5_ueAPWb2ZzXN7idLoSb4Yv4UWXKIZZK-AmPLGzLdjILquOLMNuwXo3wfxq-Qo-j0pz3fQsheOT8-zs14-fi_CwKue-ctH9xWKYTS_L6rq--h7WZTjC-ePrgT8Jr8OW_3-6fA2T4eDr4XHUDUqINOVJHaHRiUKmEo5UCttn0qDVDhlKnSoXgvt9aQuGaZGgYlohNcxYh3MoIyZhyOgbWJuVM7sNISGGFtxYIhyOQpqKAmNqOMbCqrTQPID398rL5y0fRu5whFdx_qjiAA68Xh--8BzWzQNn2byzbP4vywbwwVsl9zutrlBj1zDgBPWcVXkmqCDO33ARwO694fJuCy5y56xIw38XB7D3YMy_CP32fwi9A8-JnxDcVKntwlpd3dh3Lm2pVQ-eiuHHHjzLjkZfzt31YDA-Pes169bdTcan2bc7oP_tXA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hB6qKCACBSwRBEnq_bu2vEeKpSWVAlpIlRaqTcz--MUKcTBcVXl1tfgZXgYnoRZx0lASL31aluj1czszH7jnW8A9pnSiZBx6DMutWvJUb7CSPkmU4xJFcukqkMOhnH3Qny6jC434NeyF8Zdq1zGxCpQm1y7GvkB-R6r6MyCD9Mfvpsa5f6uLkdoYD1awRxWFGN1Y0ffzm8Iws0Oex_J3u8YO-mcH3f9esqAr3kclj4aHSoUKoyRy8S2hDRoNcEqqSNF-avVkjYTGGUhKqEVciOMJZDABTOhQMFJ7gPYElxIAn9bR53h57NVlSfg5OKBWPCici6Dg2LmCGvCQIp_MmE1MOD_tLANjevJFOc3OB7_lfdOHsFOfWD12gsPewwbdrIL2-1RUZN22F1o1JPUr-ZPoD_Izbeqd8ob9r60z37f_px5x0U-dTcoSYpFrz0ekWLLq-9emXsDnK5fd1xFvvQWcwjG86dwcS-qfAabk3xin4PHmOFZbCxLCM8hj5IMA25iDBKrokzHTXi7VF46XfBypIRnnIrTtYqbcOT0uvrCcWlXD_JilNZbM40khS1BxxSpUcQcFbecQBwhu0BmxpKQ984qqdvxZYEa68YFWqjjzkrbCU8Yxb04acLe0nBpHQpm6dpxm7C_MuYdi35xt5Q30OieD07T096w_xIeMjePuLoTtwebZXFtX9EhqVSva0_04Ot9O_8fzHslFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIlF6QFBApBSwRBEnK_bueuM9IBTahoaQCAGVenP3zylSGhvHVZUbr8Gr8Dg8CbP-SUBIvfVqW6PV7LczO-OZbwD2idIxEzz0CRXateQoX8lI-SZVhAjFRVzlIccTfnzCPpxGpxvwq-2FcWWVrU2sDLXJtMuRdxF7pKIzC7ppUxbx6XDwNv_uuwlS7k9rO06jhsjILq8wfFu8GR7iXr8iZHD09eDYbyYM-JrysPSl0aGSTIVcUhHbHhNGWo0hldCRQt_V6wmbMhmloVRMK0kNMxYDBMqICZlkFOXegts9x-LuutQH71f5nYAiuANWM6JSKoJusXBUNWEg2D8-sBoV8L9D2Iaty3kul1dyNvvL4w3uw73mqur1a2w9gA0734Ht_rRo6DrsDmw1M9TPlw9hNM7Mt6prypsMv_Q___7xc-EdFFnuaidRipVefzZFNZbnF16ZeWOZr18fuVx86dUTCGbLR3ByI4p8DJvzbG6fgEeIoSk3lsQYyUkaxakMqOEyiK2KUs078LJVXpLXjBwJRjJOxclaxR145_S6-sKxaFcPsmKaNIcyiQQaLIYXFKEl41QqaimGbxjTBSI1FoW8druSuLNeFlLLpmUBF-pYs5J-TGOCFo_HHdhrNy5pjMAiWUO2A_urzbxm0bvXS3kBdxDyycfhZPQU7hI3iLgqhtuDzbK4tM_wdlSq5xUMPTi7adz_Ac5GIrA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6V9FA4UJ4iUJAFlTi52LvrjffoRq0KKBECIpWTNftwWxHiyHGEwom_wd_rL-ms7bSlSBVXe9caze48vvXONwC7TJtUKBmHjCvjS3J0qDHRoS00Y0pLlTbnkKOxPJqID8fJ8Qa8XtfCXPt_zwmOv6sWnt8lJhByBzZlQvl2DzYn40_ZN981Lhqw0PdbanlHb0z4K9I0hPz_ut17sLWczXH1E6fTa3HlcBuGa4na6yTf95a13jO_bpA13i7yA7jfpZVB1u6Dh7DhZo9gq-twfrp6DB9HpT1rapqC8fsv2efz338WwbAq5_5mI81zGGTTk7I6q09_BHUZjHB-9frAn5TXQdsfYLp6ApPDg6_Do7BrpBAaLuM6RGtijULHErlK3UAoi84QclQm0RSiBwPlCoFJEaMWRiO3wjrCQVwwGwsU_Cn0ZuXMPYOAMcsLaR1LCWchT9ICI24lRqnTSWFkH96slZ7PW76MnHCGV0x-pZg-7Pv1uBzhOa6bB6THvDOZPFHkTgSlD8qgkBw1d5zAFSGuSBXW0Ufe-tXMvSXWFRrsCgpIUM9plWcpTxn5I5n2YWe94HlnooucnBlr-PGiPuxeboJbhH7-f8NewF3mewQ399R2oFdXS_eSEpdav-p27gV11ufw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifying+NISAR%E2%80%99s+Cropland+Area+Algorithm+to+Map+Cropland+Extent+Globally&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Kaylee+G.+Sharp&rft.au=Jordan+R.+Bell&rft.au=Hannah+G.+Pankratz&rft.au=Lori+A.+Schultz&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=6&rft.spage=1094&rft_id=info:doi/10.3390%2Frs17061094&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5925746149ca463ab3e375360609fde4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon