DS-AdaptNet: An Efficient Retinal Vessel Segmentation Framework With Adaptive Enhancement and Depthwise Separable Convolutions
Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framew...
Saved in:
| Published in | IEEE access Vol. 13; pp. 122207 - 122223 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3585611 |
Cover
| Abstract | Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framework that addresses these challenges through two synergistic technical innovations. First, we introduce a Multi-Dimensional Morphological Perturbation Augmentation Technique (MD-PAT) that generates anatomically plausible variations through topologically-constrained deformation fields, significantly enhancing training data diversity while preserving critical structural properties. Second, we develop a Context-Aware Adaptive Threshold Optimization (CA-ATO) algorithm that dynamically determines optimal thresholds by integrating multi-scale contextual information and uncertainty estimates, substantially improving boundary delineation accuracy and fine structure preservation. These techniques are integrated with an Efficient Depthwise Convolutional Neural Network (ED-CNN) architecture that employs depth-separable convolutions, dramatically reducing computational complexity while maintaining high segmentation accuracy. Our comprehensive experiments on three benchmark retinal vessel segmentation datasets demonstrate that the proposed DS-AdaptNet achieves state-of-the-art performance while maintaining exceptional efficiency. Notably, our method attains a Dice coefficient of 0.8328 on DRIVE, 0.8110 on CHASE_DB1, and 0.8515 on STARE, consistently outperforming existing approaches. Most importantly, DS-AdaptNet achieves these results with only 1.57M parameters and 44.08 GFLOPs-a 94.9% reduction in parameters and 77.2% reduction in computational operations compared to standard U-Net. These efficiency gains enable real-time retinal vessel analysis on standard hardware without specialized acceleration, making DS-AdaptNet particularly suitable for resource-constrained clinical environments and telemedicine applications. The proposed framework establishes a foundation for developing practical computer-aided diagnostic systems that balance accuracy, efficiency, and clinical utility. |
|---|---|
| AbstractList | Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary ambiguity, and high computational demands that hinder clinical deployment. This paper presents DS-AdaptNet, an efficient segmentation framework that addresses these challenges through two synergistic technical innovations. First, we introduce a Multi-Dimensional Morphological Perturbation Augmentation Technique (MD-PAT) that generates anatomically plausible variations through topologically-constrained deformation fields, significantly enhancing training data diversity while preserving critical structural properties. Second, we develop a Context-Aware Adaptive Threshold Optimization (CA-ATO) algorithm that dynamically determines optimal thresholds by integrating multi-scale contextual information and uncertainty estimates, substantially improving boundary delineation accuracy and fine structure preservation. These techniques are integrated with an Efficient Depthwise Convolutional Neural Network (ED-CNN) architecture that employs depth-separable convolutions, dramatically reducing computational complexity while maintaining high segmentation accuracy. Our comprehensive experiments on three benchmark retinal vessel segmentation datasets demonstrate that the proposed DS-AdaptNet achieves state-of-the-art performance while maintaining exceptional efficiency. Notably, our method attains a Dice coefficient of 0.8328 on DRIVE, 0.8110 on CHASE_DB1, and 0.8515 on STARE, consistently outperforming existing approaches. Most importantly, DS-AdaptNet achieves these results with only 1.57M parameters and 44.08 GFLOPs-a 94.9% reduction in parameters and 77.2% reduction in computational operations compared to standard U-Net. These efficiency gains enable real-time retinal vessel analysis on standard hardware without specialized acceleration, making DS-AdaptNet particularly suitable for resource-constrained clinical environments and telemedicine applications. The proposed framework establishes a foundation for developing practical computer-aided diagnostic systems that balance accuracy, efficiency, and clinical utility. |
| Author | Hong, Chengxi Jia, Hong Chen, Shuting |
| Author_xml | – sequence: 1 givenname: Shuting orcidid: 0000-0001-6732-3822 surname: Chen fullname: Chen, Shuting organization: Chengyi College, Jimei University, Xiamen, China – sequence: 2 givenname: Chengxi orcidid: 0009-0007-0540-0678 surname: Hong fullname: Hong, Chengxi email: hongcx0929@jmu.edu.cn organization: Chengyi College, Jimei University, Xiamen, China – sequence: 3 givenname: Hong surname: Jia fullname: Jia, Hong email: jiahong1804@xmu.edu.cn organization: Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, China |
| BookMark | eNplkUtvEzEUhUeoSJTSXwALS6wn-O0Ju2iaQqWqSITH0rrx3GkcJvZgTxp1w2_vpFMBgrvx9dE53-Kel8VJiAGL4jWjM8bo_N2irper1YxTrmZCVUoz9qw45UzPS6GEPvlrf1Gc57yl41SjpMxp8etiVS4a6IcbHN6TRSDLtvXOYxjIZxx8gI58w5yxIyu83Y0yDD4Gcplgh4eYfpDvftiQR4K_Q7IMGwgOj0YCoSEX2A-bg884xntIsO6Q1DHcxW5_5ORXxfMWuoznT-9Z8fVy-aX-WF5_-nBVL65LJzQbynkjFatoYyhzwki-NlVF5-BoK1sQTEqKsq2EUbqVSqGsGBPUVK6BOTPIUZwVVxO3ibC1ffI7SPc2grePQky3FtLgXYcWjOCcGa0r7eR6zYByt1bj3zROME1HlpxY-9DD_QG67jeQUXusxIJz49HssRL7VMkYezvF-hR_7jEPdhv3aTxwtoJLLbjSko8uMblcijknbP9jT3X_y34zpTwi_kkwaphgSjwAFZelwg |
| CODEN | IAECCG |
| Cites_doi | 10.1109/ICCV.2019.00140 10.1007/s11042-022-12242-2 10.1109/TMI.2014.2377694 10.1109/34.295913 10.1109/CVPR.2018.00474 10.1109/LGRS.2018.2802944 10.1109/CVPR.2015.7298965 10.1109/TMI.2017.2665165 10.1146/annurev.bioeng.2.1.315 10.1016/j.media.2017.07.005 10.1007/978-3-030-01261-8_20 10.1016/0021-9991(88)90002-2 10.1109/TBME.2012.2205687 10.1109/CVPR.2019.00874 10.1109/CVPR.2018.00716 10.1007/978-3-030-00937-3_48 10.1016/0734-189X(88)90022-9 10.5555/3295222.3295309 10.1007/978-3-030-00536-8_1 10.1109/TMI.2004.825627 10.1007/978-3-031-43901-8_39 10.1109/3DV.2016.79 10.1109/TSMC.1979.4310076 10.1007/978-3-319-24574-4_28 10.1007/s11042-018-6267-z 10.1109/WACV51458.2022.00181 10.1007/s10278-019-00227-x 10.1109/WACV48630.2021.00141 10.1109/TMI.2019.2959609 10.1109/JBHI.2022.3188710 10.1007/s11760-022-02325-w 10.1007/978-1-4757-2440-0 10.1109/TPAMI.2017.2699184 10.1016/j.media.2016.10.004 10.1016/j.media.2020.101693 10.1007/978-3-030-00889-5_1 10.1109/ICASSP40776.2020.9053405 10.1007/978-3-319-46723-8_49 10.1007/978-1-4471-4929-3 10.1109/TMI.2016.2547947 10.1038/s41592-020-01008-z 10.48550/arxiv.1710.09412 10.1109/42.845178 10.1146/annurev-bioeng071516-044442 10.1016/j.neucom.2019.01.103 10.1007/s11042-019-07988-1 10.1007/978-3-319-65981-7_12 10.1016/S0031-3203(99)00055-2 10.1109/ISM46123.2019.00049 10.1016/j.media.2021.102035 10.1007/978-3-030-01249-6_34 10.48550/arXiv.2102.04306 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3585611 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 122223 |
| ExternalDocumentID | oai_doaj_org_article_a7322176686c4bb1a02cb57667dc3160 10.1109/access.2025.3585611 10_1109_ACCESS_2025_3585611 11071315 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Xiamen, China, grantid: 3502Z202474005 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-9d45180d701c3742b78809ac0f4fa31440e4f83756f455e48113078cda917e2e3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:09 EDT 2025 Sun Sep 07 11:11:00 EDT 2025 Wed Oct 08 08:40:28 EDT 2025 Wed Oct 01 05:46:26 EDT 2025 Wed Aug 27 02:13:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-9d45180d701c3742b78809ac0f4fa31440e4f83756f455e48113078cda917e2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-0540-0678 0000-0001-6732-3822 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11071315 |
| PQID | 3246325642 |
| PQPubID | 4845423 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3585611 doaj_primary_oai_doaj_org_article_a7322176686c4bb1a02cb57667dc3160 unpaywall_primary_10_1109_access_2025_3585611 proquest_journals_3246325642 ieee_primary_11071315 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 Ciresan (ref26); 25 Zhao (ref34) 2021; 71 Seo (ref64) 2025 Guan (ref60) 2020 ref51 ref50 ref46 ref45 Perez (ref33) 2017 ref48 ref47 ref42 ref41 ref44 ref43 Paszke (ref39) 2016 ref49 ref8 Howard (ref17) 2017 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Alom (ref57) 2018 ref35 ref37 ref36 ref31 ref32 ref2 ref1 ref38 Liu (ref62) 2022 Tan (ref18) Oktay (ref30) ref24 ref23 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 Xu (ref61) 2020 |
| References_xml | – ident: ref14 doi: 10.1109/ICCV.2019.00140 – ident: ref8 doi: 10.1007/s11042-022-12242-2 – ident: ref25 doi: 10.1109/TMI.2014.2377694 – ident: ref20 doi: 10.1109/34.295913 – ident: ref38 doi: 10.1109/CVPR.2018.00474 – ident: ref55 doi: 10.1109/LGRS.2018.2802944 – year: 2020 ident: ref60 article-title: SA-UNet: Spatial attention U-Net for retinal vessel segmentation publication-title: arXiv:2004.03696 – ident: ref27 doi: 10.1109/CVPR.2015.7298965 – ident: ref43 doi: 10.1109/TMI.2017.2665165 – ident: ref22 doi: 10.1146/annurev.bioeng.2.1.315 – ident: ref1 doi: 10.1016/j.media.2017.07.005 – year: 2017 ident: ref33 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: arXiv:1712.04621 – ident: ref41 doi: 10.1007/978-3-030-01261-8_20 – ident: ref21 doi: 10.1016/0021-9991(88)90002-2 – ident: ref54 doi: 10.1109/TBME.2012.2205687 – ident: ref37 doi: 10.1109/CVPR.2019.00874 – ident: ref13 doi: 10.1109/CVPR.2018.00716 – ident: ref51 doi: 10.1007/978-3-030-00937-3_48 – ident: ref19 doi: 10.1016/0734-189X(88)90022-9 – year: 2025 ident: ref64 article-title: Full-scale representation guided network for retinal vessel segmentation publication-title: arXiv:2501.18921 – start-page: 6105 volume-title: Proc. 36th Int. Conf. Mach. Learn. (ICML) ident: ref18 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – ident: ref50 doi: 10.5555/3295222.3295309 – year: 2016 ident: ref39 article-title: ENet: A deep neural network architecture for real-time semantic segmentation publication-title: arXiv:1606.02147 – ident: ref16 doi: 10.1007/978-3-030-00536-8_1 – ident: ref52 doi: 10.1109/TMI.2004.825627 – start-page: 1 volume-title: Proc. Med. Image Comput. Comput.-Assist. Intervent. Cham ident: ref30 article-title: Attention U-net: Learning where to look for the pancreas – ident: ref42 doi: 10.1007/978-3-031-43901-8_39 – volume: 71 year: 2021 ident: ref34 article-title: Diffusion probabilistic models for medical image synthesis and segmentation publication-title: Med. Image Anal. – ident: ref29 doi: 10.1109/3DV.2016.79 – ident: ref44 doi: 10.1109/TSMC.1979.4310076 – ident: ref5 doi: 10.1007/978-3-319-24574-4_28 – ident: ref9 doi: 10.1007/s11042-018-6267-z – ident: ref32 doi: 10.1109/WACV51458.2022.00181 – ident: ref2 doi: 10.1007/s10278-019-00227-x – ident: ref36 doi: 10.1109/WACV48630.2021.00141 – year: 2017 ident: ref17 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref6 doi: 10.1109/TMI.2019.2959609 – ident: ref63 doi: 10.1109/JBHI.2022.3188710 – ident: ref7 doi: 10.1007/s11760-022-02325-w – ident: ref23 doi: 10.1007/978-1-4757-2440-0 – ident: ref47 doi: 10.1109/TPAMI.2017.2699184 – ident: ref48 doi: 10.1016/j.media.2016.10.004 – ident: ref11 doi: 10.1016/j.media.2020.101693 – ident: ref56 doi: 10.1007/978-3-030-00889-5_1 – ident: ref59 doi: 10.1109/ICASSP40776.2020.9053405 – year: 2020 ident: ref61 article-title: Dc-unet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation publication-title: arXiv:2002.00353 – ident: ref28 doi: 10.1007/978-3-319-46723-8_49 – ident: ref24 doi: 10.1007/978-1-4471-4929-3 – ident: ref46 doi: 10.1109/TMI.2016.2547947 – ident: ref31 doi: 10.1038/s41592-020-01008-z – ident: ref35 doi: 10.48550/arxiv.1710.09412 – volume: 25 start-page: 2843 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: Deep neural networks segment neuronal membranes in electron microscopy images – ident: ref53 doi: 10.1109/42.845178 – ident: ref3 doi: 10.1146/annurev-bioeng071516-044442 – ident: ref49 doi: 10.1016/j.neucom.2019.01.103 – ident: ref10 doi: 10.1007/s11042-019-07988-1 – ident: ref4 doi: 10.1007/978-3-319-65981-7_12 – year: 2022 ident: ref62 article-title: Convunext: An efficient convolution neural network for medical image segmentation publication-title: arXiv:2210.11515 – ident: ref45 doi: 10.1016/S0031-3203(99)00055-2 – ident: ref58 doi: 10.1109/ISM46123.2019.00049 – ident: ref12 doi: 10.1016/j.media.2021.102035 – ident: ref40 doi: 10.1007/978-3-030-01249-6_34 – ident: ref15 doi: 10.48550/arXiv.2102.04306 – year: 2018 ident: ref57 article-title: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation publication-title: arXiv:1802.06955 |
| SSID | ssj0000816957 |
| Score | 2.336652 |
| Snippet | Medical image segmentation plays a crucial role in diagnosis and treatment planning, yet faces persistent challenges including limited annotated data, boundary... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 122207 |
| SubjectTerms | Accuracy adaptive data augmentation adaptive thresholding Anatomical structure Artificial neural networks Blood vessels Computational efficiency Computer architecture Constraints Deep learning depth-separable convolutions Diagnostic systems Efficiency efficient neural networks Fine structure Image segmentation Medical image segmentation Medical imaging morphology-aware processing Optimization Parameters Real time real-time medical analysis resource-constrained computing retinal vessel segmentation Retinal vessels Technological innovation topology preservation Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ABFSgiUJAPHDG11x-xuS3bXVVI9EAp9Gb5K7TS4q5oWsSF387YyZZdceDCNbKdiWfieS-x3yD0qtPKiMANkZp1ROguER8jI5oHD-gEcmwsRPHDsTo6Fe_P5NlGqa-yJ2yQBx4m7sC1EHJFxVCrILxnjk6CB5Cs2hg4U5WtU202yFRdgzVTRrajzBCj5mA6m8ETASGcyDccMLJibCsVVcX-scTKFtq8e51X7ucPt1xuJJ7FLnowIkY8HSx9iO6k_Ajd39ARfIx-HZ6QaXSr_jj1b_E043kVhoB8gj-WI83Q_XPRCF_ik_T123jaKOPFemMW_nLRn-M6Aix-eJ7PSyyUhtjliA_TqpRcv0rQvUiF-2XCs8t8s47aPXS6mH-aHZGxsAIJXLGemCgk0zS2lAUO3NgDD6bGBdqJzvHyuzeJDpirVJ2QMgnNINO1OkQH5C5NEn-CdvJlTk8RhstUd7BstB0VXlAdWq2408IB8fTSNOj1eo7tatDPsJV3UGMHl9jiEju6pEHvih9umxbx63oBQsKOIWH_FRIN2ite_HM_Vqg4kw3aX7vVjm_qlQVAqTjgPjFpELl19V-2ulq-csvWZ__D1ufoXhlz-Kizj3b679fpBcCc3r-sEf0bNVHz5A priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxE2AX5wBEXu37E4Ra6rVZIVIilaDlFfgUkSrbapiA48NuZSdOlBQnB1bITx_7smS_2fEPIk9qaQgVZMG1FzZStE_MxCmZl8OCdgI2NSBRfzczpXL081-e9zjbGwuye3wtePHNd2kDgcSM9lODaGozjPTAaHO8BOZjPXpfvMX2cMAWT3UHk0V9a7tmeTqK_z6my515eXzdL9-2rWyx2LM301iaEe9UJFOIFk0_DdeuH4ftv8o3_-BG3yc3e46TlBiJ3yLXU3CU3dnQI75EfJ2esjG7ZzlL7nJYNnXTCEmCP6BsMiYbm71BjfEHP0ofPfbRSQ6fbi10U_-bS7gmwedJJ8xGxhBWpayI9SUtM2b5K0Bylxv0i0fFF82WL-kMyn07ejk9Zn5iBBWlEy4qotLA85lwECdzaA4_mhQu8VrWTeFycVA3MV5taaZ2UFWApcxuiA3KYRkneJ4PmokkPCIVibmvYdvKaK6-4Dbk10lnlgLh6XWTk6XbKquVGf6PqeAsvqnI8BpBWOKxVP6wZeYHTelUVxbO7ApiOql-LlcthF0NhTGuC8l44PgoeeJfJY5DC8IwcIih-vU8glRc6I8dblFT9Sl9V4JAaCX6jGmWEXSHnj75uILDX14f_Wf-YDNrLdXoETlDrH_fg_wlDqv9y priority: 102 providerName: Unpaywall |
| Title | DS-AdaptNet: An Efficient Retinal Vessel Segmentation Framework With Adaptive Enhancement and Depthwise Separable Convolutions |
| URI | https://ieeexplore.ieee.org/document/11071315 https://www.proquest.com/docview/3246325642 https://doi.org/10.1109/access.2025.3585611 https://doaj.org/article/a7322176686c4bb1a02cb57667dc3160 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgHIDD-DVEYFQ-cCSdXTuOs1voWk1IVIhRGKfIv7IhSlqxdBMc-Nt5dpyygpC4RZGT2Ppe7Pc9-30PoRe1FAU3rEgzSeuUy9ql2lqaSmY0eCewxlpPFN_MxPGcvz7NTmOyesiFcc6Fw2du6C_DXr5dmrUPlR14rkKZTym_mUvRJWttAiq-gkSR5VFZiJLioByPYRDAAUfZkIFbLCjdWn2CSH-sqrLlYN5eNyv1_UotFtfWmuk9NOt72R0x-TJct3pofvwh4Pjfw7iPdqPXicvOTB6gG655iO5e0yJ8hH4enaSlVat25tpDXDZ4EsQl4E34nU-Lhsc_eJ3xBT5xZ19jxlKDp_3hLvzxc3uOwxtgAsWT5tzbk2-IVWPxkVv5su0XDh73cuN64fB42Vz2lr-H5tPJ-_FxGoszpIYJ2qaF5RmVxOaEGgb8WgOXJoUypOa1Yn7L2PEa2G8map5ljksKq2UujVVAEN3Iscdop1k27gnCcJvIGqaevCZccyINoMuU5ArIq86KBL3sQatWnQZHFbgLKaoO48pjXEWME_TKA7tp6gW0ww0AoYr_Y6VymMm8OKYUhmtNFRkZDdxL5NYwKkiC9jxwv78XMUvQfm8nVfzbLypwSgUD35GPEpRubOevvqpQAnOrr0__8Zln6I5v1sV69tFO-23tnoP30-pBiBoMgu0P0K357G356ReGEgGc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQORQOPIu6pYAPHNnUjh_r5RbSRAHaHGgLva38WopINxHdgODAb2fsdUIDQuK2stYvzdgzn-35BqHntZIlt6zMhaJ1zlXtc-MczRWzBrwTsLEuAMXjqZyc8Tfn4jwFq8dYGO99fHzme-Ez3uW7uV2Go7KDgFUoCyHlNwXnXHThWusjlZBDohRF4haipDwYDIcwDUCBfdFj4BhLSjfsT6TpT3lVNlzM7WWz0N-_6dnsmrUZ30XT1Ti7Ryafe8vW9OyPPygc_3si99Cd5HfiQaco99EN3zxAt6-xET5EPw9P8oHTi3bq25d40OBRpJeAlvC7EBgN1d8HpvEZPvEfL1PMUoPHq-dd-MOn9gLHFmALxaPmImhU-BHrxuFDvwiJ2688VA-E42bm8XDefF3p_g46G49Oh5M8pWfILZO0zUvHBVXEFYRaBgjbAJompbak5rVm4dLY8xrwr5A1F8JzRcFeFso6DRDR9z17hLaaeeN3EYZiomrYfIqacMOJsoWSTCuuAb4aUWboxUpo1aJj4agieiFl1cm4CjKukowz9CoIdv1roNCOBSCEKq3IShewlwV6TCUtN4Zq0rcG0JcsnGVUkgztBMH97i_JLEP7Kz2p0nq_qsAtlQy8R97PUL7Wnb_GqmMSzI2x7v2jm2doe3J6fFQdvZ6-fYxuhSrdyc8-2mq_LP0T8IVa8zSugF__jQJE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQ94A48FxE2AX5wBEXu37E4Ra6rVZIVIilaDlFfgUkSrbapiA48NuZSdOlBQnB1bITx_7smS_2fEPIk9qaQgVZMG1FzZStE_MxCmZl8OCdgI2NSBRfzczpXL081-e9zjbGwuye3wtePHNd2kDgcSM9lODaGozjPTAaHO8BOZjPXpfvMX2cMAWT3UHk0V9a7tmeTqK_z6my515eXzdL9-2rWyx2LM301iaEe9UJFOIFk0_DdeuH4ftv8o3_-BG3yc3e46TlBiJ3yLXU3CU3dnQI75EfJ2esjG7ZzlL7nJYNnXTCEmCP6BsMiYbm71BjfEHP0ofPfbRSQ6fbi10U_-bS7gmwedJJ8xGxhBWpayI9SUtM2b5K0Bylxv0i0fFF82WL-kMyn07ejk9Zn5iBBWlEy4qotLA85lwECdzaA4_mhQu8VrWTeFycVA3MV5taaZ2UFWApcxuiA3KYRkneJ4PmokkPCIVibmvYdvKaK6-4Dbk10lnlgLh6XWTk6XbKquVGf6PqeAsvqnI8BpBWOKxVP6wZeYHTelUVxbO7ApiOql-LlcthF0NhTGuC8l44PgoeeJfJY5DC8IwcIih-vU8glRc6I8dblFT9Sl9V4JAaCX6jGmWEXSHnj75uILDX14f_Wf-YDNrLdXoETlDrH_fg_wlDqv9y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DS-AdaptNet%3A+An+Efficient+Retinal+Vessel+Segmentation+Framework+With+Adaptive+Enhancement+and+Depthwise+Separable+Convolutions&rft.jtitle=IEEE+access&rft.au=Chen%2C+Shuting&rft.au=Hong%2C+Chengxi&rft.au=Jia%2C+Hong&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=122207&rft.epage=122223&rft_id=info:doi/10.1109%2FACCESS.2025.3585611&rft.externalDocID=11071315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |