DS-AdaptNet: An Efficient Retinal Vessel Segmentation Framework With Adaptive Enhancement and Depthwise Separable Convolutions

Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framew...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 122207 - 122223
Main Authors Chen, Shuting, Hong, Chengxi, Jia, Hong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3585611

Cover

Abstract Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framework that addresses these challenges through two synergistic technical innovations. First, we introduce a Multi-Dimensional Morphological Perturbation Augmentation Technique (MD-PAT) that generates anatomically plausible variations through topologically-constrained deformation fields, significantly enhancing training data diversity while preserving critical structural properties. Second, we develop a Context-Aware Adaptive Threshold Optimization (CA-ATO) algorithm that dynamically determines optimal thresholds by integrating multi-scale contextual information and uncertainty estimates, substantially improving boundary delineation accuracy and fine structure preservation. These techniques are integrated with an Efficient Depthwise Convolutional Neural Network (ED-CNN) architecture that employs depth-separable convolutions, dramatically reducing computational complexity while maintaining high segmentation accuracy. Our comprehensive experiments on three benchmark retinal vessel segmentation datasets demonstrate that the proposed DS-AdaptNet achieves state-of-the-art performance while maintaining exceptional efficiency. Notably, our method attains a Dice coefficient of 0.8328 on DRIVE, 0.8110 on CHASE_DB1, and 0.8515 on STARE, consistently outperforming existing approaches. Most importantly, DS-AdaptNet achieves these results with only 1.57M parameters and 44.08 GFLOPs-a 94.9% reduction in parameters and 77.2% reduction in computational operations compared to standard U-Net. These efficiency gains enable real-time retinal vessel analysis on standard hardware without specialized acceleration, making DS-AdaptNet particularly suitable for resource-constrained clinical environments and telemedicine applications. The proposed framework establishes a foundation for developing practical computer-aided diagnostic systems that balance accuracy, efficiency, and clinical utility.
AbstractList Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framework that addresses these challenges through two synergistic technical innovations. First, we introduce a Multi-Dimensional Morphological Perturbation Augmentation Technique (MD-PAT) that generates anatomically plausible variations through topologically-constrained deformation fields, significantly enhancing training data diversity while preserving critical structural properties. Second, we develop a Context-Aware Adaptive Threshold Optimization (CA-ATO) algorithm that dynamically determines optimal thresholds by integrating multi-scale contextual information and uncertainty estimates, substantially improving boundary delineation accuracy and fine structure preservation. These techniques are integrated with an Efficient Depthwise Convolutional Neural Network (ED-CNN) architecture that employs depth-separable convolutions, dramatically reducing computational complexity while maintaining high segmentation accuracy. Our comprehensive experiments on three benchmark retinal vessel segmentation datasets demonstrate that the proposed DS-AdaptNet achieves state-of-the-art performance while maintaining exceptional efficiency. Notably, our method attains a Dice coefficient of 0.8328 on DRIVE, 0.8110 on CHASE_DB1, and 0.8515 on STARE, consistently outperforming existing approaches. Most importantly, DS-AdaptNet achieves these results with only 1.57M parameters and 44.08 GFLOPs-a 94.9% reduction in parameters and 77.2% reduction in computational operations compared to standard U-Net. These efficiency gains enable real-time retinal vessel analysis on standard hardware without specialized acceleration, making DS-AdaptNet particularly suitable for resource-constrained clinical environments and telemedicine applications. The proposed framework establishes a foundation for developing practical computer-aided diagnostic systems that balance accuracy, efficiency, and clinical utility.
Author Hong, Chengxi
Jia, Hong
Chen, Shuting
Author_xml – sequence: 1
  givenname: Shuting
  orcidid: 0000-0001-6732-3822
  surname: Chen
  fullname: Chen, Shuting
  organization: Chengyi College, Jimei University, Xiamen, China
– sequence: 2
  givenname: Chengxi
  orcidid: 0009-0007-0540-0678
  surname: Hong
  fullname: Hong, Chengxi
  email: hongcx0929@jmu.edu.cn
  organization: Chengyi College, Jimei University, Xiamen, China
– sequence: 3
  givenname: Hong
  surname: Jia
  fullname: Jia, Hong
  email: jiahong1804@xmu.edu.cn
  organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, China
BookMark eNplkUtvEzEUhUeoSJTSXwALS6wn-O0Ju2iaQqWqSITH0rrx3GkcJvZgTxp1w2_vpFMBgrvx9dE53-Kel8VJiAGL4jWjM8bo_N2irper1YxTrmZCVUoz9qw45UzPS6GEPvlrf1Gc57yl41SjpMxp8etiVS4a6IcbHN6TRSDLtvXOYxjIZxx8gI58w5yxIyu83Y0yDD4Gcplgh4eYfpDvftiQR4K_Q7IMGwgOj0YCoSEX2A-bg884xntIsO6Q1DHcxW5_5ORXxfMWuoznT-9Z8fVy-aX-WF5_-nBVL65LJzQbynkjFatoYyhzwki-NlVF5-BoK1sQTEqKsq2EUbqVSqGsGBPUVK6BOTPIUZwVVxO3ibC1ffI7SPc2grePQky3FtLgXYcWjOCcGa0r7eR6zYByt1bj3zROME1HlpxY-9DD_QG67jeQUXusxIJz49HssRL7VMkYezvF-hR_7jEPdhv3aTxwtoJLLbjSko8uMblcijknbP9jT3X_y34zpTwi_kkwaphgSjwAFZelwg
CODEN IAECCG
Cites_doi 10.1109/ICCV.2019.00140
10.1007/s11042-022-12242-2
10.1109/TMI.2014.2377694
10.1109/34.295913
10.1109/CVPR.2018.00474
10.1109/LGRS.2018.2802944
10.1109/CVPR.2015.7298965
10.1109/TMI.2017.2665165
10.1146/annurev.bioeng.2.1.315
10.1016/j.media.2017.07.005
10.1007/978-3-030-01261-8_20
10.1016/0021-9991(88)90002-2
10.1109/TBME.2012.2205687
10.1109/CVPR.2019.00874
10.1109/CVPR.2018.00716
10.1007/978-3-030-00937-3_48
10.1016/0734-189X(88)90022-9
10.5555/3295222.3295309
10.1007/978-3-030-00536-8_1
10.1109/TMI.2004.825627
10.1007/978-3-031-43901-8_39
10.1109/3DV.2016.79
10.1109/TSMC.1979.4310076
10.1007/978-3-319-24574-4_28
10.1007/s11042-018-6267-z
10.1109/WACV51458.2022.00181
10.1007/s10278-019-00227-x
10.1109/WACV48630.2021.00141
10.1109/TMI.2019.2959609
10.1109/JBHI.2022.3188710
10.1007/s11760-022-02325-w
10.1007/978-1-4757-2440-0
10.1109/TPAMI.2017.2699184
10.1016/j.media.2016.10.004
10.1016/j.media.2020.101693
10.1007/978-3-030-00889-5_1
10.1109/ICASSP40776.2020.9053405
10.1007/978-3-319-46723-8_49
10.1007/978-1-4471-4929-3
10.1109/TMI.2016.2547947
10.1038/s41592-020-01008-z
10.48550/arxiv.1710.09412
10.1109/42.845178
10.1146/annurev-bioeng071516-044442
10.1016/j.neucom.2019.01.103
10.1007/s11042-019-07988-1
10.1007/978-3-319-65981-7_12
10.1016/S0031-3203(99)00055-2
10.1109/ISM46123.2019.00049
10.1016/j.media.2021.102035
10.1007/978-3-030-01249-6_34
10.48550/arXiv.2102.04306
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3585611
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 122223
ExternalDocumentID oai_doaj_org_article_a7322176686c4bb1a02cb57667dc3160
10.1109/access.2025.3585611
10_1109_ACCESS_2025_3585611
11071315
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Xiamen, China,
  grantid: 3502Z202474005
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-9d45180d701c3742b78809ac0f4fa31440e4f83756f455e48113078cda917e2e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:09 EDT 2025
Sun Sep 07 11:11:00 EDT 2025
Wed Oct 08 08:40:28 EDT 2025
Wed Oct 01 05:46:26 EDT 2025
Wed Aug 27 02:13:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-9d45180d701c3742b78809ac0f4fa31440e4f83756f455e48113078cda917e2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-0540-0678
0000-0001-6732-3822
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11071315
PQID 3246325642
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3585611
doaj_primary_oai_doaj_org_article_a7322176686c4bb1a02cb57667dc3160
unpaywall_primary_10_1109_access_2025_3585611
proquest_journals_3246325642
ieee_primary_11071315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
Ciresan (ref26); 25
Zhao (ref34) 2021; 71
Seo (ref64) 2025
Guan (ref60) 2020
ref51
ref50
ref46
ref45
Perez (ref33) 2017
ref48
ref47
ref42
ref41
ref44
ref43
Paszke (ref39) 2016
ref49
ref8
Howard (ref17) 2017
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Alom (ref57) 2018
ref35
ref37
ref36
ref31
ref32
ref2
ref1
ref38
Liu (ref62) 2022
Tan (ref18)
Oktay (ref30)
ref24
ref23
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
Xu (ref61) 2020
References_xml – ident: ref14
  doi: 10.1109/ICCV.2019.00140
– ident: ref8
  doi: 10.1007/s11042-022-12242-2
– ident: ref25
  doi: 10.1109/TMI.2014.2377694
– ident: ref20
  doi: 10.1109/34.295913
– ident: ref38
  doi: 10.1109/CVPR.2018.00474
– ident: ref55
  doi: 10.1109/LGRS.2018.2802944
– year: 2020
  ident: ref60
  article-title: SA-UNet: Spatial attention U-Net for retinal vessel segmentation
  publication-title: arXiv:2004.03696
– ident: ref27
  doi: 10.1109/CVPR.2015.7298965
– ident: ref43
  doi: 10.1109/TMI.2017.2665165
– ident: ref22
  doi: 10.1146/annurev.bioeng.2.1.315
– ident: ref1
  doi: 10.1016/j.media.2017.07.005
– year: 2017
  ident: ref33
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: arXiv:1712.04621
– ident: ref41
  doi: 10.1007/978-3-030-01261-8_20
– ident: ref21
  doi: 10.1016/0021-9991(88)90002-2
– ident: ref54
  doi: 10.1109/TBME.2012.2205687
– ident: ref37
  doi: 10.1109/CVPR.2019.00874
– ident: ref13
  doi: 10.1109/CVPR.2018.00716
– ident: ref51
  doi: 10.1007/978-3-030-00937-3_48
– ident: ref19
  doi: 10.1016/0734-189X(88)90022-9
– year: 2025
  ident: ref64
  article-title: Full-scale representation guided network for retinal vessel segmentation
  publication-title: arXiv:2501.18921
– start-page: 6105
  volume-title: Proc. 36th Int. Conf. Mach. Learn. (ICML)
  ident: ref18
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref50
  doi: 10.5555/3295222.3295309
– year: 2016
  ident: ref39
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: arXiv:1606.02147
– ident: ref16
  doi: 10.1007/978-3-030-00536-8_1
– ident: ref52
  doi: 10.1109/TMI.2004.825627
– start-page: 1
  volume-title: Proc. Med. Image Comput. Comput.-Assist. Intervent. Cham
  ident: ref30
  article-title: Attention U-net: Learning where to look for the pancreas
– ident: ref42
  doi: 10.1007/978-3-031-43901-8_39
– volume: 71
  year: 2021
  ident: ref34
  article-title: Diffusion probabilistic models for medical image synthesis and segmentation
  publication-title: Med. Image Anal.
– ident: ref29
  doi: 10.1109/3DV.2016.79
– ident: ref44
  doi: 10.1109/TSMC.1979.4310076
– ident: ref5
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref9
  doi: 10.1007/s11042-018-6267-z
– ident: ref32
  doi: 10.1109/WACV51458.2022.00181
– ident: ref2
  doi: 10.1007/s10278-019-00227-x
– ident: ref36
  doi: 10.1109/WACV48630.2021.00141
– year: 2017
  ident: ref17
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref6
  doi: 10.1109/TMI.2019.2959609
– ident: ref63
  doi: 10.1109/JBHI.2022.3188710
– ident: ref7
  doi: 10.1007/s11760-022-02325-w
– ident: ref23
  doi: 10.1007/978-1-4757-2440-0
– ident: ref47
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref48
  doi: 10.1016/j.media.2016.10.004
– ident: ref11
  doi: 10.1016/j.media.2020.101693
– ident: ref56
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref59
  doi: 10.1109/ICASSP40776.2020.9053405
– year: 2020
  ident: ref61
  article-title: Dc-unet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation
  publication-title: arXiv:2002.00353
– ident: ref28
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref24
  doi: 10.1007/978-1-4471-4929-3
– ident: ref46
  doi: 10.1109/TMI.2016.2547947
– ident: ref31
  doi: 10.1038/s41592-020-01008-z
– ident: ref35
  doi: 10.48550/arxiv.1710.09412
– volume: 25
  start-page: 2843
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
– ident: ref53
  doi: 10.1109/42.845178
– ident: ref3
  doi: 10.1146/annurev-bioeng071516-044442
– ident: ref49
  doi: 10.1016/j.neucom.2019.01.103
– ident: ref10
  doi: 10.1007/s11042-019-07988-1
– ident: ref4
  doi: 10.1007/978-3-319-65981-7_12
– year: 2022
  ident: ref62
  article-title: Convunext: An efficient convolution neural network for medical image segmentation
  publication-title: arXiv:2210.11515
– ident: ref45
  doi: 10.1016/S0031-3203(99)00055-2
– ident: ref58
  doi: 10.1109/ISM46123.2019.00049
– ident: ref12
  doi: 10.1016/j.media.2021.102035
– ident: ref40
  doi: 10.1007/978-3-030-01249-6_34
– ident: ref15
  doi: 10.48550/arXiv.2102.04306
– year: 2018
  ident: ref57
  article-title: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation
  publication-title: arXiv:1802.06955
SSID ssj0000816957
Score 2.336652
Snippet Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 122207
SubjectTerms Accuracy
adaptive data augmentation
adaptive thresholding
Anatomical structure
Artificial neural networks
Blood vessels
Computational efficiency
Computer architecture
Constraints
Deep learning
depth-separable convolutions
Diagnostic systems
Efficiency
efficient neural networks
Fine structure
Image segmentation
Medical image segmentation
Medical imaging
morphology-aware processing
Optimization
Parameters
Real time
real-time medical analysis
resource-constrained computing
retinal vessel segmentation
Retinal vessels
Technological innovation
topology preservation
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABFSgiUJAPHDG11x-xuS3bXVVI9EAp9Gb5K7TS4q5oWsSF387YyZZdceDCNbKdiWfieS-x3yD0qtPKiMANkZp1ROguER8jI5oHD-gEcmwsRPHDsTo6Fe_P5NlGqa-yJ2yQBx4m7sC1EHJFxVCrILxnjk6CB5Cs2hg4U5WtU202yFRdgzVTRrajzBCj5mA6m8ETASGcyDccMLJibCsVVcX-scTKFtq8e51X7ucPt1xuJJ7FLnowIkY8HSx9iO6k_Ajd39ARfIx-HZ6QaXSr_jj1b_E043kVhoB8gj-WI83Q_XPRCF_ik_T123jaKOPFemMW_nLRn-M6Aix-eJ7PSyyUhtjliA_TqpRcv0rQvUiF-2XCs8t8s47aPXS6mH-aHZGxsAIJXLGemCgk0zS2lAUO3NgDD6bGBdqJzvHyuzeJDpirVJ2QMgnNINO1OkQH5C5NEn-CdvJlTk8RhstUd7BstB0VXlAdWq2408IB8fTSNOj1eo7tatDPsJV3UGMHl9jiEju6pEHvih9umxbx63oBQsKOIWH_FRIN2ite_HM_Vqg4kw3aX7vVjm_qlQVAqTjgPjFpELl19V-2ulq-csvWZ__D1ufoXhlz-Kizj3b679fpBcCc3r-sEf0bNVHz5A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxE2AX5wBEXu37E4Ra6rVZIVIilaDlFfgUkSrbapiA48NuZSdOlBQnB1bITx_7smS_2fEPIk9qaQgVZMG1FzZStE_MxCmZl8OCdgI2NSBRfzczpXL081-e9zjbGwuye3wtePHNd2kDgcSM9lODaGozjPTAaHO8BOZjPXpfvMX2cMAWT3UHk0V9a7tmeTqK_z6my515eXzdL9-2rWyx2LM301iaEe9UJFOIFk0_DdeuH4ftv8o3_-BG3yc3e46TlBiJ3yLXU3CU3dnQI75EfJ2esjG7ZzlL7nJYNnXTCEmCP6BsMiYbm71BjfEHP0ofPfbRSQ6fbi10U_-bS7gmwedJJ8xGxhBWpayI9SUtM2b5K0Bylxv0i0fFF82WL-kMyn07ejk9Zn5iBBWlEy4qotLA85lwECdzaA4_mhQu8VrWTeFycVA3MV5taaZ2UFWApcxuiA3KYRkneJ4PmokkPCIVibmvYdvKaK6-4Dbk10lnlgLh6XWTk6XbKquVGf6PqeAsvqnI8BpBWOKxVP6wZeYHTelUVxbO7ApiOql-LlcthF0NhTGuC8l44PgoeeJfJY5DC8IwcIih-vU8glRc6I8dblFT9Sl9V4JAaCX6jGmWEXSHnj75uILDX14f_Wf-YDNrLdXoETlDrH_fg_wlDqv9y
  priority: 102
  providerName: Unpaywall
Title DS-AdaptNet: An Efficient Retinal Vessel Segmentation Framework With Adaptive Enhancement and Depthwise Separable Convolutions
URI https://ieeexplore.ieee.org/document/11071315
https://www.proquest.com/docview/3246325642
https://doi.org/10.1109/access.2025.3585611
https://doaj.org/article/a7322176686c4bb1a02cb57667dc3160
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHIDD-DVEYFQ-cCSdXTuOs1voWk1IVIhRGKfIv7IhSlqxdBMc-Nt5dpyygpC4RZGT2Ppe7Pc9-30PoRe1FAU3rEgzSeuUy9ql2lqaSmY0eCewxlpPFN_MxPGcvz7NTmOyesiFcc6Fw2du6C_DXr5dmrUPlR14rkKZTym_mUvRJWttAiq-gkSR5VFZiJLioByPYRDAAUfZkIFbLCjdWn2CSH-sqrLlYN5eNyv1_UotFtfWmuk9NOt72R0x-TJct3pofvwh4Pjfw7iPdqPXicvOTB6gG655iO5e0yJ8hH4enaSlVat25tpDXDZ4EsQl4E34nU-Lhsc_eJ3xBT5xZ19jxlKDp_3hLvzxc3uOwxtgAsWT5tzbk2-IVWPxkVv5su0XDh73cuN64fB42Vz2lr-H5tPJ-_FxGoszpIYJ2qaF5RmVxOaEGgb8WgOXJoUypOa1Yn7L2PEa2G8map5ljksKq2UujVVAEN3Iscdop1k27gnCcJvIGqaevCZccyINoMuU5ArIq86KBL3sQatWnQZHFbgLKaoO48pjXEWME_TKA7tp6gW0ww0AoYr_Y6VymMm8OKYUhmtNFRkZDdxL5NYwKkiC9jxwv78XMUvQfm8nVfzbLypwSgUD35GPEpRubOevvqpQAnOrr0__8Zln6I5v1sV69tFO-23tnoP30-pBiBoMgu0P0K357G356ReGEgGc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQORQOPIu6pYAPHNnUjh_r5RbSRAHaHGgLva38WopINxHdgODAb2fsdUIDQuK2stYvzdgzn-35BqHntZIlt6zMhaJ1zlXtc-MczRWzBrwTsLEuAMXjqZyc8Tfn4jwFq8dYGO99fHzme-Ez3uW7uV2Go7KDgFUoCyHlNwXnXHThWusjlZBDohRF4haipDwYDIcwDUCBfdFj4BhLSjfsT6TpT3lVNlzM7WWz0N-_6dnsmrUZ30XT1Ti7Ryafe8vW9OyPPygc_3si99Cd5HfiQaco99EN3zxAt6-xET5EPw9P8oHTi3bq25d40OBRpJeAlvC7EBgN1d8HpvEZPvEfL1PMUoPHq-dd-MOn9gLHFmALxaPmImhU-BHrxuFDvwiJ2688VA-E42bm8XDefF3p_g46G49Oh5M8pWfILZO0zUvHBVXEFYRaBgjbAJompbak5rVm4dLY8xrwr5A1F8JzRcFeFso6DRDR9z17hLaaeeN3EYZiomrYfIqacMOJsoWSTCuuAb4aUWboxUpo1aJj4agieiFl1cm4CjKukowz9CoIdv1roNCOBSCEKq3IShewlwV6TCUtN4Zq0rcG0JcsnGVUkgztBMH97i_JLEP7Kz2p0nq_qsAtlQy8R97PUL7Wnb_GqmMSzI2x7v2jm2doe3J6fFQdvZ6-fYxuhSrdyc8-2mq_LP0T8IVa8zSugF__jQJE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxE2AX5wBEXu37E4Ra6rVZIVIilaDlFfgUkSrbapiA48NuZSdOlBQnB1bITx_7smS_2fEPIk9qaQgVZMG1FzZStE_MxCmZl8OCdgI2NSBRfzczpXL081-e9zjbGwuye3wtePHNd2kDgcSM9lODaGozjPTAaHO8BOZjPXpfvMX2cMAWT3UHk0V9a7tmeTqK_z6my515eXzdL9-2rWyx2LM301iaEe9UJFOIFk0_DdeuH4ftv8o3_-BG3yc3e46TlBiJ3yLXU3CU3dnQI75EfJ2esjG7ZzlL7nJYNnXTCEmCP6BsMiYbm71BjfEHP0ofPfbRSQ6fbi10U_-bS7gmwedJJ8xGxhBWpayI9SUtM2b5K0Bylxv0i0fFF82WL-kMyn07ejk9Zn5iBBWlEy4qotLA85lwECdzaA4_mhQu8VrWTeFycVA3MV5taaZ2UFWApcxuiA3KYRkneJ4PmokkPCIVibmvYdvKaK6-4Dbk10lnlgLh6XWTk6XbKquVGf6PqeAsvqnI8BpBWOKxVP6wZeYHTelUVxbO7ApiOql-LlcthF0NhTGuC8l44PgoeeJfJY5DC8IwcIih-vU8glRc6I8dblFT9Sl9V4JAaCX6jGmWEXSHnj75uILDX14f_Wf-YDNrLdXoETlDrH_fg_wlDqv9y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DS-AdaptNet%3A+An+Efficient+Retinal+Vessel+Segmentation+Framework+With+Adaptive+Enhancement+and+Depthwise+Separable+Convolutions&rft.jtitle=IEEE+access&rft.au=Chen%2C+Shuting&rft.au=Hong%2C+Chengxi&rft.au=Jia%2C+Hong&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=122207&rft.epage=122223&rft_id=info:doi/10.1109%2FACCESS.2025.3585611&rft.externalDocID=11071315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon