Early Season Mapping of Sugarcane by Applying Machine Learning Algorithms to Sentinel-1A/2 Time Series Data: A Case Study in Zhanjiang City, China

More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 861
Main Authors Jiang, Hao, Li, Dan, Jing, Wenlong, Xu, Jianhui, Huang, Jianxi, Yang, Ji, Chen, Shuisen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2019
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs11070861

Cover

Abstract More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%.
AbstractList More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%.
Author Li, Dan
Xu, Jianhui
Chen, Shuisen
Jiang, Hao
Huang, Jianxi
Yang, Ji
Jing, Wenlong
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-5122-0412
  surname: Jiang
  fullname: Jiang, Hao
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
– sequence: 3
  givenname: Wenlong
  orcidid: 0000-0001-8021-3943
  surname: Jing
  fullname: Jing, Wenlong
– sequence: 4
  givenname: Jianhui
  orcidid: 0000-0001-6330-7948
  surname: Xu
  fullname: Xu, Jianhui
– sequence: 5
  givenname: Jianxi
  orcidid: 0000-0003-0341-1983
  surname: Huang
  fullname: Huang, Jianxi
– sequence: 6
  givenname: Ji
  surname: Yang
  fullname: Yang, Ji
– sequence: 7
  givenname: Shuisen
  orcidid: 0000-0002-1204-9624
  surname: Chen
  fullname: Chen, Shuisen
BookMark eNp9kd9qFDEUhwdpwVp74xMEvFPH5t_MbLwbxqqFLV603ngznMwku1myyZhkKPMaPrHZrqhIaTiQ8DtfPjicF8WJ804VxSuC3zMm8GWIhOAGr2ryrDijuKElp4Ke_PN-XlzEuMP5MEYE5mfFzysIdkG3CqJ36AamybgN8hrdzhsIAziF5ILaabLLoXEDw9bkbK0guEPQ2o0PJm33ESWfNS7lti1Je0nRndmrHAWjIvoICT6gFnUQc5bmcUHGoe9bcDsD2dOZtLxDXZbDy-JUg43q4vd9Xnz7dHXXfSnXXz9fd-26HFhNUikYVxVfgWLVMAo2Uiq11oJTqlUtZcN5lQtDraTEXJJay0pKWsGg63Hkip0X10fv6GHXT8HsISy9B9M_BD5segjJDFb1Dea6AgJiWDEOQoCAWmcfZLUQVZ1db4-u2U2w3IO1f4QE94ft9H-3k-nXR3oK_sesYup3fg4uD9tThjmmpGlEpt4cqSH4GIPSTyvxf_BgEiTjXQpg7GNffgGf1q1_
CitedBy_id crossref_primary_10_1016_j_rse_2021_112576
crossref_primary_10_1016_j_rsase_2024_101308
crossref_primary_10_3390_rs14030703
crossref_primary_10_3389_fpls_2023_1324491
crossref_primary_10_1016_j_compag_2022_107232
crossref_primary_10_3390_rs11121505
crossref_primary_10_1016_j_jag_2020_102059
crossref_primary_10_1155_2024_1788726
crossref_primary_10_3390_rs13204040
crossref_primary_10_3390_rs14020284
crossref_primary_10_3390_rs14061379
crossref_primary_10_1080_10095020_2024_2381607
crossref_primary_10_3390_agriculture13112115
crossref_primary_10_1080_2150704X_2022_2088254
crossref_primary_10_1016_j_jag_2021_102405
crossref_primary_10_1061__ASCE_UP_1943_5444_0000607
crossref_primary_10_3390_ani13030546
crossref_primary_10_3390_rs13214405
crossref_primary_10_1051_e3sconf_202459003004
crossref_primary_10_1016_j_rsase_2023_100962
crossref_primary_10_3390_rs12244080
crossref_primary_10_3390_rs16081376
crossref_primary_10_1109_MGRS_2020_2998816
crossref_primary_10_3390_rs14051274
crossref_primary_10_3390_ijgi9090533
crossref_primary_10_3390_f16010065
crossref_primary_10_3390_rs11222673
crossref_primary_10_1080_19476337_2024_2390006
crossref_primary_10_3390_rs12010162
crossref_primary_10_1080_15481603_2022_2104999
crossref_primary_10_1109_ACCESS_2024_3415592
crossref_primary_10_1590_1519_6984_278007
crossref_primary_10_3390_rs15245783
crossref_primary_10_3390_rs15030853
crossref_primary_10_1016_j_rse_2022_113194
crossref_primary_10_1080_10106049_2021_1952314
crossref_primary_10_1080_22797254_2024_2406796
crossref_primary_10_3390_rs16152785
crossref_primary_10_1002_ps_6932
crossref_primary_10_1080_10095020_2024_2311868
crossref_primary_10_1016_j_rse_2020_111951
crossref_primary_10_1080_13658816_2022_2046756
crossref_primary_10_5194_essd_14_2065_2022
Cites_doi 10.1109/JSTARS.2015.2403135
10.3390/rs10020202
10.1016/j.agrformet.2015.10.013
10.3390/rs6065067
10.1109/JSTARS.2010.2047634
10.3390/rs70505347
10.3390/rs70912356
10.1016/j.agrformet.2015.02.001
10.1080/2150704X.2016.1225172
10.1023/A:1010933404324
10.3390/s18020611
10.3390/rs61110888
10.3390/rs8121035
10.3390/rs8050362
10.7717/peerj.453
10.1016/j.rse.2017.07.015
10.1016/j.rse.2018.06.017
10.3390/rs6076620
10.1016/j.rse.2017.04.026
10.1371/journal.pone.0142069
10.3390/rs9080862
10.1080/01431161.2017.1399477
10.1016/j.eja.2018.10.008
10.1016/j.rse.2018.11.032
10.1080/01431160500104350
10.1117/1.JRS.7.073509
10.3390/s18010185
10.1080/01431161.2017.1395969
10.1007/s12355-014-0342-1
10.3390/rs71215808
10.3390/rs9030257
10.3390/rs71012859
10.3390/rs71114428
10.3390/s150100769
10.1080/01431161.2015.1131902
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs11070861
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_704f5a1a9c834a99a9a6ffb5abb09956
10.3390/rs11070861
10_3390_rs11070861
GeographicLocations Brazil
Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: Brazil
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
ADTOC
C1A
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c361t-934e548ae35cd93d22bfff9422fe6bb74454450a6ebb04b16fb5bb25acf6dd4e3
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:44:02 EDT 2025
Sun Oct 26 04:02:15 EDT 2025
Mon Oct 20 02:57:55 EDT 2025
Thu Oct 16 04:37:03 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-934e548ae35cd93d22bfff9422fe6bb74454450a6ebb04b16fb5bb25acf6dd4e3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-1204-9624
0000-0001-6330-7948
0000-0001-8021-3943
0000-0002-5122-0412
0000-0003-0341-1983
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/11/7/861/pdf?version=1554870787
PQID 2304021779
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_704f5a1a9c834a99a9a6ffb5abb09956
unpaywall_primary_10_3390_rs11070861
proquest_journals_2304021779
crossref_primary_10_3390_rs11070861
crossref_citationtrail_10_3390_rs11070861
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huang (ref_29) 2016; 216
Huang (ref_30) 2019; 102
Huang (ref_5) 2015; 204
Man (ref_40) 2018; 39
Zhong (ref_42) 2019; 221
Boulogne (ref_47) 2014; 2
Vrieling (ref_7) 2014; 6
ref_14
ref_36
Picoli (ref_10) 2018; 215
ref_12
Nguyen (ref_19) 2015; 7
Li (ref_1) 2015; 17
Dolo (ref_17) 2006; 27
Dengsheng (ref_35) 2015; 112
ref_39
ref_16
Morel (ref_11) 2014; 6
ref_37
Clauss (ref_23) 2018; 73
Villa (ref_33) 2015; 7
Pedregosa (ref_45) 2011; 12
Mosleh (ref_15) 2015; 15
Lu (ref_6) 2010; 10
Jiang (ref_48) 2014; 6
Onojeghuo (ref_22) 2018; 39
Huang (ref_4) 2015; 8
Inglada (ref_8) 2015; 7
Son (ref_24) 2018; 33
Hajnsek (ref_20) 2011; 4
Breiman (ref_38) 2001; 45
ref_25
ref_46
ref_44
ref_43
ref_41
Skakun (ref_28) 2017; 195
Vaudour (ref_31) 2015; 42
ref_3
ref_2
Mcnairn (ref_32) 2014; 28
Mulianga (ref_13) 2015; 7
Jia (ref_18) 2013; 7
ref_27
Veloso (ref_9) 2017; 199
Corcione (ref_21) 2016; 37
Nguyen (ref_26) 2016; 7
Hao (ref_34) 2015; 7
References_xml – volume: 8
  start-page: 4060
  year: 2015
  ident: ref_4
  article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2403135
– ident: ref_39
  doi: 10.3390/rs10020202
– ident: ref_3
– volume: 216
  start-page: 188
  year: 2016
  ident: ref_29
  article-title: Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.013
– volume: 6
  start-page: 5067
  year: 2014
  ident: ref_48
  article-title: An Automated Method for Extracting Rivers and Lakes from Landsat Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs6065067
– volume: 4
  start-page: 412
  year: 2011
  ident: ref_20
  article-title: First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2047634
– volume: 7
  start-page: 5347
  year: 2015
  ident: ref_34
  article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs70505347
– volume: 7
  start-page: 12356
  year: 2015
  ident: ref_8
  article-title: Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs70912356
– volume: 204
  start-page: 106
  year: 2015
  ident: ref_5
  article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.02.001
– volume: 7
  start-page: 1209
  year: 2016
  ident: ref_26
  article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2016.1225172
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_38
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_43
  doi: 10.3390/s18020611
– ident: ref_16
– volume: 6
  start-page: 10888
  year: 2014
  ident: ref_7
  article-title: The potential and uptake of remote sensing in insurance: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs61110888
– ident: ref_37
– ident: ref_41
  doi: 10.3390/rs8121035
– ident: ref_44
  doi: 10.3390/rs8050362
– volume: 2
  start-page: e453
  year: 2014
  ident: ref_47
  article-title: Scikit-image: Image processing in Python
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 199
  start-page: 415
  year: 2017
  ident: ref_9
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.015
– volume: 215
  start-page: 438
  year: 2018
  ident: ref_10
  article-title: Generalized space-time classifiers for monitoring sugarcane areas in Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.017
– volume: 6
  start-page: 6620
  year: 2014
  ident: ref_11
  article-title: Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island
  publication-title: Remote Sens.
  doi: 10.3390/rs6076620
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_45
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 195
  start-page: 244
  year: 2017
  ident: ref_28
  article-title: Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.026
– ident: ref_14
  doi: 10.1371/journal.pone.0142069
– ident: ref_36
  doi: 10.3390/rs9080862
– volume: 39
  start-page: 1243
  year: 2018
  ident: ref_40
  article-title: Improvement of land-cover classification over frequently cloud-covered areas using Landsat 8 time-series composites and an ensemble of supervised classifiers
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1399477
– volume: 28
  start-page: 252
  year: 2014
  ident: ref_32
  article-title: Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 102
  start-page: 1
  year: 2019
  ident: ref_30
  article-title: Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.10.008
– volume: 112
  start-page: 3668
  year: 2015
  ident: ref_35
  article-title: Regional mapping of human settlements in southeastern China with multisensor remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 587
  year: 2018
  ident: ref_24
  article-title: Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines
  publication-title: Geocarto Int.
– volume: 221
  start-page: 430
  year: 2019
  ident: ref_42
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– ident: ref_2
– volume: 27
  start-page: 535
  year: 2006
  ident: ref_17
  article-title: Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500104350
– volume: 7
  start-page: 073509
  year: 2013
  ident: ref_18
  article-title: Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.7.073509
– ident: ref_46
– ident: ref_12
– volume: 42
  start-page: 128
  year: 2015
  ident: ref_31
  article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_27
  doi: 10.3390/s18010185
– volume: 10
  start-page: 014
  year: 2010
  ident: ref_6
  article-title: Experience of Drought Index Insurance in Malawi and Its Inspiration for Development of Sugarcane Insurance in Guangxi
  publication-title: J. Reg. Financ. Res.
– volume: 39
  start-page: 1042
  year: 2018
  ident: ref_22
  article-title: Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1395969
– volume: 17
  start-page: 1
  year: 2015
  ident: ref_1
  article-title: Sugarcane Agriculture and Sugar Industry in China
  publication-title: Sugar Tech
  doi: 10.1007/s12355-014-0342-1
– volume: 7
  start-page: 15868
  year: 2015
  ident: ref_19
  article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215808
– ident: ref_25
  doi: 10.3390/rs9030257
– volume: 73
  start-page: 574
  year: 2018
  ident: ref_23
  article-title: Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 12859
  year: 2015
  ident: ref_33
  article-title: In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features
  publication-title: Remote Sens.
  doi: 10.3390/rs71012859
– volume: 7
  start-page: 14428
  year: 2015
  ident: ref_13
  article-title: Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs71114428
– volume: 15
  start-page: 769
  year: 2015
  ident: ref_15
  article-title: Application of remote sensors in mapping rice area and forecasting its production: A review
  publication-title: Sensors
  doi: 10.3390/s150100769
– volume: 37
  start-page: 633
  year: 2016
  ident: ref_21
  article-title: A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1131902
SSID ssj0000331904
Score 2.4588485
Snippet More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 861
SubjectTerms Agricultural production
Algorithms
Artificial intelligence
Biomass
Classification
Classifiers
Crops
early season
Growing season
Guangdong
Handbooks
Harvest
Identification
Image classification
Laboratories
Learning algorithms
Machine learning
Mapping
Phenology
Polarization
Remote sensing
Rice
Seasons
Sentinel-1A
Sentinel-2
Spatial data
Sugar
Sugarcane
Synthetic aperture radar
Temporal resolution
Time series
Weather
Winter
Zhanjiang
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9RAEG1kL-tF_MTRVQrci2CYJN1Jpr2No8sirJd1YW-hOl2dXYmZZSaDzN_wF1uVZMdZEL14yCUUoal66X7VVL1S6tjPgsHKxhF64gQF0yxylIbIJAHJF17nhfQ7n33JTy_M58vscm_Ul9SEDfLAg-OmRWxChgnaaqYNWosW8xBchs7F0pUpu288s3vJVL8Ha4ZWbAY9Us15_XS1lkyHCXxy5wTqhfrvsMvDTXuD2x_YNHsHzclD9WBkiDAfVvZI3aP2sToch5VfbZ-on70oMZwTMleGMxSFhRqWAc43NcMWWwK3BaGX0sLEBlIuSTAqqdYwb-rl6rq7-r6GbsmfkVkR1ETJfJqCdISA3JjRGj5ih-9hDgs-6EDqDbdw3YLcMH9jTNWwYAL_DvoB3E_Vxcmnr4vTaBytEFU6T7rIakOcqyDprPJW-zR1IQRr0jRQ7lxhjIj0xJgTu9m4JGePO5dmWIXce0P6mTpoly09V-B0sM7x49GbXg7PVIVBEtEBE0hP1Ntbd5fVqDsu4y-akvMPCU35OzQT9WZnezOobfzR6oNEbWchCtn9C8ZNOeKm_BduJuroNubl-NuuS7khlyStsBN1vMPBX5by4n8s5aW6zzTMDvVAR-qgW23oFVOdzr3uUf0L_V395g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZd-tC9lP1k2bpxsL4MZmJbsl0NxkizljJoGOsKfTMnS3I3PCdNHEb-jf3Fu3PsdIXRB78YISzfyfrufPd9QhzaI6-w0GGA1lGAgnESGBf7QEUenc2sTDPudz6fpmeX6stVcrUjpn0vDJdV9t_E9kNtZwXnyEecvGT8nOlP85uAVaP472ovoYGdtIL92FKMPRC7MTNjDcTu8cn067dt1iWU5HKh2vCUSor3R4slR0AE7KM7J1NL4H8Hde6t6jmuf2NV_XMAnT4S-x1yhPHG1I_FjqufiL1OxPx6_VT8acmK4cIhYWg4R2ZeKGHm4WJVkjtj7cCsgWEntzbRAC6jdNAxrJYwrkpacHP9awnNjKZhDQlXBdF4FAN3igBn0twSPmODH2AMEzoAgesQ1_CjBs48_yRfK2FCwP49tMLcz8Tl6cn3yVnQSS4EhUyjJtBSOYph0MmksFraODbee63i2LvUmEwpJu8JMXXGhMpEqTeJMXGChU-tVU4-F4N6VrsXAoz02hi6LFrV0uSpIlPomIxAeSeH4l3_uvOi4yNnWYwqp7iETZPfmmYo3m7HzjcsHP8ddcxW245g5uz2xmxR5t1GzLNQ-QQj1MWRVKg1akw9rQJpQdzlOxQHvc3zbjsv81vnG4rDrR_c8ygv75_llXhIwEtvKoAOxKBZrNxrAjeNedN57F-VzvtL
  priority: 102
  providerName: ProQuest
Title Early Season Mapping of Sugarcane by Applying Machine Learning Algorithms to Sentinel-1A/2 Time Series Data: A Case Study in Zhanjiang City, China
URI https://www.proquest.com/docview/2304021779
https://www.mdpi.com/2072-4292/11/7/861/pdf?version=1554870787
https://doaj.org/article/704f5a1a9c834a99a9a6ffb5abb09956
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY-zBe-I3oGJUl9oJEliZxkpoXlHUrE6LVRKk0nqJzbGeFLq2aFFT-DP5ifIlbGEII8RBFii5RTj77vjvdfUfIkexrBhnvOSCVCVDADx2hfO0wT4OSsQyiGPudR-PofMreXoaXNuFW2rJKE4rP6kPa78W-g_OUXM9zY7cfee5S6tdfbCYJXWEf2WriPdKOQoPFW6Q9HV8kH3Gi3PbdhpM0MLG9uyox2jEg3rvhhWqy_hsIc39dLGHzFebzX5zN8C5Jt7_Z1Jh8Pl5X4jj79huD4__rcY_csTiUJo3h3Ce3VPGA7NuR6Febh-R7TX1MJwoMIqcjQB6HnC40naxzszmgUFRsKIJYbJQyAliUqajla81pMs8Xq1l1dV3SamE-gxMp1NzxEten2HdCMS-nSnoKFbyiCR0Yd0qxqnFDZwXFPPYnY7k5HZgw4SWtx3w_ItPh2YfBuWMHODhZEHmVwwOmjGqggjCTPJC-L7TWnPm-VpEQMWNIBdSDSAnRY8KLtAiF8EPIdCQlU8Fj0ioWhXpCqAg0F8JcEiSrSfdYFjNQSG3AtAo65MV2QdPMspvjkI15aqIcXPz05-J3yPOd7LLh9Pij1AnaxU4CebjrB4tVntptncY9pkPwgGf9gAHnwCHSRgswCmHPcIccbq0qtYdDmWIeHkPBmHfI0c7S_vIrB_8m9pTcNnCON3VFh6RVrdbqmYFMleiSvf7wTZe0k9PRu4m5n5yNL9536wRE1-6ZH5rmFzc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9lBeEH9F2YCTGA9IRE1iJ5mRJtR1mzq2Voht0t7CObYzppCWNtXUr8EH4rPhS9OOSWhve8hLdLJi39m-u9z9foxt6x0rMJO-h9q4AAXDyFMmtJ4ILBqdaB4n1O88GMb9c_HlIrpYY3-WvTBUVrk8E-uDWo8yypF3KHlJ_nMiP49_ecQaRX9XlxQa2FAr6N0aYqxp7Dg282sXwk13j_advt-H4eHBWa_vNSwDXsbjoPIkF8a57Wh4lGnJdRgqa60UYWhNrFQiBOHV-BgbpXyhgtiqSKkwwszGWgvD3bgP2IbgQrrgb2PvYPj12yrL43Nn4r5Y4KJyLv3OZEoRlwskgls3YU0YcMvLbc3KMc6vsSj-ufAOH7NHjacK3YVpPWFrpnzKWg1p-uX8GftdgyPDqUHns8MACekhh5GF01nu1gVLA2oO5OZSK5UToLJNAw2iaw7dIncLXF3-nEI1csMQZ4UpvKDbCYE6U4Ayd2YK-1jhJ-hCz124QHWPc_hRAmW6r5xt59BzgcRHqInAn7Pze1n8F2y9HJXmJQPFrVTKPRq1qGH5RJYINAR-IKzhbfZhudxp1uCfEw1Hkbo4iFST3qimzd6tZMcL1I__Su2R1lYShNRdvxhN8rTZ-GniCxthgDLb4QKlRImxdbNANyHqKm6zraXO0-b4mKY3xt5m2ys7uONTXt09ylvW6p8NTtKTo-HxJnvonD65qD7aYuvVZGZeO8eqUm8a6wX2_b43zF-Sbznq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkBgviL-iMOAkxgMSUZPYSWYkhEpL2RibkMakvWXn2M5AJR1tqqlfg4_Dp-MuTTsmob3tIS_RyYp9Z_t3l7vfCbFlt73CQocBWkcOCsZJYFzsAxV5dDazMs243nn_IN05Up-Pk-M18WdZC8NplcszsTmo7bjgGHmXg5eMnzPd9W1axNfB8P3Zr4A7SPGf1mU7jYWJ7Ln5Oblv03e7A9L1qzgefvzW3wnaDgNBIdOoDrRUjiA7OpkUVksbx8Z7r1Uce5cakynFXDUhps6YUJko9SYxJk6w8Km1ykka94a4mTGLO1epDz-t4juhJOMO1YIRVUoddidT9rXIhYgu3YFNq4BL-HZjVp3h_BxHo3-uuuFdcafFqNBbGNU9seaq-2KjbZd-On8gfje0yHDokNA67CNzPJQw9nA4K2lVsHJg5sAAl4uoSIATNh20XK4l9EYlLWd9-nMK9ZiG4W4VbhREvW4MXJMCHLNzUxhgjW-hB326aoEzHufwvQKOcf8gqy6hTy7EG2hagD8UR9ey9I_EejWu3GMBRnptDD0WrWoI-VSRKXRMe6C8kx3xerncedEyn3MDjlFOHhCrJr9QTUe8XMmeLfg-_iv1gbW2kmCO7ubFeFLm7ZbPs1D5BCPUxbZUqDVqTD3NAmlCXE_cEZtLneftwTHNL8y8I7ZWdnDFpzy5epQX4hZtk_zL7sHeU3Gb0J5epB1tivV6MnPPCFHV5nljuiBOrnuv_AUJ2TeE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF70-lBf6m96WmXAvgimuSSb5NYXiaelCC1CPahPYTa7m56myXGXU84_w7_YnWTvtCIiPuQlTMIOO7vzzTDzDWOHamw4FmLkodI2QMEw9qQOjccDg1qlKkpS6nc-PUtOpvzdRXzhEm5LV1ZpQ_FZd0mHozT0aJ6SHwR-6o-TwJ8r8-qLyySRKxwTW016k-0kscXiA7YzPXuffaSJcptve07SyMb2_mJJ0Y4F8cE1L9SR9V9DmLureo7rr1hVvzib49ss3yyzrzH5fLRq5VHx7TcGx__X4w7bczgUst5w7rIbur7Hdt1I9Mv1ffa9oz6Gc40WkcMpEo9DCY2B81VpDwfWGuQaCMRSo5QVoKJMDY6vtYSsKpvFrL28WkLb2N_QRApdeUHmh0B9J0B5Ob2EN9jiS8hgYt0pUFXjGmY1UB77k7XcEiY2THgB3ZjvB2x6_PbD5MRzAxy8IkqC1hMR11Y11FFcKBGpMJTGGMHD0OhEypRzogIaYaKlHHEZJEbGUoYxFiZRiuvoIRvUTa33GcjICCnto1DxjnSPFylHTdQG3OhoyJ5vNjQvHLs5Ddmochvl0ObnPzd_yJ5tZec9p8cfpV6TXWwliIe7e9Esytwd6zwdcRNjgKIYRxyFQIGJsVqgVYh6hofsYGNVubscljnl4SkUTMWQHW4t7S9LefRvYo_ZLQvnRF9XdMAG7WKln1jI1Mqn7lz8AGIdEi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Season+Mapping+of+Sugarcane+by+Applying+Machine+Learning+Algorithms+to+Sentinel-1A%2F2+Time+Series+Data%3A+A+Case+Study+in+Zhanjiang+City%2C+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Hao&rft.au=Li%2C+Dan&rft.au=Jing%2C+Wenlong&rft.au=Xu%2C+Jianhui&rft.date=2019-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=861&rft_id=info:doi/10.3390%2Frs11070861&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11070861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon