A Fast True Time-Delay Wideband Multi-Beam Beamforming Algorithm Based on a 16-Beam Approximate-DVM

True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model that represents TTD-based multi-beam beamformers while reducing the delays from <inline-formula> <tex-mat...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 94488 - 94507
Main Authors Perera, Sirani M., Lingsch, Levi, Tuztas, Alp, Madanayake, Arjuna
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3573930

Cover

Abstract True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model that represents TTD-based multi-beam beamformers while reducing the delays from <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">N=2^{r}(r \geq 1) </tex-math></inline-formula> is the number of beams. In this paper, we propose to reduce the complexity of delays from <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula> to nearly <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N) </tex-math></inline-formula> for a small number of beams. More precisely, we present a recursive algorithm to compute the DVM-vector product with a complexity reduction of at least 21% to at most 52% compared to our most recent work, and at least 39% to at most 98% compared to the brute-force DVM-vector calculation. This enhancement was achieved by using 16-beam approximate-DVM (ADVM) building blocks that recursively execute with the DVM algorithm. The reduced complexity DVM algorithm achieves nearly linear complexity for smaller input sizes, specifically when <inline-formula> <tex-math notation="LaTeX"> N \leq 1024 </tex-math></inline-formula>. This modification results in a complexity reduction when compared to the <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula> complexity of the DVM algorithm, spanning from 8 to 1024 beams. For example, by computing the DVM-vector product for <inline-formula> <tex-math notation="LaTeX">N = 8 </tex-math></inline-formula> to 1024 elements antenna arrays, we can obtain wideband RF beams while reducing the required chip area and power consumption by at least 21% at 1024 beams to at most 52% at 16 beams compared to radix-2 DVM algorithm, and also at least 39% at 8 beams to at most 98% at 1024 beams compared to the brute-force DVM-vector product computation. With this reduction, we show that the proposed DVM algorithm is better suited for end-to-end RF-IC design that includes multiple wideband channels. At the end, a signal flow graph, simulated beam patterns at 150 MHz, 300 MHz, 600 MHz, and 1 GHz frequencies based on the proposed ADVM algorithm, and a digital overview are provided to demonstrate the simplicity, efficiency, and accuracy of the proposed TTD multibeam beamformers for RF-IC design.
AbstractList True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model that represents TTD-based multi-beam beamformers while reducing the delays from [Formula Omitted] to [Formula Omitted], where [Formula Omitted] is the number of beams. In this paper, we propose to reduce the complexity of delays from [Formula Omitted] to nearly [Formula Omitted] for a small number of beams. More precisely, we present a recursive algorithm to compute the DVM-vector product with a complexity reduction of at least 21% to at most 52% compared to our most recent work, and at least 39% to at most 98% compared to the brute-force DVM-vector calculation. This enhancement was achieved by using 16-beam approximate-DVM (ADVM) building blocks that recursively execute with the DVM algorithm. The reduced complexity DVM algorithm achieves nearly linear complexity for smaller input sizes, specifically when [Formula Omitted]. This modification results in a complexity reduction when compared to the [Formula Omitted] complexity of the DVM algorithm, spanning from 8 to 1024 beams. For example, by computing the DVM-vector product for [Formula Omitted] to 1024 elements antenna arrays, we can obtain wideband RF beams while reducing the required chip area and power consumption by at least 21% at 1024 beams to at most 52% at 16 beams compared to radix-2 DVM algorithm, and also at least 39% at 8 beams to at most 98% at 1024 beams compared to the brute-force DVM-vector product computation. With this reduction, we show that the proposed DVM algorithm is better suited for end-to-end RF-IC design that includes multiple wideband channels. At the end, a signal flow graph, simulated beam patterns at 150 MHz, 300 MHz, 600 MHz, and 1 GHz frequencies based on the proposed ADVM algorithm, and a digital overview are provided to demonstrate the simplicity, efficiency, and accuracy of the proposed TTD multibeam beamformers for RF-IC design.
True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model that represents TTD-based multi-beam beamformers while reducing the delays from <tex-math notation="LaTeX">$\mathcal {O}(N^{2})$ </tex-math> to <tex-math notation="LaTeX">$\mathcal {O}(N \log N)$ </tex-math>, where <tex-math notation="LaTeX">$N=2^{r}(r \geq 1)$ </tex-math> is the number of beams. In this paper, we propose to reduce the complexity of delays from <tex-math notation="LaTeX">$\mathcal {O}(N \log N)$ </tex-math> to nearly <tex-math notation="LaTeX">$\mathcal {O}(N)$ </tex-math> for a small number of beams. More precisely, we present a recursive algorithm to compute the DVM-vector product with a complexity reduction of at least 21% to at most 52% compared to our most recent work, and at least 39% to at most 98% compared to the brute-force DVM-vector calculation. This enhancement was achieved by using 16-beam approximate-DVM (ADVM) building blocks that recursively execute with the DVM algorithm. The reduced complexity DVM algorithm achieves nearly linear complexity for smaller input sizes, specifically when <tex-math notation="LaTeX">$ N \leq 1024$ </tex-math>. This modification results in a complexity reduction when compared to the <tex-math notation="LaTeX">$\mathcal {O}(N \log N)$ </tex-math> complexity of the DVM algorithm, spanning from 8 to 1024 beams. For example, by computing the DVM-vector product for <tex-math notation="LaTeX">$N = 8$ </tex-math> to 1024 elements antenna arrays, we can obtain wideband RF beams while reducing the required chip area and power consumption by at least 21% at 1024 beams to at most 52% at 16 beams compared to radix-2 DVM algorithm, and also at least 39% at 8 beams to at most 98% at 1024 beams compared to the brute-force DVM-vector product computation. With this reduction, we show that the proposed DVM algorithm is better suited for end-to-end RF-IC design that includes multiple wideband channels. At the end, a signal flow graph, simulated beam patterns at 150 MHz, 300 MHz, 600 MHz, and 1 GHz frequencies based on the proposed ADVM algorithm, and a digital overview are provided to demonstrate the simplicity, efficiency, and accuracy of the proposed TTD multibeam beamformers for RF-IC design.
True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model that represents TTD-based multi-beam beamformers while reducing the delays from <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">N=2^{r}(r \geq 1) </tex-math></inline-formula> is the number of beams. In this paper, we propose to reduce the complexity of delays from <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula> to nearly <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N) </tex-math></inline-formula> for a small number of beams. More precisely, we present a recursive algorithm to compute the DVM-vector product with a complexity reduction of at least 21% to at most 52% compared to our most recent work, and at least 39% to at most 98% compared to the brute-force DVM-vector calculation. This enhancement was achieved by using 16-beam approximate-DVM (ADVM) building blocks that recursively execute with the DVM algorithm. The reduced complexity DVM algorithm achieves nearly linear complexity for smaller input sizes, specifically when <inline-formula> <tex-math notation="LaTeX"> N \leq 1024 </tex-math></inline-formula>. This modification results in a complexity reduction when compared to the <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(N \log N) </tex-math></inline-formula> complexity of the DVM algorithm, spanning from 8 to 1024 beams. For example, by computing the DVM-vector product for <inline-formula> <tex-math notation="LaTeX">N = 8 </tex-math></inline-formula> to 1024 elements antenna arrays, we can obtain wideband RF beams while reducing the required chip area and power consumption by at least 21% at 1024 beams to at most 52% at 16 beams compared to radix-2 DVM algorithm, and also at least 39% at 8 beams to at most 98% at 1024 beams compared to the brute-force DVM-vector product computation. With this reduction, we show that the proposed DVM algorithm is better suited for end-to-end RF-IC design that includes multiple wideband channels. At the end, a signal flow graph, simulated beam patterns at 150 MHz, 300 MHz, 600 MHz, and 1 GHz frequencies based on the proposed ADVM algorithm, and a digital overview are provided to demonstrate the simplicity, efficiency, and accuracy of the proposed TTD multibeam beamformers for RF-IC design.
Author Lingsch, Levi
Tuztas, Alp
Madanayake, Arjuna
Perera, Sirani M.
Author_xml – sequence: 1
  givenname: Sirani M.
  orcidid: 0000-0002-3975-3742
  surname: Perera
  fullname: Perera, Sirani M.
  email: pereras2@erau.edu
  organization: Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
– sequence: 2
  givenname: Levi
  surname: Lingsch
  fullname: Lingsch, Levi
  organization: Department of Mathematics, ETH AI Center, ETH Zurich, Zürich, Switzerland
– sequence: 3
  givenname: Alp
  surname: Tuztas
  fullname: Tuztas, Alp
  organization: Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
– sequence: 4
  givenname: Arjuna
  orcidid: 0000-0003-3478-6702
  surname: Madanayake
  fullname: Madanayake, Arjuna
  organization: Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
BookMark eNplkUFv1DAQhSNUJErpL4CDJc7Z2pnYiY9haWmlVhy6wNGa2JMlq2y82Ilg_z1eUgECH-zReN4nv-eX2dnoR8qy14KvhOD6qlmvrx8fVwUv5ApkBRr4s-y8EErnIEGd_VW_yC5j3PG06tSS1XlmG3aDcWKbMBPb9HvK39OAR_ald9Ti6NjDPEx9_o5wz05b58O-H7esGbY-9NPX1MVIjvmRIRNqGWwOh-B_9HucEu7zw6vseYdDpMun8yL7dHO9Wd_m9x8_3K2b-9yCElOOtqy4QwUtWahlq6zrHLQdIVStQ7I2meNFZbvTbclBC9u1pF0KodXg4CK7W7jO484cQnpAOBqPvfnV8GFrMEy9HchYDbIQulSgqaSCUAmtaqVTKaWtIbHKhTWPBzx-x2H4DRTcnHI3aC3FaE65m6fck-ztIksBfJspTmbn5zAm1wYKIbUsoarTFCxTNvgYA3X_sZc__Zf9ZlH1RPRHIbhQPBn5CYoem_g
CODEN IAECCG
Cites_doi 10.1109/MWSYM.2018.8439422
10.1109/TSP.2006.882087
10.1109/TSP.2022.3231182
10.1109/TNNLS.2018.2815435
10.1109/ICCSP.2015.7322551
10.1109/JPROC.2020.2975695
10.1109/tsp.2019.2949502
10.1109/ACCESS.2020.2970342
10.1007/BF01201681
10.23919/ACES57841.2023.10114728
10.1109/JSTSP.2018.2822940
10.3390/s24020576
10.1109/5.542410
10.3390/a17080338
10.1109/TAP.2018.2882629
10.1109/ACCESS.2019.2921522
10.18653/v1/2022.naacl-main.319
10.1109/ISVLSI51109.2021.00063
10.1109/WiSEE61249.2024.10850415
10.1109/TAP.2017.2734243
10.1109/MWSYM.2015.7167112
10.1109/RADAR.2015.7131185
10.2307/2003354
10.1002/047120059X
10.1109/MCOM.2014.6979962
10.1109/JSTSP.2016.2523924
10.1109/ACCESS.2015.2514261
10.1109/MAPCON58678.2023.10463807
10.1109/ACCESS.2021.3126392
10.1109/TVT.2020.3008535
10.1109/JETCAS.2018.2832177
10.1109/TCSI.2012.2185294
10.1109/JSAC.2014.2328098
10.1109/MERCon.2015.7112356
10.1109/JMW.2020.3035541
10.1016/0165-1684(90)90158-U
10.1109/OJCOMS.2024.3373368
10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00142
10.1016/B978-0-12-804418-6.00009-1
10.1109/MSP.2023.3262366
10.1145/1476589.1476610
10.1109/TCSI.2020.3005475
10.1109/OJSP.2020.2991586
10.1109/TMTT.2013.2271119
10.1016/B978-0-12-811887-0.00009-2
10.1007/978-981-19-7561-5
10.1109/TAP.1963.1138114
10.1109/ACCESS.2022.3210519
10.1109/TAES.2020.2987094
10.1109/TAP.2019.2938704
10.1109/LSP.2022.3200573
10.1109/ACCESS.2020.2994550
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3573930
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 94507
ExternalDocumentID oai_doaj_org_article_c9352194639e4e2ea6196869e2e55c83
10.1109/access.2025.3573930
10_1109_ACCESS_2025_3573930
11016046
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2229473; 2229471
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-ac470da63bec385b6cdfd3bfea37bdaecc573027cf385b40391cfbe9d109b93d3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:17 EDT 2025
Sun Sep 07 11:10:52 EDT 2025
Wed Oct 08 11:10:39 EDT 2025
Wed Oct 01 05:59:29 EDT 2025
Wed Aug 27 01:52:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ac470da63bec385b6cdfd3bfea37bdaecc573027cf385b40391cfbe9d109b93d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3975-3742
0000-0003-3478-6702
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3573930
PQID 3215954378
PQPubID 4845423
PageCount 20
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3573930
unpaywall_primary_10_1109_access_2025_3573930
proquest_journals_3215954378
doaj_primary_oai_doaj_org_article_c9352194639e4e2ea6196869e2e55c83
ieee_primary_11016046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Rao (ref38) 2021
ref19
Gayanath (ref67)
Cintra (ref56) 2024
ref51
ref50
Heath (ref48) 2016; 10
Perera (ref60) 2024; 24
ref45
ref42
ref43
(ref64) 2025
Sun (ref46) 2014; 52
ref49
ref8
ref7
ref4
ref3
ref6
ref5
Lou (ref37) 2021
ref40
Wijenayake (ref17) 2012; 59
ref35
ref34
Viberg (ref18) 1997; 13
Blahut (ref30) 2011
ref36
ref31
ref33
ref32
Raghu (ref65) 2024
ref2
ref1
ref39
Bogale (ref12) 2017
Zhao (ref47)
Oppenheim (ref61) 1999
Archer (ref23); 2B
Rotman (ref21) 1963; AP-11
ref24
ref68
ref26
ref25
ref20
ref63
ref28
Palisetty (ref44)
ref27
ref29
Gayanath (ref66)
Aluvihare (ref41) 2025
Shahbazpanahi (ref16) 2018
Immoreev (ref9)
ref62
Tiwari (ref22)
References_xml – ident: ref42
  doi: 10.1109/MWSYM.2018.8439422
– ident: ref34
  doi: 10.1109/TSP.2006.882087
– year: 2024
  ident: ref65
  article-title: Addressing the need of all-digital beamforming systems
– ident: ref6
  doi: 10.1109/TSP.2022.3231182
– ident: ref35
  doi: 10.1109/TNNLS.2018.2815435
– start-page: 2152
  volume-title: Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI)
  ident: ref22
  article-title: A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz communications
– start-page: 1
  volume-title: Proc. IEEE 95th Veh. Technol. Conference: (VTC-Spring)
  ident: ref44
  article-title: Area-power analysis of FFT based digital beamforming for GEO, MEO, and LEO scenarios
– ident: ref29
  doi: 10.1109/ICCSP.2015.7322551
– ident: ref50
  doi: 10.1109/JPROC.2020.2975695
– ident: ref25
  doi: 10.1109/tsp.2019.2949502
– ident: ref19
  doi: 10.1109/ACCESS.2020.2970342
– year: 2025
  ident: ref41
  article-title: A low-complexity structured neural network approach to intelligently realize wideband multi-beam beamformers
  publication-title: IEEE J. Radio Freq. Identificat.
– ident: ref28
  doi: 10.1007/BF01201681
– ident: ref68
  doi: 10.23919/ACES57841.2023.10114728
– ident: ref4
  doi: 10.1109/JSTSP.2018.2822940
– volume: 24
  start-page: 576
  issue: 2
  year: 2024
  ident: ref60
  article-title: Thiran filters for wideband DSP-based multi-beam true time delay RF sensing applications
  publication-title: Sensors
  doi: 10.3390/s24020576
– volume-title: Discrete-time Signal Processing
  year: 1999
  ident: ref61
– ident: ref63
  doi: 10.1109/5.542410
– ident: ref58
  doi: 10.3390/a17080338
– ident: ref45
  doi: 10.1109/TAP.2018.2882629
– ident: ref2
  doi: 10.1109/ACCESS.2019.2921522
– ident: ref39
  doi: 10.18653/v1/2022.naacl-main.319
– volume-title: Intel Stratix AX-10 FPGA Description
  year: 2025
  ident: ref64
– ident: ref51
  doi: 10.1109/ISVLSI51109.2021.00063
– ident: ref40
  doi: 10.1109/WiSEE61249.2024.10850415
– ident: ref1
  doi: 10.1109/TAP.2017.2734243
– volume: 2B
  start-page: 31
  volume-title: Proc. IEEE Antennas Propag. Soc. Int. Symp.
  ident: ref23
  article-title: Rotman lens development history at raytheon electronic warfare systems 1967–1995
– ident: ref43
  doi: 10.1109/MWSYM.2015.7167112
– ident: ref55
  doi: 10.1109/RADAR.2015.7131185
– ident: ref27
  doi: 10.2307/2003354
– ident: ref33
  doi: 10.1002/047120059X
– volume: 52
  start-page: 110
  issue: 12
  year: 2014
  ident: ref46
  article-title: MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6979962
– volume: 10
  start-page: 436
  issue: 3
  year: 2016
  ident: ref48
  article-title: An overview of signal processing techniques for millimeter wave MIMO systems
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2016.2523924
– year: 2021
  ident: ref37
  article-title: Fnetar: Mixing tokens with autoregressive Fourier transforms
  publication-title: ArXiv
– ident: ref49
  doi: 10.1109/ACCESS.2015.2514261
– ident: ref54
  doi: 10.1109/MAPCON58678.2023.10463807
– ident: ref24
  doi: 10.1109/ACCESS.2021.3126392
– ident: ref14
  doi: 10.1109/TVT.2020.3008535
– ident: ref15
  doi: 10.1109/JETCAS.2018.2832177
– volume: 59
  start-page: 1061
  issue: 5
  year: 2012
  ident: ref17
  article-title: Rf analog beamforming fan filters using CMOS all-pass time delay approximations
  publication-title: IEEE Trans. Circuits Syst. I, Reg. Papers
  doi: 10.1109/TCSI.2012.2185294
– ident: ref8
  doi: 10.1109/JSAC.2014.2328098
– volume: 13
  start-page: 67
  issue: 4
  year: 1997
  ident: ref18
  article-title: Two decades of array signal processing
  publication-title: IEEE Signal Process. Mag.
– ident: ref10
  doi: 10.1109/MERCon.2015.7112356
– ident: ref7
  doi: 10.1109/JMW.2020.3035541
– ident: ref32
  doi: 10.1016/0165-1684(90)90158-U
– ident: ref13
  doi: 10.1109/OJCOMS.2024.3373368
– ident: ref36
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00142
– volume-title: 2025 Int. Appl. Comput. Electromagn. Soc. Symp. (ACES)
  ident: ref67
  article-title: D-band SDR with 64 GHz B/W on COTS chiplets
– volume-title: Mmwave Communication Enabling Techniques for 5G Wireless Systems
  year: 2017
  ident: ref12
  doi: 10.1016/B978-0-12-804418-6.00009-1
– start-page: 1
  volume-title: Proc. Int. Appl. Comput. Electromagn. Soc. Symp. (ACES)
  ident: ref66
  article-title: Direct-RF 64 GS/s Wideband Approximate DFT Analysis Filterbanks for Spectrum AI-Perception
– ident: ref11
  doi: 10.1109/MSP.2023.3262366
– start-page: 201
  volume-title: Proc. IEEE Conf. Ultra Wideband Syst. Technol.
  ident: ref9
  article-title: Ultra wideband radar systems: Advantages and disadvantages
– year: 2024
  ident: ref56
  article-title: An approximation for the 32-point discrete Fourier transform
  publication-title: arXiv:2407.12708
– ident: ref31
  doi: 10.1145/1476589.1476610
– start-page: 1
  volume-title: Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)
  ident: ref47
  article-title: An offset-canceling approximate-DFT beamforming architecture for wireless transceivers
– ident: ref62
  doi: 10.1109/TCSI.2020.3005475
– ident: ref5
  doi: 10.1109/OJSP.2020.2991586
– ident: ref20
  doi: 10.1109/TMTT.2013.2271119
– volume-title: Recent Advances in Network Beamforming
  year: 2018
  ident: ref16
  doi: 10.1016/B978-0-12-811887-0.00009-2
– year: 2021
  ident: ref38
  article-title: Global filter networks for image classification
  publication-title: arXiv:2107.00645
– ident: ref3
  doi: 10.1007/978-981-19-7561-5
– volume: AP-11
  start-page: 623
  issue: 6
  year: 1963
  ident: ref21
  article-title: Wide-angle microwave lens for line source applications
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1963.1138114
– ident: ref52
  doi: 10.1109/ACCESS.2022.3210519
– ident: ref57
  doi: 10.1109/TAES.2020.2987094
– ident: ref53
  doi: 10.1109/TAP.2019.2938704
– ident: ref26
  doi: 10.1109/LSP.2022.3200573
– volume-title: Fast Algorithms for the Discrete Fourier Transform
  year: 2011
  ident: ref30
– ident: ref59
  doi: 10.1109/ACCESS.2020.2994550
SSID ssj0000816957
Score 2.3367407
Snippet True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and digital signal domains. The delay Vandermonde matrix (DVM) was...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 94488
SubjectTerms Algorithms
Antenna arrays
Approximation algorithms
Array signal processing
Beamforming
Broadband
Complexity
Complexity theory
Delay
delay Vandermonde matrix
Delays
discrete Fourier transform
Discrete Fourier transforms
Fast Fourier transforms
Integrated circuits
low-complexity algorithm
matrix norms
Narrowband
numerical approximation
performance of algorithms
Radio frequency
Signal flow graphs
Sparse matrices
true-time delays (TTDs)
Wideband
Wideband multi-beam beamforming
wireless communication systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLrQH1FJQl1LkA0cMSfx9DAsrhAQnaLlZ_kq70pJdQRDw7xk7ge6qh164RJFjO5M3TuZNEj8jtJ--5hXSKUID84QpEYnyPBBfRhmqyikv02zki0txds3Ob_jN0lJf6Z-wXh64B-7Ia6AIkGlDJI0sVtEC4xdKaNjl3Kus81kovZRM5WewKoXmcpAZKgt9VI_HcEWQEFb8kPKkA1eshKKs2D8ssbLCNtcf2oV9frSz2VLgmXxGGwNjxHVv6Rf0Ibab6NOSjuBX5Gs8sfcdvrp7iDhN6iAncWaf8a9piM62AedptuQ42lucNomoQkNcz37P76bdHyiFYBbwvMUWl6KvWCe18acpMFro7ufFFrqenF6Nz8iwegLxVJQdsZ7JIlhBwUtUcSd8aAJ1TbRUumDBdYACJKW-SUdZUor3jYs6AFpO00C30Vo7b-M3hJWKEphEqKAV5GNeN0pQBoG-kNBFFCN08AqkWfQiGSYnF4U2Pe4m4W4G3EfoOIH9VjUpXOcC8LsZ_G7-5_cR2kqu-nu-rJXHwJbdV9-Z4Xa8NxSIjeaMSjVC5M2f_9hq8xqVK7buvIet39HH1Gf_5mYXrXUwGn4Al-ncXh62L27M6mg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVoN8CCZxEpBXnBEk-T2PFjmQ6MKqR21UJ3kR83MGLIVG1G0H49105m6ICQ2ERWYsePY8vn2r7HhLyNu3m5cprxIDwTWgLTvgrMF6BCWTrtVfRGPjmVx-fi40V1MTqrJ18YAEiHz2ASg2kvPyz9Ki6VHRZJD03IHbKjtByctTYLKvEGCVOpUVmoyM1hPZ1iJdAGLKsJr6L0W741-ySR_vFWlS2CeX_VXdqbH3axuDPXzB6T03UphyMm3yar3k387R8Cjv9djSfk0cg6aT10k6fkHnTPyMM7WoTPia_pzF739OxqBTQ6hrD3sLA39PM8gLNdoMlVlx2B_U7jI5JdTEjrxZfl1bz_im9xQgx02VFLCzlErKNi-c85smL83aeTPXI--3A2PWbjDQzMc1n0zHqh8mAlR6S5rpz0oQ3ctWC5csEi_NisaNj6Nn4VUW3etw5MwOZ3hgf-gux2yw5eEqo1KGQjocRUaNN502rJBZKFXOEvQGbk3RqZ5nIQ2miSgZKbZgCyiUA2I5AZOYrobaJGlez0Alu6GQdd4w3Sy8IIZGEgoASL1qLU0mCwqrzmGdmL6PzObwQmIwfrztCMQ_q64UiOTCW40hlhmw7yV1ltuudyq6z7_8jmFXkQow0LOgdkt0eAXyPF6d2b1LV_AcfS9Xw
  priority: 102
  providerName: IEEE
Title A Fast True Time-Delay Wideband Multi-Beam Beamforming Algorithm Based on a 16-Beam Approximate-DVM
URI https://ieeexplore.ieee.org/document/11016046
https://www.proquest.com/docview/3215954378
https://doi.org/10.1109/access.2025.3573930
https://doaj.org/article/c9352194639e4e2ea6196869e2e55c83
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdQd0AcgMEQha3ygSMuSfwR-5h1VNOkTRxWGCfLX4GKkk5rKhh_Pc9ONlomoXGJIsd2nv2e5d-L834PoTfxNC8rrSTUM0eYFIFIxz1xeSh9UVjpyhiNfHomjmfs5IJf9DzbMRZm8_w-z9Q7k9IGgh9X8DHlkb4N_PMdwQF4D9DO7OxD9Tmmj8uFIjQdRL7-R8utvSdR9Pc5Vbbg5cN1c2muf5jFYmOnmT7pQrhXiaAw_mDybbxu7dj9-ou-8Z6DeIoe94gTV52J7KIHoXmGHm3wED5HrsJTs2rx-dU64BgUQo7CwlzjT3MfrGk8TmG65DCY7zheItCFhrhafFlezduvUAqbocfLBhuci65iFdnKf84BEUN3H0_30Gz6_nxyTPrsC8RRkbfEOFZm3ggKWqaSW-F87amtg6Gl9QZUDyMBp9bV8SmLTPOutkF5GLFV1NMXaNAsm_ASYSlDCUjEF9AK_DmnaikoA6CQldBFEEP09kYv-rIj2dDJOcmUriYTsEQd5073czdEh1F3t1UjQ3YqgDnX_YLTTgG0zBUDBBZYKIIBT1FIoeCWcyfpEO1Fzf95X-LaYyDL_o0p6H45rzQFYKQ4o6UcInJrHndk7fS8Jeur_6y_jwYt6PoAkE5rR-kLwSgFJY56a_8NDVn33w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgPAweuA4RGOAHHnGX1JfYj1mhKrD2qYO9Wb4FKko6balg_HqOnbSsICReosjxLf6O5e84OZ8RehW_5uWllYR65giTIhDpuCeuCKUfDq10ZYxGns7E5JS9P-NnfbB6ioUJIaSfz8Ig3qZv-X7l1nGr7KhIemhM3ES3OGOMd-Fa2y2VeIaE4mWvLVTk6qgajeA1wAsc8gHlUfwt31l_kkx_f67KDsXcXzfn5uq7WS6vrTbje2i26Wf3k8nXwbq1A_fzDwnH_36R--huzztx1RnKA3QjNA_RnWtqhI-Qq_DYXLZ4frEOOIaGkDdhaa7wp4UP1jQep2BdchzMNxwvke5CQVwtP68uFu0XSIUl0eNVgw0uRJexiprlPxbAi6G6j9MDdDp-Ox9NSH8GA3FUFC0xjpW5N4IC1lRyK5yvPbV1MLS03oABwLCCa-vq-JRFvXlX26A8DL9V1NPHaK9ZNeEJwlKGEviIH0Ip8OqcqqWgDOhCXkIVQWTo9QYZfd5JbejkouRKd0DqCKTugczQcURvmzXqZKcEGGndTzvtFBDMQjHgYYGFYTDgLwopFNxy7iTN0EFE53d7PTAZOtwYg-4n9aWmQI8UZ7SUGSJbA_mrryaddLnT16f_aOYl2p_Mpyf65N3swzN0OxbptncO0V4LYD8HwtPaF8nMfwHHKfjJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaq5YA4lJaCujwqH3qslyR-xD6GLStUCdQD29KT5VfaFUsWsVnx-PWMk0B3Wwm1lyhKbMf2N5a_kTPfIPQxnuYluZWEeuYIkyIQ6bgnLg25zzIrXR6jkU_PxMmYfbngF53OdoyFWT6_TxN1aJq0geDHZXxAeZRvA_98TXAg3j20Nj77WvyI6eNSoQhtDiL3Xqi5svc0Ev1dTpUVerm-qK7N_a2ZTpd2mtFmG8I9bwQK4w8ml4NFbQfu4Q_5xn8cxBv0umOcuGhN5C16FaottLGkQ_gOuQKPzLzG5zeLgGNQCPkcpuYef5_4YE3lcROmS46CucLxEokuVMTF9OfsZlL_gqewGXo8q7DBqWgLFlGt_G4CjBia-3a6jcaj4_PhCemyLxBHRVoT41ieeCMooEwlt8L50lNbBkNz6w1ADyMBp9aV8S2LSvOutEF5GLFV1NMd1KtmVXiPsJQhBybiM6gF_pxTpRSUAVFIcmgiiD769ISLvm5FNnTjnCRKF8MhWKKOc6e7ueujo4jdc9GokN08gDnX3YLTTgG1TBUDBhZYyIIBT1FIoeCWcydpH21H5H9_r9HaY9CX_SdT0N1ynmsKxEhxRnPZR-TZPP7qa4vzSl93_7P8PurVgPUBMJ3afugs_BF_k_Xp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+True+Time-Delay+Wideband+Multi-Beam+Beamforming+Algorithm+Based+on+a+16-Beam+Approximate-DVM&rft.jtitle=IEEE+access&rft.au=Perera%2C+Sirani+M.&rft.au=Lingsch%2C+Levi&rft.au=Tuztas%2C+Alp&rft.au=Madanayake%2C+Arjuna&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=94488&rft.epage=94507&rft_id=info:doi/10.1109%2FACCESS.2025.3573930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3573930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon