Enhancing Sentiment Analysis via Random Majority Under-Sampling with Reduced Time Complexity for Classifying Tweet Reviews

Twitter has become a unique platform for social interaction from people all around the world, leading to an extensive amount of knowledge that can be used for various reasons. People share and spread their own ideologies and point of views on unique topics leading to the production of a lot of conte...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 21; p. 3624
Main Authors Almuayqil, Saleh Naif, Humayun, Mamoona, Jhanjhi, N. Z., Almufareh, Maram Fahaad, Khan, Navid Ali
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11213624

Cover

Abstract Twitter has become a unique platform for social interaction from people all around the world, leading to an extensive amount of knowledge that can be used for various reasons. People share and spread their own ideologies and point of views on unique topics leading to the production of a lot of content. Sentiment analysis is of extreme importance to various businesses as it can directly impact their important decisions. Several challenges related to the research subject of sentiment analysis includes issues such as imbalanced dataset, lexical uniqueness, and processing time complexity. Most machine learning models are sequential: they need a considerable amount of time to complete execution. Therefore, we propose a model sentiment analysis specifically designed for imbalanced datasets that can reduce the time complexity of the task by using various text sequenced preprocessing techniques combined with random majority under-sampling. Our proposed model provides competitive results to other models while simultaneously reducing the time complexity for sentiment analysis. The results obtained after the experimentation corroborate that our model provides great results producing the accuracy of 86.5% and F1 score of 0.874 through XGB.
AbstractList Twitter has become a unique platform for social interaction from people all around the world, leading to an extensive amount of knowledge that can be used for various reasons. People share and spread their own ideologies and point of views on unique topics leading to the production of a lot of content. Sentiment analysis is of extreme importance to various businesses as it can directly impact their important decisions. Several challenges related to the research subject of sentiment analysis includes issues such as imbalanced dataset, lexical uniqueness, and processing time complexity. Most machine learning models are sequential: they need a considerable amount of time to complete execution. Therefore, we propose a model sentiment analysis specifically designed for imbalanced datasets that can reduce the time complexity of the task by using various text sequenced preprocessing techniques combined with random majority under-sampling. Our proposed model provides competitive results to other models while simultaneously reducing the time complexity for sentiment analysis. The results obtained after the experimentation corroborate that our model provides great results producing the accuracy of 86.5% and F1 score of 0.874 through XGB.
Audience Academic
Author Almuayqil, Saleh Naif
Jhanjhi, N. Z.
Almufareh, Maram Fahaad
Khan, Navid Ali
Humayun, Mamoona
Author_xml – sequence: 1
  givenname: Saleh Naif
  surname: Almuayqil
  fullname: Almuayqil, Saleh Naif
– sequence: 2
  givenname: Mamoona
  orcidid: 0000-0001-6339-2257
  surname: Humayun
  fullname: Humayun, Mamoona
– sequence: 3
  givenname: N. Z.
  orcidid: 0000-0001-8116-4733
  surname: Jhanjhi
  fullname: Jhanjhi, N. Z.
– sequence: 4
  givenname: Maram Fahaad
  orcidid: 0000-0002-6613-0831
  surname: Almufareh
  fullname: Almufareh, Maram Fahaad
– sequence: 5
  givenname: Navid Ali
  surname: Khan
  fullname: Khan, Navid Ali
BookMark eNqNkd9rHCEQx6Wk0DTNX9AXoc-b7qi7ez4eR_oDEgrJ5XnxdEw8XL2ql-v2r6_H5aGUQuuAI-P3IzNf35KzEAMS8h7aK85l-xE96pJicDoDMOA9E6_IOWsH2Ugm2dlv5zfkMudtW5cEvuDtOfl5HZ5U0C480nsMxU11o8ug_Jxdps9O0TsVTJzordrG5MpMH4LB1NyraeeP1MGVJ3qHZq_R0HXl6SrWK_xx1NqY6MqrnJ2dj-L1AbFU9bPDQ35HXlvlM16-5Avy8Ol6vfrS3Hz7_HW1vGk076E0UsrOcmOkHvRGD2AHGLRFBNGjBOjNRrBFB9IwBNUr7GAz1Hk3pmXQiU7wCyJO7-7DTs0H5f24S25SaR6hHY8Wjn-xsGIfTtguxe97zGXcxn2qzuSRDVz0jLcCqurqpHpUHkcXbCxJ6RoGJ6frR1lX68tBdJ1c1I4qIE-ATjHnhHbUrqjiYqig8_9oif_B_s8gvwCpxKya
CitedBy_id crossref_primary_10_3390_app13179766
crossref_primary_10_32604_cmc_2024_051494
crossref_primary_10_32604_csse_2023_038765
crossref_primary_10_1002_ima_23221
crossref_primary_10_1080_09544828_2025_2475426
crossref_primary_10_1109_ACCESS_2024_3515836
crossref_primary_10_1016_j_jjimei_2024_100299
Cites_doi 10.1109/eStream.2019.8732167
10.3390/app10155164
10.1016/j.knosys.2021.107134
10.1109/ICACSIS51025.2020.9263087
10.3390/app12083806
10.1016/j.patrec.2022.04.004
10.1145/3041021.3054223
10.1016/j.asoc.2016.11.022
10.1016/j.cosrev.2021.100413
10.1016/j.asoc.2020.106754
10.1007/978-981-16-3153-5_53
10.1109/IRI.2015.39
10.1007/s12530-018-9261-9
10.1109/ACCESS.2020.2969854
10.1007/s10462-019-09794-5
10.1016/j.eswa.2021.115019
10.1109/TCI.2020.3006727
10.32604/csse.2022.019288
10.1016/j.eswa.2017.03.042
10.1155/2022/7028717
10.1063/1.4994463
10.1007/978-3-642-37256-8_2
10.1109/ACCESS.2022.3149482
10.1162/COLI_a_00049
10.1561/1500000011
10.1016/j.eswa.2019.112834
10.1109/ICAwST.2019.8923260
10.3390/electronics11193058
10.1016/j.asej.2014.04.011
10.3390/mca23010011
10.1371/journal.pone.0245909
10.1109/ICAwST.2019.8923218
10.3390/info9040100
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11213624
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11213624
A745598021
10_3390_electronics11213624
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-9995f3dd9c7cbc71f717cfee146e9116db428519d2e1a6ae51b7079bd02154543
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Oct 26 04:07:42 EDT 2025
Fri Jul 25 04:25:33 EDT 2025
Mon Oct 20 17:09:57 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Thu Oct 16 04:23:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-9995f3dd9c7cbc71f717cfee146e9116db428519d2e1a6ae51b7079bd02154543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6613-0831
0000-0001-6339-2257
0000-0001-8116-4733
OpenAccessLink https://www.proquest.com/docview/2734623041?pq-origsite=%requestingapplication%&accountid=15518
PQID 2734623041
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11213624
proquest_journals_2734623041
gale_infotracacademiconefile_A745598021
crossref_citationtrail_10_3390_electronics11213624
crossref_primary_10_3390_electronics11213624
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pang (ref_5) 2008; 2
Zainuddin (ref_20) 2017; 48
Zhou (ref_30) 2020; 2020
Wang (ref_3) 2012; 31
ref_34
ref_11
Bahadir (ref_38) 2020; 6
ref_10
ref_31
Catal (ref_33) 2017; 50
ref_19
ref_39
Wassan (ref_13) 2021; 30
ref_15
ref_37
Humayun (ref_16) 2022; 40
Medhat (ref_1) 2014; 5
Yang (ref_17) 2020; 8
Birjali (ref_21) 2021; 226
ref_25
ref_24
ref_46
ref_45
ref_44
Jain (ref_7) 2021; 41
ref_43
Hussein (ref_22) 2018; 30
ref_42
ref_41
ref_40
Humayun (ref_23) 2022; 2022
Bibi (ref_36) 2022; 158
Rao (ref_29) 2019; 11
ref_2
Chakraborty (ref_18) 2020; 97
ref_28
Jing (ref_14) 2021; 178
ref_27
ref_26
ref_9
Vashishtha (ref_12) 2019; 138
Obiedat (ref_35) 2022; 10
Liu (ref_32) 2017; 80
Yadav (ref_8) 2019; 53
ref_4
ref_6
References_xml – volume: 30
  start-page: 695
  year: 2021
  ident: ref_13
  article-title: Amazon Product Sentiment Analysis using Machine Learning Techniques Amazon Product Sentiment Analysis using Machine Learning Techniques View project employing recent technologies for digital governance View project Amazon Product Sentiment Analysis using Machine Learning Techniques
  publication-title: Rev. Argent.
– ident: ref_15
  doi: 10.1109/eStream.2019.8732167
– ident: ref_39
  doi: 10.3390/app10155164
– ident: ref_9
– volume: 48
  start-page: 1218
  year: 2017
  ident: ref_20
  article-title: Hybrid sentiment classification on twitter aspect-based sentiment analysis
  publication-title: Appl. Intell.
– volume: 226
  start-page: 107134
  year: 2021
  ident: ref_21
  article-title: A comprehensive survey on sentiment analysis: Approaches, challenges and trends
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107134
– ident: ref_45
  doi: 10.1109/ICACSIS51025.2020.9263087
– ident: ref_2
  doi: 10.3390/app12083806
– volume: 158
  start-page: 80
  year: 2022
  ident: ref_36
  article-title: A novel unsupervised ensemble framework using concept-based linguistic methods and machine learning for twitter sentiment analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.04.004
– ident: ref_42
  doi: 10.1145/3041021.3054223
– volume: 50
  start-page: 135
  year: 2017
  ident: ref_33
  article-title: A sentiment classification model based on multiple classifiers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.022
– volume: 41
  start-page: 10043
  year: 2021
  ident: ref_7
  article-title: A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100413
– volume: 30
  start-page: 330
  year: 2018
  ident: ref_22
  article-title: A survey on sentiment analysis challenges
  publication-title: J. King Saud Univ.-Eng. Sci.
– ident: ref_40
– volume: 97
  start-page: 106754
  year: 2020
  ident: ref_18
  article-title: Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers—A study to show how popularity is affecting accuracy in social media
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106754
– ident: ref_19
  doi: 10.1007/978-981-16-3153-5_53
– ident: ref_26
  doi: 10.1109/IRI.2015.39
– volume: 11
  start-page: 119
  year: 2019
  ident: ref_29
  article-title: A novel under sampling strategy for efficient software defect analysis of skewed distributed data
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-018-9261-9
– volume: 31
  start-page: 5
  year: 2012
  ident: ref_3
  article-title: The Evolution of Social Commerce: The People, Management, Technology, and Information Dimensions
  publication-title: Commun. Assoc. Inf. Syst.
– volume: 8
  start-page: 23522
  year: 2020
  ident: ref_17
  article-title: Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969854
– volume: 53
  start-page: 4335
  year: 2019
  ident: ref_8
  article-title: Sentiment analysis using deep learning architectures: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09794-5
– ident: ref_4
– volume: 178
  start-page: 115019
  year: 2021
  ident: ref_14
  article-title: A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115019
– ident: ref_31
– volume: 6
  start-page: 1139
  year: 2020
  ident: ref_38
  article-title: Deep-Learning-Based Optimization of the Under-Sampling Pattern in MRI
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.3006727
– volume: 40
  start-page: 947
  year: 2022
  ident: ref_16
  article-title: Prediction Model for Coronavirus Pandemic Using Deep Learning
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.019288
– ident: ref_27
– volume: 80
  start-page: 323
  year: 2017
  ident: ref_32
  article-title: Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.042
– ident: ref_46
– ident: ref_10
– volume: 2022
  start-page: 7028717
  year: 2022
  ident: ref_23
  article-title: Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/7028717
– ident: ref_37
  doi: 10.1063/1.4994463
– ident: ref_41
  doi: 10.1007/978-3-642-37256-8_2
– volume: 10
  start-page: 22260
  year: 2022
  ident: ref_35
  article-title: Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149482
– ident: ref_6
  doi: 10.1162/COLI_a_00049
– volume: 2
  start-page: 1
  year: 2008
  ident: ref_5
  article-title: Opinion Mining and Sentiment Analysis
  publication-title: Found. Trends Inf. Retr.
  doi: 10.1561/1500000011
– volume: 138
  start-page: 112834
  year: 2019
  ident: ref_12
  article-title: Fuzzy rule based unsupervised sentiment analysis from social media posts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112834
– ident: ref_44
  doi: 10.1109/ICAwST.2019.8923260
– ident: ref_24
  doi: 10.3390/electronics11193058
– ident: ref_43
– volume: 2020
  start-page: 8829432
  year: 2020
  ident: ref_30
  article-title: A Decoupling and Bidirectional Resampling Method for Multilabel Classification of Imbalanced Data with Label Concurrence
  publication-title: Sci. Program.
– volume: 5
  start-page: 1093
  year: 2014
  ident: ref_1
  article-title: Sentiment analysis algorithms and applications: A survey
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2014.04.011
– ident: ref_25
  doi: 10.3390/mca23010011
– ident: ref_11
  doi: 10.1371/journal.pone.0245909
– ident: ref_28
  doi: 10.1109/ICAwST.2019.8923218
– ident: ref_34
  doi: 10.3390/info9040100
SSID ssj0000913830
Score 2.323897
Snippet Twitter has become a unique platform for social interaction from people all around the world, leading to an extensive amount of knowledge that can be used for...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3624
SubjectTerms Algorithms
Analysis
Clustering
Complexity
Data mining
Datasets
Decision analysis
Decision-making
Dictionaries
Experimentation
Feature selection
Literature reviews
Machine learning
Neural networks
Online social networks
Sampling
Sentiment analysis
Social factors
Social networks
Text categorization
Uniqueness
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5V4dByaEsfalpAe6jUC4u9tncdn6oIgRASqAIiwcnal0sgdaLGAZVf3xk_aEAVourZu_ZaO575Zj3fNwCfMyONT4XnRZxankgf8sxkhofKI7jFkGc1cYcPj9T-KDk4k2dLLH4qq8RUfFw76ShMM47xOwqECCIRoLNNgpkrvl63Z0lCqRQDWkQc6hUlEY33YGV09G14Tj3lutmN2FCM2X3wp7fMXJCYmYqSewHpoVteheeLcqZ_3ejJZCnu7L0C3a24KTe52l5UZtvePhBz_J9Xeg0vW1DKho0VrcEzX76B1SWpwrdwu1tekDRH-Z2dUIERHSqyTtGEXY81O9alm_5gh_pySg3xWN1RiZ9oKlnHWXTgy45JKNY7RsQTRq6I5DhxLCJnVrfnHNe0K3Z6433Fmv8W83cw2ts93dnnbd8GbmMlKo6YUxaxc5lNrbGpKDBltIX36JQ9-lblDOY8iBxd5IVW2kthSKfPOMIfiUzi99Arp6X_AMxJlyGktUVsiBQrB-HAI-DTQhdKD1TYh6jbvNy2oubUW2OSY3JDO57_Zcf7sHU3adZoejw-_AtZRU5fPN7b6pa4gCsk7ax8mCakco-L78N6Zzh56wrmOekHKTp6x8v8zpie8uCP_zj-E7yIiJxRMyXXoVf9XPgNhEyV2Wy_it-VdBRl
  priority: 102
  providerName: Unpaywall
Title Enhancing Sentiment Analysis via Random Majority Under-Sampling with Reduced Time Complexity for Classifying Tweet Reviews
URI https://www.proquest.com/docview/2734623041
https://www.mdpi.com/2079-9292/11/21/3624/pdf?version=1667901251
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BcigcEH2p4RHtAamXrvBzbR8QCpCAUBOhhEj0ZO3LFBScQAKo_fXMOHaAqkKcfFmvV57d2W9md74PYCdRobKRa3nmR5oHoXV4ohLFHWER3OKWpyXVDnd74mQYnF6EF0vQq2ph6Fpl5RMLR23GmnLku0TDIiiD6e5PbjmpRtHpaiWhIUtpBbNXUIwtQ90jZqwa1A_avbP-IutCLJix78zph3yM93ef1WamLtGbCS94tUX966hX4cN9PpF_HuVo9GIn6qzDWgkhWWtu84-wZPNPsPqCWPAz_G3nv4lII79kA7oORClAVvGPsIcryfoyN-Mb1pXXY5KvY4X-ER9IumCOb1F6lvWJ1tUaRmUijBwHkWdiW8S5rBDTvCqKpNj5o7UzNj9lmH6BYad9fnjCS5UFrn3hzjgixDDzjUl0pJWO3AwDPJ1Ziy7UoicURmGEgjjPeNaVQtrQVcSqpwyhhSAM_K9Qy8e5_QbMhCZBAKozX1EJaxg7sUV4Jl2ZCRkLpwFe9WNTXVKQkxLGKMVQhKyR_scaDfixeGkyZ-B4u_l3slhK6xP71rIsM8AREtNV2ooC4qTHwTdgqzJqWi7cafo8zRrAF4Z-z4c33u5uE1Y8qpwoyhi3oDa7u7fbiGdmqgnLcee4CfXWUffnoFlOWXwOe2etX09as_0r
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9lB6QHyKlAJ7AHFhVdtrr-NDhQqkSmkToTSVejP7MYai1AkkJSo_jt_GjGOnBaGKS-_eteVZz7wd73sP4EVmE4tpiLJQqZNxgoHMbGZloJHALZU8Z5g73Ovr7nH84SQ5WYFfDReGj1U2ObFK1H7suEe-zTIsmjuY4ZvJN8muUfx3tbHQMLW1gt-pJMZqYscBXsxpCzfd2X9P8X4ZRXud4buurF0GpFM6nElCSEmhvM9c6qxLw4I2OK5ApBSClAm0t4TQCef4CEOjDSahZVU567laxkmsaN5bsBarOKPN39rbTv_jYNnlYdXNtgoWckdKZcH2pbvNNGQ5NR3Ff5TEvwvDBqyflxNzMTej0ZXKt3cX7tSQVewu1tg9WMHyPmxcETJ8AD875RcW7ig_iyM-fsQtR9HonYgfp0YMTOnHZ6Jnvo7ZLk9UfkvyyPCBdhrF7WAxYBlZ9IJpKYITFYt10rWEq0Vl3nlakbLEcI44E4u_GtOHcHwj7_sRrJbjEh-D8InPCPC6QlmmzCbtoI0EB01oCm3aOmhB1LzY3NWS5-y8Mcpp68PRyP8RjRa8Xg6aLBQ_rr_8FUcs53xAcztT0xroCVlZK99NY9bAp4dvwVYT1LxOFNP8clm3QC4D_T833rx-uuew3h32DvPD_f7BE7gdMWujolBuwers-zk-JSw1s8_qBSvg001_I78BhbA1hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC0RIiXhgEIWZRIWH4hyiTW9uqcPCCFg2FHEInHreKlOQEPPJDMwIp-Wr6Oql4FEEcqFu-22XHbVc7XfK4Dl1MQGEx9lHiZWRjF6MjWpkZ5CArcU8qxm7vDBodo-jXbP4rMp-N1wYfhZZeMTS0ft-pZz5G2WYVGcwfTbef0s4stGd3XwQ3IFKf7T2pTTqLbIHt6M6fo2XNnZIFt_DILu5sn6tqwrDEgbKn8kCR3FeehcahNrbOLndLmxOSK5DyQvoJwhdE4YxwXoa6Ux9g0ryhnHkTKKo5DGfQJPE1ZxZ5Z6d2uS32G9zU7oVUJHYZh67bu6NkOfhdRUEP0RDP8OCTPw_KoY6Jux7vXuxbzuS5itwapYq3bXHExh8Qpm7kkYvoZfm8V3luwovoljfnjEyUbRKJ2I63MtjnTh-pfiQF_0uVCeKCstyWPNT9mpFyeCxRELyKITTEgR7KJYppPaEqIWZdnO85KOJU7GiCNR_c8YvoHTR1nttzBd9At8B8LFLiWoa_PQMFk27ngdJCCofZ0r3VFeC4JmYTNbi51zzY1eRpcetkb2D2u04POk06DS-ni4-Se2WMaegMa2uiY00AxZUytbSyJWv6fJt2C-MWpWu4hhdrehWyAnhv6fD79_eLgleEYnI9vfOdz7AC8CpmuU3Ml5mB79vMIFAlEjs1juVgFfH_t43AIenTMg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5V4dByaEsfalpAe6jUC4u9tncdn6oIgRASqAIiwcnal0sgdaLGAZVf3xk_aEAVourZu_ZaO575Zj3fNwCfMyONT4XnRZxankgf8sxkhofKI7jFkGc1cYcPj9T-KDk4k2dLLH4qq8RUfFw76ShMM47xOwqECCIRoLNNgpkrvl63Z0lCqRQDWkQc6hUlEY33YGV09G14Tj3lutmN2FCM2X3wp7fMXJCYmYqSewHpoVteheeLcqZ_3ejJZCnu7L0C3a24KTe52l5UZtvePhBz_J9Xeg0vW1DKho0VrcEzX76B1SWpwrdwu1tekDRH-Z2dUIERHSqyTtGEXY81O9alm_5gh_pySg3xWN1RiZ9oKlnHWXTgy45JKNY7RsQTRq6I5DhxLCJnVrfnHNe0K3Z6433Fmv8W83cw2ts93dnnbd8GbmMlKo6YUxaxc5lNrbGpKDBltIX36JQ9-lblDOY8iBxd5IVW2kthSKfPOMIfiUzi99Arp6X_AMxJlyGktUVsiBQrB-HAI-DTQhdKD1TYh6jbvNy2oubUW2OSY3JDO57_Zcf7sHU3adZoejw-_AtZRU5fPN7b6pa4gCsk7ax8mCakco-L78N6Zzh56wrmOekHKTp6x8v8zpie8uCP_zj-E7yIiJxRMyXXoVf9XPgNhEyV2Wy_it-VdBRl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Sentiment+Analysis+via+Random+Majority+Under-Sampling+with+Reduced+Time+Complexity+for+Classifying+Tweet+Reviews&rft.jtitle=Electronics+%28Basel%29&rft.au=Saleh+Naif+Almuayqil&rft.au=Mamoona+Humayun&rft.au=Jhanjhi%2C+N+Z&rft.au=Almufareh%2C+Maram+Fahaad&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=11&rft.issue=21&rft.spage=3624&rft_id=info:doi/10.3390%2Felectronics11213624&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon