A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations

In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network,...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on multiscale and multiphysics computational techniques Vol. 6; pp. 35 - 40
Main Authors Zhang, Pan, Hu, Yanyan, Jin, Yuchen, Deng, Shaogui, Wu, Xuqing, Chen, Jiefu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8815
2379-8815
DOI10.1109/JMMCT.2021.3057793

Cover

Abstract In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network, turning an electromagnetic simulation problem into an optimization process. High prediction accuracy of the electromagnetic fields, without discretization or interpolation in space or in time, can be achieved with limited number of layers and neurons in each layer of the neural network. We study several numerical examples to demonstrate the effectiveness of this method for simulating time-domain electromagnetic fields. First, the accuracy of this method is validated by comparing with the analytical solution of a 1D cavity model filled with homogeneous media. Then, we combine the continuity condition to modify the loss function for handling medium discontinuities. Further, the computational efficiency of finite-difference and DL methods in conductive and nonlinear media is compared. Finally, we prove the effectiveness of this method in high-dimensional and multi-scale simulations.
AbstractList In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network, turning an electromagnetic simulation problem into an optimization process. High prediction accuracy of the electromagnetic fields, without discretization or interpolation in space or in time, can be achieved with limited number of layers and neurons in each layer of the neural network. We study several numerical examples to demonstrate the effectiveness of this method for simulating time-domain electromagnetic fields. First, the accuracy of this method is validated by comparing with the analytical solution of a 1D cavity model filled with homogeneous media. Then, we combine the continuity condition to modify the loss function for handling medium discontinuities. Further, the computational efficiency of finite-difference and DL methods in conductive and nonlinear media is compared. Finally, we prove the effectiveness of this method in high-dimensional and multi-scale simulations.
Author Zhang, Pan
Chen, Jiefu
Jin, Yuchen
Hu, Yanyan
Deng, Shaogui
Wu, Xuqing
Author_xml – sequence: 1
  givenname: Pan
  surname: Zhang
  fullname: Zhang, Pan
  email: zhangpan@s.upc.edu.cn
  organization: China University of Petroleum, Qingdao, China
– sequence: 2
  givenname: Yanyan
  orcidid: 0000-0001-7982-806X
  surname: Hu
  fullname: Hu, Yanyan
  email: yhu23@central.uh.edu
  organization: University of Houston, Houston, TX, USA
– sequence: 3
  givenname: Yuchen
  orcidid: 0000-0003-4518-8660
  surname: Jin
  fullname: Jin, Yuchen
  email: yjin4@uh.edu
  organization: University of Houston, Houston, TX, USA
– sequence: 4
  givenname: Shaogui
  surname: Deng
  fullname: Deng, Shaogui
  email: dengshg@upc.edu.cn
  organization: China University of Petroleum, Qingdao, China
– sequence: 5
  givenname: Xuqing
  orcidid: 0000-0002-3243-1492
  surname: Wu
  fullname: Wu, Xuqing
  email: xwu8@central.uh.edu
  organization: University of Houston, Houston, TX, USA
– sequence: 6
  givenname: Jiefu
  orcidid: 0000-0001-9940-7043
  surname: Chen
  fullname: Chen, Jiefu
  email: jchen82@central.uh.edu
  organization: University of Houston, Houston, TX, USA
BookMark eNp9UMtOAjEUbQwm4uMHdNPEhSvwtp1O2yUivgJxIe5MJrXcaskwg-0Q9e8dgRjjws29Z3EeOWefdKq6QkKOGfQZA3N-N5kMp30OnPUFSKWM2CFdLpTpac1k5xfeI0cpzQGAKc4BeJc8DejEfrxjWZ4lOnpb2SbUVaIXNuGMXiIu6RhtrEL1QifYvNYz6utIp2GB9LJe2FDRUYmuiS1-qbAJjj6Exarc2BySXW_LhEfbf0Aer0bT4U1vfH99OxyMe07krOlpcJobBp4brp69RC-lxSxvj_LWgJCQ588uU85nGYB3PJdKKyH8LLdGS3FATje-y1i_rTA1xbxexaqNLLgEJrjItWlZfMNysU4poi-WMSxs_CwYFN9DFushi-8hi-2QrUj_EbnQrNs10Ybyf-nJRhoQ8SfLtG1YpsUXhJ6Brw
CODEN IJMMOP
CitedBy_id crossref_primary_10_1109_TAP_2023_3262341
crossref_primary_10_3390_jmse12020240
crossref_primary_10_1016_j_sciaf_2025_e02645
crossref_primary_10_1109_TAP_2021_3098585
crossref_primary_10_1109_TAP_2023_3264701
crossref_primary_10_1109_TMTT_2022_3217138
crossref_primary_10_1364_OME_533643
crossref_primary_10_1587_elex_19_20220523
crossref_primary_10_3390_s23083832
crossref_primary_10_3390_math12233873
crossref_primary_10_1109_ACCESS_2021_3132942
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1109_JSEN_2022_3199154
crossref_primary_10_1088_1742_6596_2853_1_012018
crossref_primary_10_1109_TGRS_2022_3222507
crossref_primary_10_1038_s41598_024_66156_0
crossref_primary_10_1587_transele_2022MMI0005
crossref_primary_10_1109_JMMCT_2024_3463748
crossref_primary_10_1109_ACCESS_2024_3452160
crossref_primary_10_1109_TMTT_2024_3390174
crossref_primary_10_3390_electronics10182185
crossref_primary_10_3390_thermo4030018
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122444
crossref_primary_10_1109_TWC_2024_3429196
crossref_primary_10_1109_TAP_2024_3476915
crossref_primary_10_1007_s11600_024_01473_6
crossref_primary_10_1109_TGRS_2023_3327781
crossref_primary_10_1364_OE_551078
crossref_primary_10_1038_s43586_023_00257_4
crossref_primary_10_1109_ACCESS_2024_3495732
crossref_primary_10_1109_LAWP_2024_3355896
crossref_primary_10_1002_vzj2_20375
crossref_primary_10_1109_LAWP_2023_3235928
crossref_primary_10_1109_TPEL_2024_3401706
crossref_primary_10_1109_TAP_2024_3433389
crossref_primary_10_1364_OL_531648
crossref_primary_10_1016_j_jcp_2025_113798
Cites_doi 10.1016/j.neucom.2019.12.099
10.1109/LAWP.2018.2885570
10.1109/JSEN.2018.2809485
10.1016/j.jcp.2017.11.039
10.1016/j.neucom.2018.06.056
10.1126/sciadv.1602614
10.1016/j.jcp.2018.10.045
10.3934/Mine.2018.1.118
10.1109/APUSNCURSINRSM.2018.8608745
10.1364/OL.16.000793
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/JMMCT.2021.3057793
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2379-8815
EndPage 40
ExternalDocumentID 10_1109_JMMCT_2021_3057793
9350148
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41574118; 41674131; 41904109
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-80c82910f2927bf5ef55ae465ae7fa9035066bc47cf4400fc26578733fd6a9853
IEDL.DBID RIE
ISSN 2379-8815
IngestDate Mon Jun 30 04:36:19 EDT 2025
Wed Oct 01 02:18:33 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Aug 27 02:48:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-80c82910f2927bf5ef55ae465ae7fa9035066bc47cf4400fc26578733fd6a9853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4518-8660
0000-0002-3243-1492
0000-0001-9940-7043
0000-0001-7982-806X
PQID 2501323689
PQPubID 4437231
PageCount 6
ParticipantIDs ieee_primary_9350148
proquest_journals_2501323689
crossref_primary_10_1109_JMMCT_2021_3057793
crossref_citationtrail_10_1109_JMMCT_2021_3057793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal on multiscale and multiphysics computational techniques
PublicationTitleAbbrev JMMCT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
gower (ref20) 2019
long (ref5) 0
baydin (ref15) 2018; 18
landau (ref14) 1975; 2
ref11
ref22
ref10
ref1
ref8
ref7
bar (ref2) 2019
agarwal (ref19) 2017; 18
ref9
ref4
debiao (ref21) 2005
ref6
li (ref17) 2020; 10
li (ref13) 2019; 67
nwankpa (ref18) 0
rafati (ref16) 2019
chiaramonte (ref3) 2013; 1
References_xml – ident: ref8
  doi: 10.1016/j.neucom.2019.12.099
– ident: ref11
  doi: 10.1109/LAWP.2018.2885570
– ident: ref12
  doi: 10.1109/JSEN.2018.2809485
– volume: 67
  start-page: 1819
  year: 2019
  ident: ref13
  article-title: DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering
  publication-title: Neurocomputing
– volume: 18
  start-page: 1
  year: 2018
  ident: ref15
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J Mach Learn Res
– year: 2019
  ident: ref16
  article-title: Deep reinforcement learning via L-BFGS optimization
– ident: ref7
  doi: 10.1016/j.jcp.2017.11.039
– volume: 2
  start-page: 73
  year: 1975
  ident: ref14
  article-title: The classical theory of fields
  publication-title: The Classical Theory of Fields
– year: 2019
  ident: ref2
  article-title: Unsupervised deep learning algorithm for PDE-based forward and inverse problems
– start-page: 3208
  year: 0
  ident: ref5
  article-title: PDE-Net: Learning PDEs from data
  publication-title: Proc 35th Int Conf Mach Learn
– year: 0
  ident: ref18
  article-title: Activation functions: Comparison of trends in practice and research for deep learning
– ident: ref1
  doi: 10.1016/j.neucom.2018.06.056
– volume: 18
  start-page: 4148
  year: 2017
  ident: ref19
  article-title: Second-order stochastic optimization for machine learning in linear time
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1126/sciadv.1602614
– volume: 10
  start-page: 1897?1992
  year: 2020
  ident: ref17
  article-title: The influence of the activation function in a convolution neural network model of facial expression recognition
  publication-title: Appl Sci
– year: 2019
  ident: ref20
  article-title: Accelerated stochastic matrix inversion: general theory and speeding up BFGS rules for faster second-order optimization
  publication-title: Int Conf Mach Learn
– year: 2005
  ident: ref21
  publication-title: Finite-Difference Time-Domain Method for Electromagnetic Waves
– volume: 1
  start-page: 31
  year: 2013
  ident: ref3
  article-title: Solving differential equations using neural network
  publication-title: Machine Learning Project
– ident: ref6
  doi: 10.1016/j.jcp.2018.10.045
– ident: ref9
  doi: 10.3934/Mine.2018.1.118
– ident: ref10
  doi: 10.1109/APUSNCURSINRSM.2018.8608745
– ident: ref22
  doi: 10.1364/OL.16.000793
SSID ssj0001722002
Score 2.412386
Snippet In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Accuracy
Biological neural networks
Boundary conditions
Computational electromagnetics
Deep learning
Electromagnetic fields
Electromagnetics
Electromagnetism
Exact solutions
Finite difference method
Initial conditions
Interpolation
Mathematical model
Maxwell equations
Maxwell's equations
Neural networks
Numerical models
Optimization
Simulation
Time domain analysis
time domain simulations
Title A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations
URI https://ieeexplore.ieee.org/document/9350148
https://www.proquest.com/docview/2501323689
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8815
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001722002
  issn: 2379-8815
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cT158i-uLHAQP2uombdIcfewiQr3oggehpGmyiG5XbRfEX2-Spis-EC-lh6QEvpnON5N5AOwbD0MJLGmQS0mCSGMe5CovAkKF0EJRjLVLkL2ml8Po6i6-m4OjWS2MUsoln6nQvrq7_GIipzZUdszdLVjSgQ5LaFOr9RlPYdjmG7R1MSf8-CpNz2-NB4h7oRFqxjj5YnvcMJUff2BnVgZLkLYHarJJHsNpnYfy_Vuvxv-eeBkWPb9Ep41ArMCcKldhyXNN5DW5WoP7U5SKNxu5O6hQ_6Vp-F2hM2PUCnSh1DPynVdHKHVDppFht8gWjKCLyVg8lKjfDNAZi1FpCyHRzcPYjwKr1mE46N-eXwZ-0kIgCe3VxkzJBBviYKDCLNex0nEsVETNg2nB7e0jpbmMmNSRUXotMbWaToguqODG4m_AfDkp1SYgHYuYR4RKrmmkIyaMzyMxzpUihfWlutBrMcikb0Nup2E8Zc4dOeGZwy2zuGUety4czvY8N004_ly9ZoGYrfQYdGGnhTrzelplhgAad5zQhG_9vmsbFuy3m6DLDszXr1O1a2hIne85-fsAKIDZ5Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhjSgU8IDEACnUdpx6LG1ReYSFIjEgRY5jIwRNgbQS4tdjO24RDyGWKIOtWPruct-d7wGwZzwMJbBkQSolCajGPEhVmgWECaGFYhhrlyB7xbo39Pw2vJ2Cw0ktjFLKJZ-pmn11d_nZQI5sqOyIu1uwxjTMhpTSsKzW-oyoRNhmHIwrY4750Xkct3rGB8T1mhHrKOLki_Vx41R-_IOdYTldhHh8pDKf5LE2GqY1-f6tW-N_z7wEC55homYpEsswpfIVWPRsE3ldLlbhroli8WZjd_sF6ryULb8LdGLMWobaSj0j33v1HsVuzDQy_BbZkhHUHvTFQ4465QidvrjPbSkkun7o-2FgxRrcnHZ6rW7gZy0EkrD60Bgq2cCGOhiwcJTqUOkwFIoy84i04Pb-kbFU0khqatReS8ysrhOiMya4sfnrMJMPcrUBSIci5JQwyTWjmkbCeD0S41QpkllvqgL1MQaJ9I3I7TyMp8Q5JMc8cbglFrfE41aBg8me57INx5-rVy0Qk5UegwpUx1AnXlOLxFBA45AT1uCbv-_ahbluL75MLs-uLrZg3n6nDMFUYWb4OlLbhpQM0x0nix-7Kt0y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Maxwell%27s+Equations+Based+Deep+Learning+Method+for+Time+Domain+Electromagnetic+Simulations&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Zhang%2C+Pan&rft.au=Hu%2C+Yanyan&rft.au=Jin%2C+Yuchen&rft.au=Deng%2C+Shaogui&rft.date=2021&rft.issn=2379-8815&rft.eissn=2379-8815&rft.volume=6&rft.spage=35&rft.epage=40&rft_id=info:doi/10.1109%2FJMMCT.2021.3057793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JMMCT_2021_3057793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon