Data-Driven Dynamic Optimization for Hosting Capacity Forecasting in Low-Voltage Grids
The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dy...
        Saved in:
      
    
          | Published in | Energies (Basel) Vol. 18; no. 15; p. 3955 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.08.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1073 1996-1073  | 
| DOI | 10.3390/en18153955 | 
Cover
| Summary: | The sustainable integration of Distributed Energy Resources (DER) with the next-generation distribution networks requires robust, adaptive, and accurate hosting capacity (HC) forecasting. Dynamic Operating Envelopes (DOE) provide real-time constraints for power import/export to the grid, ensuring dynamic DER integration and efficient network operation. However, conventional HC analysis and forecasting approaches struggle to capture temporal dependencies, the impact of DOE constraints on network operation, and uncertainty in DER output. This study introduces a dynamic optimization framework that leverages the benefits of the sensitivity gate of the Sensitivity-Enhanced Recurrent Neural Network (SERNN) forecasting model, Particle Swarm Optimization (PSO), and Bayesian Optimization (BO) for HC forecasting. The PSO determines the optimal weights and biases, and BO fine-tunes hyperparameters of the SERNN forecasting model to minimize the prediction error. This approach dynamically adjusts the import/export of the DER output to the grid by integrating the DOE constraints into the SG-PSO-BO architecture. Performance evaluation on the IEEE-123 test network and a real Australian distribution network demonstrates superior HC forecasting accuracy, with an R2 score of 0.97 and 0.98, Mean Absolute Error (MAE) of 0.21 and 0.16, and Root Mean Square Error (RMSE) of 0.38 and 0.31, respectively. The study shows that the model effectively captures the non-linear and time-sensitive interactions between network parameters, DER variables, and weather information. This study offers valuable insights into advancing dynamic HC forecasting under real-time DOE constraints in sustainable DER integration, contributing to the global transition towards net-zero emissions. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 1996-1073 1996-1073  | 
| DOI: | 10.3390/en18153955 |