A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations
In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network,...
        Saved in:
      
    
          | Published in | IEEE journal on multiscale and multiphysics computational techniques Vol. 6; pp. 35 - 40 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2379-8815 2379-8815  | 
| DOI | 10.1109/JMMCT.2021.3057793 | 
Cover
| Abstract | In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network, turning an electromagnetic simulation problem into an optimization process. High prediction accuracy of the electromagnetic fields, without discretization or interpolation in space or in time, can be achieved with limited number of layers and neurons in each layer of the neural network. We study several numerical examples to demonstrate the effectiveness of this method for simulating time-domain electromagnetic fields. First, the accuracy of this method is validated by comparing with the analytical solution of a 1D cavity model filled with homogeneous media. Then, we combine the continuity condition to modify the loss function for handling medium discontinuities. Further, the computational efficiency of finite-difference and DL methods in conductive and nonlinear media is compared. Finally, we prove the effectiveness of this method in high-dimensional and multi-scale simulations. | 
    
|---|---|
| AbstractList | In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach, our method encodes initial conditions, boundary conditions as well as Maxwell's equations as the constraints when training the network, turning an electromagnetic simulation problem into an optimization process. High prediction accuracy of the electromagnetic fields, without discretization or interpolation in space or in time, can be achieved with limited number of layers and neurons in each layer of the neural network. We study several numerical examples to demonstrate the effectiveness of this method for simulating time-domain electromagnetic fields. First, the accuracy of this method is validated by comparing with the analytical solution of a 1D cavity model filled with homogeneous media. Then, we combine the continuity condition to modify the loss function for handling medium discontinuities. Further, the computational efficiency of finite-difference and DL methods in conductive and nonlinear media is compared. Finally, we prove the effectiveness of this method in high-dimensional and multi-scale simulations. | 
    
| Author | Zhang, Pan Chen, Jiefu Jin, Yuchen Hu, Yanyan Deng, Shaogui Wu, Xuqing  | 
    
| Author_xml | – sequence: 1 givenname: Pan surname: Zhang fullname: Zhang, Pan email: zhangpan@s.upc.edu.cn organization: China University of Petroleum, Qingdao, China – sequence: 2 givenname: Yanyan orcidid: 0000-0001-7982-806X surname: Hu fullname: Hu, Yanyan email: yhu23@central.uh.edu organization: University of Houston, Houston, TX, USA – sequence: 3 givenname: Yuchen orcidid: 0000-0003-4518-8660 surname: Jin fullname: Jin, Yuchen email: yjin4@uh.edu organization: University of Houston, Houston, TX, USA – sequence: 4 givenname: Shaogui surname: Deng fullname: Deng, Shaogui email: dengshg@upc.edu.cn organization: China University of Petroleum, Qingdao, China – sequence: 5 givenname: Xuqing orcidid: 0000-0002-3243-1492 surname: Wu fullname: Wu, Xuqing email: xwu8@central.uh.edu organization: University of Houston, Houston, TX, USA – sequence: 6 givenname: Jiefu orcidid: 0000-0001-9940-7043 surname: Chen fullname: Chen, Jiefu email: jchen82@central.uh.edu organization: University of Houston, Houston, TX, USA  | 
    
| BookMark | eNp9UMtOAjEUbQwm4uMHdNPEhSvwtp1O2yUivgJxIe5MJrXcaskwg-0Q9e8dgRjjws29Z3EeOWefdKq6QkKOGfQZA3N-N5kMp30OnPUFSKWM2CFdLpTpac1k5xfeI0cpzQGAKc4BeJc8DejEfrxjWZ4lOnpb2SbUVaIXNuGMXiIu6RhtrEL1QifYvNYz6utIp2GB9LJe2FDRUYmuiS1-qbAJjj6Exarc2BySXW_LhEfbf0Aer0bT4U1vfH99OxyMe07krOlpcJobBp4brp69RC-lxSxvj_LWgJCQ588uU85nGYB3PJdKKyH8LLdGS3FATje-y1i_rTA1xbxexaqNLLgEJrjItWlZfMNysU4poi-WMSxs_CwYFN9DFushi-8hi-2QrUj_EbnQrNs10Ybyf-nJRhoQ8SfLtG1YpsUXhJ6Brw | 
    
| CODEN | IJMMOP | 
    
| CitedBy_id | crossref_primary_10_1109_TAP_2023_3262341 crossref_primary_10_3390_jmse12020240 crossref_primary_10_1016_j_sciaf_2025_e02645 crossref_primary_10_1109_TAP_2021_3098585 crossref_primary_10_1109_TAP_2023_3264701 crossref_primary_10_1109_TMTT_2022_3217138 crossref_primary_10_1364_OME_533643 crossref_primary_10_1587_elex_19_20220523 crossref_primary_10_3390_s23083832 crossref_primary_10_3390_math12233873 crossref_primary_10_1109_ACCESS_2021_3132942 crossref_primary_10_1016_j_aei_2023_102035 crossref_primary_10_1109_JSEN_2022_3199154 crossref_primary_10_1088_1742_6596_2853_1_012018 crossref_primary_10_1109_TGRS_2022_3222507 crossref_primary_10_1038_s41598_024_66156_0 crossref_primary_10_1587_transele_2022MMI0005 crossref_primary_10_1109_JMMCT_2024_3463748 crossref_primary_10_1109_ACCESS_2024_3452160 crossref_primary_10_1109_TMTT_2024_3390174 crossref_primary_10_3390_electronics10182185 crossref_primary_10_3390_thermo4030018 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122444 crossref_primary_10_1109_TWC_2024_3429196 crossref_primary_10_1109_TAP_2024_3476915 crossref_primary_10_1007_s11600_024_01473_6 crossref_primary_10_1109_TGRS_2023_3327781 crossref_primary_10_1364_OE_551078 crossref_primary_10_1038_s43586_023_00257_4 crossref_primary_10_1109_ACCESS_2024_3495732 crossref_primary_10_1109_LAWP_2024_3355896 crossref_primary_10_1002_vzj2_20375 crossref_primary_10_1109_LAWP_2023_3235928 crossref_primary_10_1109_TPEL_2024_3401706 crossref_primary_10_1109_TAP_2024_3433389 crossref_primary_10_1364_OL_531648 crossref_primary_10_1016_j_jcp_2025_113798  | 
    
| Cites_doi | 10.1016/j.neucom.2019.12.099 10.1109/LAWP.2018.2885570 10.1109/JSEN.2018.2809485 10.1016/j.jcp.2017.11.039 10.1016/j.neucom.2018.06.056 10.1126/sciadv.1602614 10.1016/j.jcp.2018.10.045 10.3934/Mine.2018.1.118 10.1109/APUSNCURSINRSM.2018.8608745 10.1364/OL.16.000793  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/JMMCT.2021.3057793 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 2379-8815 | 
    
| EndPage | 40 | 
    
| ExternalDocumentID | 10_1109_JMMCT_2021_3057793 9350148  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41574118; 41674131; 41904109 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c361t-80c82910f2927bf5ef55ae465ae7fa9035066bc47cf4400fc26578733fd6a9853 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2379-8815 | 
    
| IngestDate | Mon Jun 30 04:36:19 EDT 2025 Wed Oct 01 02:18:33 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Aug 27 02:48:22 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c361t-80c82910f2927bf5ef55ae465ae7fa9035066bc47cf4400fc26578733fd6a9853 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4518-8660 0000-0002-3243-1492 0000-0001-9940-7043 0000-0001-7982-806X  | 
    
| PQID | 2501323689 | 
    
| PQPubID | 4437231 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_9350148 proquest_journals_2501323689 crossref_primary_10_1109_JMMCT_2021_3057793 crossref_citationtrail_10_1109_JMMCT_2021_3057793  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE journal on multiscale and multiphysics computational techniques | 
    
| PublicationTitleAbbrev | JMMCT | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 gower (ref20) 2019 long (ref5) 0 baydin (ref15) 2018; 18 landau (ref14) 1975; 2 ref11 ref22 ref10 ref1 ref8 ref7 bar (ref2) 2019 agarwal (ref19) 2017; 18 ref9 ref4 debiao (ref21) 2005 ref6 li (ref17) 2020; 10 li (ref13) 2019; 67 nwankpa (ref18) 0 rafati (ref16) 2019 chiaramonte (ref3) 2013; 1  | 
    
| References_xml | – ident: ref8 doi: 10.1016/j.neucom.2019.12.099 – ident: ref11 doi: 10.1109/LAWP.2018.2885570 – ident: ref12 doi: 10.1109/JSEN.2018.2809485 – volume: 67 start-page: 1819 year: 2019 ident: ref13 article-title: DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering publication-title: Neurocomputing – volume: 18 start-page: 1 year: 2018 ident: ref15 article-title: Automatic differentiation in machine learning: A survey publication-title: J Mach Learn Res – year: 2019 ident: ref16 article-title: Deep reinforcement learning via L-BFGS optimization – ident: ref7 doi: 10.1016/j.jcp.2017.11.039 – volume: 2 start-page: 73 year: 1975 ident: ref14 article-title: The classical theory of fields publication-title: The Classical Theory of Fields – year: 2019 ident: ref2 article-title: Unsupervised deep learning algorithm for PDE-based forward and inverse problems – start-page: 3208 year: 0 ident: ref5 article-title: PDE-Net: Learning PDEs from data publication-title: Proc 35th Int Conf Mach Learn – year: 0 ident: ref18 article-title: Activation functions: Comparison of trends in practice and research for deep learning – ident: ref1 doi: 10.1016/j.neucom.2018.06.056 – volume: 18 start-page: 4148 year: 2017 ident: ref19 article-title: Second-order stochastic optimization for machine learning in linear time publication-title: J Mach Learn Res – ident: ref4 doi: 10.1126/sciadv.1602614 – volume: 10 start-page: 1897?1992 year: 2020 ident: ref17 article-title: The influence of the activation function in a convolution neural network model of facial expression recognition publication-title: Appl Sci – year: 2019 ident: ref20 article-title: Accelerated stochastic matrix inversion: general theory and speeding up BFGS rules for faster second-order optimization publication-title: Int Conf Mach Learn – year: 2005 ident: ref21 publication-title: Finite-Difference Time-Domain Method for Electromagnetic Waves – volume: 1 start-page: 31 year: 2013 ident: ref3 article-title: Solving differential equations using neural network publication-title: Machine Learning Project – ident: ref6 doi: 10.1016/j.jcp.2018.10.045 – ident: ref9 doi: 10.3934/Mine.2018.1.118 – ident: ref10 doi: 10.1109/APUSNCURSINRSM.2018.8608745 – ident: ref22 doi: 10.1364/OL.16.000793  | 
    
| SSID | ssj0001722002 | 
    
| Score | 2.412386 | 
    
| Snippet | In this paper, we discuss an unsupervised deep learning (DL) method for solving time domain electromagnetic simulations. Compared to the conventional approach,... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 35 | 
    
| SubjectTerms | Accuracy Biological neural networks Boundary conditions Computational electromagnetics Deep learning Electromagnetic fields Electromagnetics Electromagnetism Exact solutions Finite difference method Initial conditions Interpolation Mathematical model Maxwell equations Maxwell's equations Neural networks Numerical models Optimization Simulation Time domain analysis time domain simulations  | 
    
| Title | A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations | 
    
| URI | https://ieeexplore.ieee.org/document/9350148 https://www.proquest.com/docview/2501323689  | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2379-8815 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001722002 issn: 2379-8815 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cT158i-uLHAQP2uombdIcfewiQr3oggehpGmyiG5XbRfEX2-Spis-EC-lh6QEvpnON5N5AOwbD0MJLGmQS0mCSGMe5CovAkKF0EJRjLVLkL2ml8Po6i6-m4OjWS2MUsoln6nQvrq7_GIipzZUdszdLVjSgQ5LaFOr9RlPYdjmG7R1MSf8-CpNz2-NB4h7oRFqxjj5YnvcMJUff2BnVgZLkLYHarJJHsNpnYfy_Vuvxv-eeBkWPb9Ep41ArMCcKldhyXNN5DW5WoP7U5SKNxu5O6hQ_6Vp-F2hM2PUCnSh1DPynVdHKHVDppFht8gWjKCLyVg8lKjfDNAZi1FpCyHRzcPYjwKr1mE46N-eXwZ-0kIgCe3VxkzJBBviYKDCLNex0nEsVETNg2nB7e0jpbmMmNSRUXotMbWaToguqODG4m_AfDkp1SYgHYuYR4RKrmmkIyaMzyMxzpUihfWlutBrMcikb0Nup2E8Zc4dOeGZwy2zuGUety4czvY8N004_ly9ZoGYrfQYdGGnhTrzelplhgAad5zQhG_9vmsbFuy3m6DLDszXr1O1a2hIne85-fsAKIDZ5Q | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhjSgU8IDEACnUdpx6LG1ReYSFIjEgRY5jIwRNgbQS4tdjO24RDyGWKIOtWPruct-d7wGwZzwMJbBkQSolCajGPEhVmgWECaGFYhhrlyB7xbo39Pw2vJ2Cw0ktjFLKJZ-pmn11d_nZQI5sqOyIu1uwxjTMhpTSsKzW-oyoRNhmHIwrY4750Xkct3rGB8T1mhHrKOLki_Vx41R-_IOdYTldhHh8pDKf5LE2GqY1-f6tW-N_z7wEC55homYpEsswpfIVWPRsE3ldLlbhroli8WZjd_sF6ryULb8LdGLMWobaSj0j33v1HsVuzDQy_BbZkhHUHvTFQ4465QidvrjPbSkkun7o-2FgxRrcnHZ6rW7gZy0EkrD60Bgq2cCGOhiwcJTqUOkwFIoy84i04Pb-kbFU0khqatReS8ysrhOiMya4sfnrMJMPcrUBSIci5JQwyTWjmkbCeD0S41QpkllvqgL1MQaJ9I3I7TyMp8Q5JMc8cbglFrfE41aBg8me57INx5-rVy0Qk5UegwpUx1AnXlOLxFBA45AT1uCbv-_ahbluL75MLs-uLrZg3n6nDMFUYWb4OlLbhpQM0x0nix-7Kt0y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Maxwell%27s+Equations+Based+Deep+Learning+Method+for+Time+Domain+Electromagnetic+Simulations&rft.jtitle=IEEE+journal+on+multiscale+and+multiphysics+computational+techniques&rft.au=Zhang%2C+Pan&rft.au=Hu%2C+Yanyan&rft.au=Jin%2C+Yuchen&rft.au=Deng%2C+Shaogui&rft.date=2021&rft.issn=2379-8815&rft.eissn=2379-8815&rft.volume=6&rft.spage=35&rft.epage=40&rft_id=info:doi/10.1109%2FJMMCT.2021.3057793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JMMCT_2021_3057793 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8815&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8815&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8815&client=summon |