Early Season Mapping of Sugarcane by Applying Machine Learning Algorithms to Sentinel-1A/2 Time Series Data: A Case Study in Zhanjiang City, China
More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 861 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs11070861 |
Cover
| Abstract | More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%. |
|---|---|
| AbstractList | More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be efficient for sugarcane mapping. There are, however, two limitations associated with previous research: one is that the critical observations during the sugarcane growing season are limited due to frequent cloudy weather in South China; the other is that the classification method requires imagery time series covering the entire growing season, which reduces the time efficiency. The Sentinel-1A (S1A) synthetic aperture radar (SAR) data featuring relatively high spatial-temporal resolution provides an ideal data source for all-weather observations. In this study, we attempted to develop a method for the early season mapping of sugarcane. First, we proposed a framework consisting of two procedures: initial sugarcane mapping using the S1A SAR imagery time series, followed by non-vegetation removal using Sentinel-2 optical imagery. Second, we tested the framework using an incremental classification strategy based on S1A imagery covering the entire 2017–2018 sugarcane season. The study area was in Suixi and Leizhou counties of Zhanjiang city, China. Results indicated that an acceptable accuracy, in terms of Kappa coefficient, can be achieved to a level above 0.902 using time series three months before sugarcane harvest. In general, sugarcane mapping utilizing the combination of VH + VV as well as VH polarization alone outperformed mapping using VV alone. Although the XGBoost classifier with VH + VV polarization achieved a maximum accuracy that was slightly lower than the random forest (RF) classifier, the XGBoost shows promising performance in that it was more robust to overfitting with noisy VV time series and the computation speed was 7.7 times faster than RF classifier. The total sugarcane areas in Suixi and Leizhou for the 2017–2018 harvest year estimated by this study were approximately 598.95 km2 and 497.65 km2, respectively. The relative accuracy of the total sugarcane mapping area was approximately 86.3%. |
| Author | Li, Dan Xu, Jianhui Chen, Shuisen Jiang, Hao Huang, Jianxi Yang, Ji Jing, Wenlong |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-5122-0412 surname: Jiang fullname: Jiang, Hao – sequence: 2 givenname: Dan surname: Li fullname: Li, Dan – sequence: 3 givenname: Wenlong orcidid: 0000-0001-8021-3943 surname: Jing fullname: Jing, Wenlong – sequence: 4 givenname: Jianhui orcidid: 0000-0001-6330-7948 surname: Xu fullname: Xu, Jianhui – sequence: 5 givenname: Jianxi orcidid: 0000-0003-0341-1983 surname: Huang fullname: Huang, Jianxi – sequence: 6 givenname: Ji surname: Yang fullname: Yang, Ji – sequence: 7 givenname: Shuisen orcidid: 0000-0002-1204-9624 surname: Chen fullname: Chen, Shuisen |
| BookMark | eNp9kd9qFDEUhwdpwVp74xMEvFPH5t_MbLwbxqqFLV603ngznMwku1myyZhkKPMaPrHZrqhIaTiQ8DtfPjicF8WJ804VxSuC3zMm8GWIhOAGr2ryrDijuKElp4Ke_PN-XlzEuMP5MEYE5mfFzysIdkG3CqJ36AamybgN8hrdzhsIAziF5ILaabLLoXEDw9bkbK0guEPQ2o0PJm33ESWfNS7lti1Je0nRndmrHAWjIvoICT6gFnUQc5bmcUHGoe9bcDsD2dOZtLxDXZbDy-JUg43q4vd9Xnz7dHXXfSnXXz9fd-26HFhNUikYVxVfgWLVMAo2Uiq11oJTqlUtZcN5lQtDraTEXJJay0pKWsGg63Hkip0X10fv6GHXT8HsISy9B9M_BD5segjJDFb1Dea6AgJiWDEOQoCAWmcfZLUQVZ1db4-u2U2w3IO1f4QE94ft9H-3k-nXR3oK_sesYup3fg4uD9tThjmmpGlEpt4cqSH4GIPSTyvxf_BgEiTjXQpg7GNffgGf1q1_ |
| CitedBy_id | crossref_primary_10_1016_j_rse_2021_112576 crossref_primary_10_1016_j_rsase_2024_101308 crossref_primary_10_3390_rs14030703 crossref_primary_10_3389_fpls_2023_1324491 crossref_primary_10_1016_j_compag_2022_107232 crossref_primary_10_3390_rs11121505 crossref_primary_10_1016_j_jag_2020_102059 crossref_primary_10_1155_2024_1788726 crossref_primary_10_3390_rs13204040 crossref_primary_10_3390_rs14020284 crossref_primary_10_3390_rs14061379 crossref_primary_10_1080_10095020_2024_2381607 crossref_primary_10_3390_agriculture13112115 crossref_primary_10_1080_2150704X_2022_2088254 crossref_primary_10_1016_j_jag_2021_102405 crossref_primary_10_1061__ASCE_UP_1943_5444_0000607 crossref_primary_10_3390_ani13030546 crossref_primary_10_3390_rs13214405 crossref_primary_10_1051_e3sconf_202459003004 crossref_primary_10_1016_j_rsase_2023_100962 crossref_primary_10_3390_rs12244080 crossref_primary_10_3390_rs16081376 crossref_primary_10_1109_MGRS_2020_2998816 crossref_primary_10_3390_rs14051274 crossref_primary_10_3390_ijgi9090533 crossref_primary_10_3390_f16010065 crossref_primary_10_3390_rs11222673 crossref_primary_10_1080_19476337_2024_2390006 crossref_primary_10_3390_rs12010162 crossref_primary_10_1080_15481603_2022_2104999 crossref_primary_10_1109_ACCESS_2024_3415592 crossref_primary_10_1590_1519_6984_278007 crossref_primary_10_3390_rs15245783 crossref_primary_10_3390_rs15030853 crossref_primary_10_1016_j_rse_2022_113194 crossref_primary_10_1080_10106049_2021_1952314 crossref_primary_10_1080_22797254_2024_2406796 crossref_primary_10_3390_rs16152785 crossref_primary_10_1002_ps_6932 crossref_primary_10_1080_10095020_2024_2311868 crossref_primary_10_1016_j_rse_2020_111951 crossref_primary_10_1080_13658816_2022_2046756 crossref_primary_10_5194_essd_14_2065_2022 |
| Cites_doi | 10.1109/JSTARS.2015.2403135 10.3390/rs10020202 10.1016/j.agrformet.2015.10.013 10.3390/rs6065067 10.1109/JSTARS.2010.2047634 10.3390/rs70505347 10.3390/rs70912356 10.1016/j.agrformet.2015.02.001 10.1080/2150704X.2016.1225172 10.1023/A:1010933404324 10.3390/s18020611 10.3390/rs61110888 10.3390/rs8121035 10.3390/rs8050362 10.7717/peerj.453 10.1016/j.rse.2017.07.015 10.1016/j.rse.2018.06.017 10.3390/rs6076620 10.1016/j.rse.2017.04.026 10.1371/journal.pone.0142069 10.3390/rs9080862 10.1080/01431161.2017.1399477 10.1016/j.eja.2018.10.008 10.1016/j.rse.2018.11.032 10.1080/01431160500104350 10.1117/1.JRS.7.073509 10.3390/s18010185 10.1080/01431161.2017.1395969 10.1007/s12355-014-0342-1 10.3390/rs71215808 10.3390/rs9030257 10.3390/rs71012859 10.3390/rs71114428 10.3390/s150100769 10.1080/01431161.2015.1131902 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.3390/rs11070861 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_704f5a1a9c834a99a9a6ffb5abb09956 10.3390/rs11070861 10_3390_rs11070861 |
| GeographicLocations | Brazil Beijing China China |
| GeographicLocations_xml | – name: China – name: Beijing China – name: Brazil |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 2XV ADTOC C1A IAO IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-934e548ae35cd93d22bfff9422fe6bb74454450a6ebb04b16fb5bb25acf6dd4e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:44:02 EDT 2025 Sun Oct 26 04:02:15 EDT 2025 Mon Oct 20 02:57:55 EDT 2025 Thu Oct 16 04:37:03 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-934e548ae35cd93d22bfff9422fe6bb74454450a6ebb04b16fb5bb25acf6dd4e3 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0002-1204-9624 0000-0001-6330-7948 0000-0001-8021-3943 0000-0002-5122-0412 0000-0003-0341-1983 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/11/7/861/pdf?version=1554870787 |
| PQID | 2304021779 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_704f5a1a9c834a99a9a6ffb5abb09956 unpaywall_primary_10_3390_rs11070861 proquest_journals_2304021779 crossref_primary_10_3390_rs11070861 crossref_citationtrail_10_3390_rs11070861 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Huang (ref_29) 2016; 216 Huang (ref_30) 2019; 102 Huang (ref_5) 2015; 204 Man (ref_40) 2018; 39 Zhong (ref_42) 2019; 221 Boulogne (ref_47) 2014; 2 Vrieling (ref_7) 2014; 6 ref_14 ref_36 Picoli (ref_10) 2018; 215 ref_12 Nguyen (ref_19) 2015; 7 Li (ref_1) 2015; 17 Dolo (ref_17) 2006; 27 Dengsheng (ref_35) 2015; 112 ref_39 ref_16 Morel (ref_11) 2014; 6 ref_37 Clauss (ref_23) 2018; 73 Villa (ref_33) 2015; 7 Pedregosa (ref_45) 2011; 12 Mosleh (ref_15) 2015; 15 Lu (ref_6) 2010; 10 Jiang (ref_48) 2014; 6 Onojeghuo (ref_22) 2018; 39 Huang (ref_4) 2015; 8 Inglada (ref_8) 2015; 7 Son (ref_24) 2018; 33 Hajnsek (ref_20) 2011; 4 Breiman (ref_38) 2001; 45 ref_25 ref_46 ref_44 ref_43 ref_41 Skakun (ref_28) 2017; 195 Vaudour (ref_31) 2015; 42 ref_3 ref_2 Mcnairn (ref_32) 2014; 28 Mulianga (ref_13) 2015; 7 Jia (ref_18) 2013; 7 ref_27 Veloso (ref_9) 2017; 199 Corcione (ref_21) 2016; 37 Nguyen (ref_26) 2016; 7 Hao (ref_34) 2015; 7 |
| References_xml | – volume: 8 start-page: 4060 year: 2015 ident: ref_4 article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2403135 – ident: ref_39 doi: 10.3390/rs10020202 – ident: ref_3 – volume: 216 start-page: 188 year: 2016 ident: ref_29 article-title: Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.013 – volume: 6 start-page: 5067 year: 2014 ident: ref_48 article-title: An Automated Method for Extracting Rivers and Lakes from Landsat Imagery publication-title: Remote Sens. doi: 10.3390/rs6065067 – volume: 4 start-page: 412 year: 2011 ident: ref_20 article-title: First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2047634 – volume: 7 start-page: 5347 year: 2015 ident: ref_34 article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA publication-title: Remote Sens. doi: 10.3390/rs70505347 – volume: 7 start-page: 12356 year: 2015 ident: ref_8 article-title: Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery publication-title: Remote Sens. doi: 10.3390/rs70912356 – volume: 204 start-page: 106 year: 2015 ident: ref_5 article-title: Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.02.001 – volume: 7 start-page: 1209 year: 2016 ident: ref_26 article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2016.1225172 – volume: 45 start-page: 5 year: 2001 ident: ref_38 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_43 doi: 10.3390/s18020611 – ident: ref_16 – volume: 6 start-page: 10888 year: 2014 ident: ref_7 article-title: The potential and uptake of remote sensing in insurance: A review publication-title: Remote Sens. doi: 10.3390/rs61110888 – ident: ref_37 – ident: ref_41 doi: 10.3390/rs8121035 – ident: ref_44 doi: 10.3390/rs8050362 – volume: 2 start-page: e453 year: 2014 ident: ref_47 article-title: Scikit-image: Image processing in Python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 199 start-page: 415 year: 2017 ident: ref_9 article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.015 – volume: 215 start-page: 438 year: 2018 ident: ref_10 article-title: Generalized space-time classifiers for monitoring sugarcane areas in Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.017 – volume: 6 start-page: 6620 year: 2014 ident: ref_11 article-title: Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island publication-title: Remote Sens. doi: 10.3390/rs6076620 – volume: 12 start-page: 2825 year: 2011 ident: ref_45 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 195 start-page: 244 year: 2017 ident: ref_28 article-title: Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.026 – ident: ref_14 doi: 10.1371/journal.pone.0142069 – ident: ref_36 doi: 10.3390/rs9080862 – volume: 39 start-page: 1243 year: 2018 ident: ref_40 article-title: Improvement of land-cover classification over frequently cloud-covered areas using Landsat 8 time-series composites and an ensemble of supervised classifiers publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1399477 – volume: 28 start-page: 252 year: 2014 ident: ref_32 article-title: Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 102 start-page: 1 year: 2019 ident: ref_30 article-title: Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.10.008 – volume: 112 start-page: 3668 year: 2015 ident: ref_35 article-title: Regional mapping of human settlements in southeastern China with multisensor remotely sensed data publication-title: Remote Sens. Environ. – volume: 33 start-page: 587 year: 2018 ident: ref_24 article-title: Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines publication-title: Geocarto Int. – volume: 221 start-page: 430 year: 2019 ident: ref_42 article-title: Deep learning based multi-temporal crop classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.032 – ident: ref_2 – volume: 27 start-page: 535 year: 2006 ident: ref_17 article-title: Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500104350 – volume: 7 start-page: 073509 year: 2013 ident: ref_18 article-title: Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.7.073509 – ident: ref_46 – ident: ref_12 – volume: 42 start-page: 128 year: 2015 ident: ref_31 article-title: Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_27 doi: 10.3390/s18010185 – volume: 10 start-page: 014 year: 2010 ident: ref_6 article-title: Experience of Drought Index Insurance in Malawi and Its Inspiration for Development of Sugarcane Insurance in Guangxi publication-title: J. Reg. Financ. Res. – volume: 39 start-page: 1042 year: 2018 ident: ref_22 article-title: Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1395969 – volume: 17 start-page: 1 year: 2015 ident: ref_1 article-title: Sugarcane Agriculture and Sugar Industry in China publication-title: Sugar Tech doi: 10.1007/s12355-014-0342-1 – volume: 7 start-page: 15868 year: 2015 ident: ref_19 article-title: Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data publication-title: Remote Sens. doi: 10.3390/rs71215808 – ident: ref_25 doi: 10.3390/rs9030257 – volume: 73 start-page: 574 year: 2018 ident: ref_23 article-title: Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 12859 year: 2015 ident: ref_33 article-title: In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features publication-title: Remote Sens. doi: 10.3390/rs71012859 – volume: 7 start-page: 14428 year: 2015 ident: ref_13 article-title: Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing publication-title: Remote Sens. doi: 10.3390/rs71114428 – volume: 15 start-page: 769 year: 2015 ident: ref_15 article-title: Application of remote sensors in mapping rice area and forecasting its production: A review publication-title: Sensors doi: 10.3390/s150100769 – volume: 37 start-page: 633 year: 2016 ident: ref_21 article-title: A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1131902 |
| SSID | ssj0000331904 |
| Score | 2.4588485 |
| Snippet | More than 90% of the sugar production in China comes from sugarcane, which is widely grown in South China. Optical image time series have proven to be... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 861 |
| SubjectTerms | Agricultural production Algorithms Artificial intelligence Biomass Classification Classifiers Crops early season Growing season Guangdong Handbooks Harvest Identification Image classification Laboratories Learning algorithms Machine learning Mapping Phenology Polarization Remote sensing Rice Seasons Sentinel-1A Sentinel-2 Spatial data Sugar Sugarcane Synthetic aperture radar Temporal resolution Time series Weather Winter Zhanjiang |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9RAEG1kL-tF_MTRVQrci2CYJN1Jpr2No8sirJd1YW-hOl2dXYmZZSaDzN_wF1uVZMdZEL14yCUUoal66X7VVL1S6tjPgsHKxhF64gQF0yxylIbIJAHJF17nhfQ7n33JTy_M58vscm_Ul9SEDfLAg-OmRWxChgnaaqYNWosW8xBchs7F0pUpu288s3vJVL8Ha4ZWbAY9Us15_XS1lkyHCXxy5wTqhfrvsMvDTXuD2x_YNHsHzclD9WBkiDAfVvZI3aP2sToch5VfbZ-on70oMZwTMleGMxSFhRqWAc43NcMWWwK3BaGX0sLEBlIuSTAqqdYwb-rl6rq7-r6GbsmfkVkR1ETJfJqCdISA3JjRGj5ih-9hDgs-6EDqDbdw3YLcMH9jTNWwYAL_DvoB3E_Vxcmnr4vTaBytEFU6T7rIakOcqyDprPJW-zR1IQRr0jRQ7lxhjIj0xJgTu9m4JGePO5dmWIXce0P6mTpoly09V-B0sM7x49GbXg7PVIVBEtEBE0hP1Ntbd5fVqDsu4y-akvMPCU35OzQT9WZnezOobfzR6oNEbWchCtn9C8ZNOeKm_BduJuroNubl-NuuS7khlyStsBN1vMPBX5by4n8s5aW6zzTMDvVAR-qgW23oFVOdzr3uUf0L_V395g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZd-tC9lP1k2bpxsL4MZmJbsl0NxkizljJoGOsKfTMnS3I3PCdNHEb-jf3Fu3PsdIXRB78YISzfyfrufPd9QhzaI6-w0GGA1lGAgnESGBf7QEUenc2sTDPudz6fpmeX6stVcrUjpn0vDJdV9t_E9kNtZwXnyEecvGT8nOlP85uAVaP472ovoYGdtIL92FKMPRC7MTNjDcTu8cn067dt1iWU5HKh2vCUSor3R4slR0AE7KM7J1NL4H8Hde6t6jmuf2NV_XMAnT4S-x1yhPHG1I_FjqufiL1OxPx6_VT8acmK4cIhYWg4R2ZeKGHm4WJVkjtj7cCsgWEntzbRAC6jdNAxrJYwrkpacHP9awnNjKZhDQlXBdF4FAN3igBn0twSPmODH2AMEzoAgesQ1_CjBs48_yRfK2FCwP49tMLcz8Tl6cn3yVnQSS4EhUyjJtBSOYph0MmksFraODbee63i2LvUmEwpJu8JMXXGhMpEqTeJMXGChU-tVU4-F4N6VrsXAoz02hi6LFrV0uSpIlPomIxAeSeH4l3_uvOi4yNnWYwqp7iETZPfmmYo3m7HzjcsHP8ddcxW245g5uz2xmxR5t1GzLNQ-QQj1MWRVKg1akw9rQJpQdzlOxQHvc3zbjsv81vnG4rDrR_c8ygv75_llXhIwEtvKoAOxKBZrNxrAjeNedN57F-VzvtL priority: 102 providerName: ProQuest |
| Title | Early Season Mapping of Sugarcane by Applying Machine Learning Algorithms to Sentinel-1A/2 Time Series Data: A Case Study in Zhanjiang City, China |
| URI | https://www.proquest.com/docview/2304021779 https://www.mdpi.com/2072-4292/11/7/861/pdf?version=1554870787 https://doaj.org/article/704f5a1a9c834a99a9a6ffb5abb09956 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY-zBe-I3oGJUl9oJEliZxkpoXlHUrE6LVRKk0nqJzbGeFLq2aFFT-DP5ifIlbGEII8RBFii5RTj77vjvdfUfIkexrBhnvOSCVCVDADx2hfO0wT4OSsQyiGPudR-PofMreXoaXNuFW2rJKE4rP6kPa78W-g_OUXM9zY7cfee5S6tdfbCYJXWEf2WriPdKOQoPFW6Q9HV8kH3Gi3PbdhpM0MLG9uyox2jEg3rvhhWqy_hsIc39dLGHzFebzX5zN8C5Jt7_Z1Jh8Pl5X4jj79huD4__rcY_csTiUJo3h3Ce3VPGA7NuR6Febh-R7TX1MJwoMIqcjQB6HnC40naxzszmgUFRsKIJYbJQyAliUqajla81pMs8Xq1l1dV3SamE-gxMp1NzxEten2HdCMS-nSnoKFbyiCR0Yd0qxqnFDZwXFPPYnY7k5HZgw4SWtx3w_ItPh2YfBuWMHODhZEHmVwwOmjGqggjCTPJC-L7TWnPm-VpEQMWNIBdSDSAnRY8KLtAiF8EPIdCQlU8Fj0ioWhXpCqAg0F8JcEiSrSfdYFjNQSG3AtAo65MV2QdPMspvjkI15aqIcXPz05-J3yPOd7LLh9Pij1AnaxU4CebjrB4tVntptncY9pkPwgGf9gAHnwCHSRgswCmHPcIccbq0qtYdDmWIeHkPBmHfI0c7S_vIrB_8m9pTcNnCON3VFh6RVrdbqmYFMleiSvf7wTZe0k9PRu4m5n5yNL9536wRE1-6ZH5rmFzc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9lBeEH9F2YCTGA9IRE1iJ5mRJtR1mzq2Voht0t7CObYzppCWNtXUr8EH4rPhS9OOSWhve8hLdLJi39m-u9z9foxt6x0rMJO-h9q4AAXDyFMmtJ4ILBqdaB4n1O88GMb9c_HlIrpYY3-WvTBUVrk8E-uDWo8yypF3KHlJ_nMiP49_ecQaRX9XlxQa2FAr6N0aYqxp7Dg282sXwk13j_advt-H4eHBWa_vNSwDXsbjoPIkF8a57Wh4lGnJdRgqa60UYWhNrFQiBOHV-BgbpXyhgtiqSKkwwszGWgvD3bgP2IbgQrrgb2PvYPj12yrL43Nn4r5Y4KJyLv3OZEoRlwskgls3YU0YcMvLbc3KMc6vsSj-ufAOH7NHjacK3YVpPWFrpnzKWg1p-uX8GftdgyPDqUHns8MACekhh5GF01nu1gVLA2oO5OZSK5UToLJNAw2iaw7dIncLXF3-nEI1csMQZ4UpvKDbCYE6U4Ayd2YK-1jhJ-hCz124QHWPc_hRAmW6r5xt59BzgcRHqInAn7Pze1n8F2y9HJXmJQPFrVTKPRq1qGH5RJYINAR-IKzhbfZhudxp1uCfEw1Hkbo4iFST3qimzd6tZMcL1I__Su2R1lYShNRdvxhN8rTZ-GniCxthgDLb4QKlRImxdbNANyHqKm6zraXO0-b4mKY3xt5m2ys7uONTXt09ylvW6p8NTtKTo-HxJnvonD65qD7aYuvVZGZeO8eqUm8a6wX2_b43zF-Sbznq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGkBgviL-iMOAkxgMSUZPYSWYkhEpL2RibkMakvWXn2M5AJR1tqqlfg4_Dp-MuTTsmob3tIS_RyYp9Z_t3l7vfCbFlt73CQocBWkcOCsZJYFzsAxV5dDazMs243nn_IN05Up-Pk-M18WdZC8NplcszsTmo7bjgGHmXg5eMnzPd9W1axNfB8P3Zr4A7SPGf1mU7jYWJ7Ln5Oblv03e7A9L1qzgefvzW3wnaDgNBIdOoDrRUjiA7OpkUVksbx8Z7r1Uce5cakynFXDUhps6YUJko9SYxJk6w8Km1ykka94a4mTGLO1epDz-t4juhJOMO1YIRVUoddidT9rXIhYgu3YFNq4BL-HZjVp3h_BxHo3-uuuFdcafFqNBbGNU9seaq-2KjbZd-On8gfje0yHDokNA67CNzPJQw9nA4K2lVsHJg5sAAl4uoSIATNh20XK4l9EYlLWd9-nMK9ZiG4W4VbhREvW4MXJMCHLNzUxhgjW-hB326aoEzHufwvQKOcf8gqy6hTy7EG2hagD8UR9ey9I_EejWu3GMBRnptDD0WrWoI-VSRKXRMe6C8kx3xerncedEyn3MDjlFOHhCrJr9QTUe8XMmeLfg-_iv1gbW2kmCO7ubFeFLm7ZbPs1D5BCPUxbZUqDVqTD3NAmlCXE_cEZtLneftwTHNL8y8I7ZWdnDFpzy5epQX4hZtk_zL7sHeU3Gb0J5epB1tivV6MnPPCFHV5nljuiBOrnuv_AUJ2TeE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF70-lBf6m96WmXAvgimuSSb5NYXiaelCC1CPahPYTa7m56myXGXU84_w7_YnWTvtCIiPuQlTMIOO7vzzTDzDWOHamw4FmLkodI2QMEw9qQOjccDg1qlKkpS6nc-PUtOpvzdRXzhEm5LV1ZpQ_FZd0mHozT0aJ6SHwR-6o-TwJ8r8-qLyySRKxwTW016k-0kscXiA7YzPXuffaSJcptve07SyMb2_mJJ0Y4F8cE1L9SR9V9DmLureo7rr1hVvzib49ss3yyzrzH5fLRq5VHx7TcGx__X4w7bczgUst5w7rIbur7Hdt1I9Mv1ffa9oz6Gc40WkcMpEo9DCY2B81VpDwfWGuQaCMRSo5QVoKJMDY6vtYSsKpvFrL28WkLb2N_QRApdeUHmh0B9J0B5Ob2EN9jiS8hgYt0pUFXjGmY1UB77k7XcEiY2THgB3ZjvB2x6_PbD5MRzAxy8IkqC1hMR11Y11FFcKBGpMJTGGMHD0OhEypRzogIaYaKlHHEZJEbGUoYxFiZRiuvoIRvUTa33GcjICCnto1DxjnSPFylHTdQG3OhoyJ5vNjQvHLs5Ddmochvl0ObnPzd_yJ5tZec9p8cfpV6TXWwliIe7e9Esytwd6zwdcRNjgKIYRxyFQIGJsVqgVYh6hofsYGNVubscljnl4SkUTMWQHW4t7S9LefRvYo_ZLQvnRF9XdMAG7WKln1jI1Mqn7lz8AGIdEi4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Season+Mapping+of+Sugarcane+by+Applying+Machine+Learning+Algorithms+to+Sentinel-1A%2F2+Time+Series+Data%3A+A+Case+Study+in+Zhanjiang+City%2C+China&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Hao&rft.au=Li%2C+Dan&rft.au=Jing%2C+Wenlong&rft.au=Xu%2C+Jianhui&rft.date=2019-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=861&rft_id=info:doi/10.3390%2Frs11070861&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11070861 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |