Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI

Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weigh...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; p. 1
Main Authors Babu, Priyadharshini, Asaithambi, Mythili, Suriyakumar, Sudhakar Mogappair
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3553035

Cover

Abstract Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weighing the boundary pixels across tumor regions, poses a significant challenge in precise tumor delineation. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and serves as a reliable modality to extract the region of interest (ROI). However, capturing intricate intensity variations and heterogeneous tumor morphology in DCE-MRI requires a robust segmentation model. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures the intensity variations in terms of energy contributed by fidelity and regularization terms. This non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy functionals, ensuring stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on heterogeneous breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis.
AbstractList Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from their surrounding tissues, particularly in weighing the boundary pixels across tumor regions poses a significant challenge in precise tumor delineation. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and is a reliable modality for extracting the region of interest (ROI). Nevertheless, the intricate intensity variations in DCE-MRI owing to heterogeneous tumor morphology pose considerable challenges in tumor delineation, necessitating a highly adaptive and robust model for precise tumor segmentation. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures these intensity variations in the form of energies contributed by data fidelity and regularization terms. The formulated non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy-based cost function, obtaining stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on complex breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively on par with trending SOTA methods. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis.
Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weighing the boundary pixels across tumor regions, poses a significant challenge in precise tumor delineation. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and serves as a reliable modality to extract the region of interest (ROI). However, capturing intricate intensity variations and heterogeneous tumor morphology in DCE-MRI requires a robust segmentation model. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures the intensity variations in terms of energy contributed by fidelity and regularization terms. This non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy functionals, ensuring stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on heterogeneous breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis.
Author Asaithambi, Mythili
Babu, Priyadharshini
Suriyakumar, Sudhakar Mogappair
Author_xml – sequence: 1
  givenname: Priyadharshini
  surname: Babu
  fullname: Babu, Priyadharshini
  organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
– sequence: 2
  givenname: Mythili
  orcidid: 0000-0003-1993-0817
  surname: Asaithambi
  fullname: Asaithambi, Mythili
  email: mythili.asaithambi@vit.ac.in
  organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
– sequence: 3
  givenname: Sudhakar Mogappair
  orcidid: 0000-0003-4243-9006
  surname: Suriyakumar
  fullname: Suriyakumar, Sudhakar Mogappair
  organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
BookMark eNplkV9r2zAUxc1oYV3XT9A9GPbsTH8t67H1si3QUWjal74IRboyDo6USTJd9unnzGGUTS8S557zg3v0rjjzwUNRXGO0wBjJTzdtu1yvFwQRvqCcU0T5m-KC4FpWlNP67NX7bXGV0hZNp5kkLi6K5zb4DD_zqIfyAbpx0LH_pXMffHWrE9hy6SF2h_J-n_vdaVK6EMs1dDvwufddeRtBp1w-jrtJ7335uV1W3x9W74tzp4cEV6f7snj6snxsv1V3919X7c1dZWiNcyWsQaaRltRCMutqxFxNQBrJgGycNBgo4xhZsFZQIbVrJAbDa9GAZJJoelmsZq4Neqv2sd_peFBB9-qPEGKndMy9GUC5jdCCOYycRYzVWooNknpDLeHQYIcnFptZo9_rw4sehr9AjNSxbqWNgZTUsW51qnuKfZxj-xh-jJCy2oYx-mlrRXFDpuYpOrro7DIxpBTB_ceev_Jf9oc51QPAq4SkXEhMfwProJpQ
CODEN IAECCG
Cites_doi 10.1016/j.bspc.2024.106291
10.1109/34.232073
10.1118/1.4886295
10.1007/s00500-022-07235-0
10.1109/JBHI.2024.3410274
10.1016/j.compbiomed.2023.107255
10.1016/j.acra.2021.07.017
10.1109/CVPR.2017.660
10.1016/j.ogc.2021.11.010
10.1016/j.ultrasmedbio.2016.11.018
10.1109/JTEHM.2022.3221918
10.3390/electronics12194094
10.3892/ol.2019.9916
10.1109/WACV51458.2022.00181
10.1002/9781118723203
10.1038/s41592-020-01008-z
10.1109/TMI.2024.3435450
10.1109/LSP.2015.2508039
10.1016/j.ultrasmedbio.2017.05.021
10.1186/s40644-023-00557-8
10.2307/j.ctvcm4hcj
10.1049/ipr2.12530
10.1016/j.hoc.2023.05.014
10.1016/j.diii.2023.08.005
10.1109/83.951533
10.1007/978-3-030-87193-2_4
10.1109/TNNLS.2021.3129781
10.1023/B:VISI.0000022288.19776.77
10.1016/j.media.2022.102572
10.1016/j.compbiomed.2024.107939
10.1148/radiol.221785
10.1109/ISBI.2018.8363557
10.1186/s40537-024-00974-x
10.1016/j.compbiomed.2023.106884
10.1186/s43055-020-00175-5
10.3390/s22249603
10.1109/TIP.2014.2305073
10.1186/s12880-022-00908-0
10.1016/j.compbiomed.2021.105093
10.1016/j.bspc.2024.106947
10.1016/j.bspc.2021.102607
10.1593/tlo.13838
10.1007/s10549-023-07051-6
10.3390/cancers13164150
10.1118/1.4790466
10.1016/j.compbiomed.2024.108483
10.1109/3DV.2016.79
10.1016/j.tvir.2021.100776
10.1007/s00330-022-09113-7
10.1109/TPAMI.2017.2699184
10.3322/caac.21763
10.1109/ICIP.2013.6738235
10.1016/j.bspc.2024.106691
10.1109/TIP.2009.2030468
10.1016/j.ctrv.2022.102339
10.1088/0031-9155/58/21/7757
10.1109/ACCESS.2021.3099030
10.1016/j.eswa.2021.115580
10.1109/83.902291
10.1109/TMI.2018.2865671
10.1109/ACCESS.2024.3469244
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3553035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
Open Access Journals (via IEEE Xplore)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_fb7a74f10fd0446a97b09ab3d25e81f1
10.1109/access.2025.3553035
10_1109_ACCESS_2025_3553035
10935791
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-7dc0c89d26794df604f62e9c94e2bf9c1e34510dedd7379af891ec5678e9492a3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:34:02 EDT 2025
Sun Sep 07 11:13:58 EDT 2025
Mon Jun 30 12:12:24 EDT 2025
Wed Oct 01 06:36:31 EDT 2025
Wed Aug 27 02:03:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-7dc0c89d26794df604f62e9c94e2bf9c1e34510dedd7379af891ec5678e9492a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1993-0817
0000-0003-4243-9006
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3553035
PQID 3182536305
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10935791
doaj_primary_oai_doaj_org_article_fb7a74f10fd0446a97b09ab3d25e81f1
crossref_primary_10_1109_ACCESS_2025_3553035
proquest_journals_3182536305
unpaywall_primary_10_1109_access_2025_3553035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
Rahimpour (ref29) 2022; 33
ref54
Newitt (ref65) 2016; 10
ref17
ref16
ref19
ref18
Qin (ref48) 2022; 26
Lv (ref49) 2022; 82
ref51
ref50
Meyer (ref64)
Dai (ref32)
Rehman (ref67) 2024; 95
ref47
ref41
ref44
Ruszczynski (ref57) 2011
Alghamedy (ref28) 2022; 2022
Feng (ref26) 2022; 16
ref8
ref7
ref9
ref4
ref3
Wang (ref46) 2021; 68
ref6
Ashraf (ref27)
ref40
Srikham (ref22)
ref34
Saha (ref60)
ref37
ref36
ref31
Ru (ref35) 2023; 159
ref75
ref30
Jaglan (ref43) 2021; 185
ref74
Veeraraghavan (ref42) 2018; 8
ref76
ref2
ref1
ref39
Felzenszwalb (ref24) 2004; 59
ref71
ref70
ref73
Qiao (ref45) 2021; 90
ref72
Hong (ref38) 2013; 58
Lingle (ref62)
Oktay (ref33) 2018
ref68
ref23
Duc Bui (ref77) 2017
ref25
ref20
ref63
ref66
Baba (ref5) 2007
ref21
Çiçek (ref69)
Troutman (ref58) 2012
ref61
References_xml – volume: 95
  year: 2024
  ident: ref67
  article-title: Edge of discovery: Enhancing breast tumor MRI analysis with boundary-driven deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106291
– year: 2017
  ident: ref77
  article-title: 3D densely convolutional networks for volumetric segmentation
  publication-title: arXiv:1709.03199
– ident: ref66
  doi: 10.1109/34.232073
– ident: ref39
  doi: 10.1118/1.4886295
– volume: 26
  start-page: 8317
  issue: 17
  year: 2022
  ident: ref48
  article-title: Joint transformer and multi-scale CNN for DCE-MRI breast cancer segmentation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07235-0
– ident: ref51
  doi: 10.1109/JBHI.2024.3410274
– ident: ref63
  doi: 10.1016/j.compbiomed.2023.107255
– ident: ref16
  doi: 10.1016/j.acra.2021.07.017
– ident: ref62
  article-title: The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA)
  publication-title: The cancer imaging archive
– ident: ref75
  doi: 10.1109/CVPR.2017.660
– ident: ref1
  doi: 10.1016/j.ogc.2021.11.010
– ident: ref12
  doi: 10.1016/j.ultrasmedbio.2016.11.018
– ident: ref47
  doi: 10.1109/JTEHM.2022.3221918
– ident: ref56
  doi: 10.3390/electronics12194094
– ident: ref40
  doi: 10.3892/ol.2019.9916
– ident: ref71
  doi: 10.1109/WACV51458.2022.00181
– ident: ref59
  doi: 10.1002/9781118723203
– ident: ref72
  doi: 10.1038/s41592-020-01008-z
– ident: ref52
  doi: 10.1109/TMI.2024.3435450
– ident: ref23
  doi: 10.1109/LSP.2015.2508039
– ident: ref11
  doi: 10.1016/j.ultrasmedbio.2017.05.021
– ident: ref13
  doi: 10.1186/s40644-023-00557-8
– volume: 10
  start-page: 1
  issue: 7
  year: 2016
  ident: ref65
  article-title: Multi-center breast DCE-MRI data and segmentations from patients in the I-SPY 1/ACRIN 6657 trials
  publication-title: Cancer Imag. Arch.
– volume-title: Nonlinear Optimization
  year: 2011
  ident: ref57
  doi: 10.2307/j.ctvcm4hcj
– volume: 16
  start-page: 2947
  issue: 11
  year: 2022
  ident: ref26
  article-title: Active contour model of breast cancer DCE-MRI segmentation with an extreme learning machine and a fuzzy C-means cluster
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12530
– ident: ref2
  doi: 10.1016/j.hoc.2023.05.014
– volume: 90
  year: 2021
  ident: ref45
  article-title: Three-dimensional breast tumor segmentation on DCE-MRI with a multilabel attention-guided joint-phase-learning network
  publication-title: Computerized Med. Imag. Graph.
– ident: ref18
  doi: 10.1016/j.diii.2023.08.005
– ident: ref60
  article-title: Dynamic contrast-enhanced magnetic resonance images of breast cancer patients with tumor locations
  publication-title: The Cancer Imaging Archive
– ident: ref21
  doi: 10.1109/83.951533
– volume-title: Variational Calculus With Elementary Convexity
  year: 2012
  ident: ref58
– start-page: 546
  volume-title: Proc. 14th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.
  ident: ref27
  article-title: A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model
– ident: ref76
  doi: 10.1007/978-3-030-87193-2_4
– volume-title: Comparative Oncology
  year: 2007
  ident: ref5
  article-title: Tumor cell morphology
– ident: ref50
  doi: 10.1109/TNNLS.2021.3129781
– volume: 59
  start-page: 167
  issue: 2
  year: 2004
  ident: ref24
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 82
  year: 2022
  ident: ref49
  article-title: A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102572
– ident: ref34
  doi: 10.1016/j.compbiomed.2024.107939
– ident: ref8
  doi: 10.1148/radiol.221785
– ident: ref41
  doi: 10.1109/ISBI.2018.8363557
– ident: ref31
  doi: 10.1186/s40537-024-00974-x
– volume: 159
  year: 2023
  ident: ref35
  article-title: Attention guided neural ODE network for breast tumor segmentation in medical images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106884
– ident: ref7
  doi: 10.1186/s43055-020-00175-5
– ident: ref14
  doi: 10.3390/s22249603
– ident: ref25
  doi: 10.1109/TIP.2014.2305073
– ident: ref17
  doi: 10.1186/s12880-022-00908-0
– ident: ref68
  doi: 10.1016/j.compbiomed.2021.105093
– ident: ref53
  doi: 10.1016/j.bspc.2024.106947
– volume: 68
  year: 2021
  ident: ref46
  article-title: Mixed 2D and 3D convolutional network with multi-scale context for lesion segmentation in breast DCE-MRI
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102607
– year: 2018
  ident: ref33
  article-title: Attention U-Net: Learning where to look for the pancreas
  publication-title: arXiv:1804.03999
– ident: ref61
  doi: 10.1593/tlo.13838
– ident: ref15
  doi: 10.1007/s10549-023-07051-6
– ident: ref6
  doi: 10.3390/cancers13164150
– ident: ref37
  doi: 10.1118/1.4790466
– ident: ref9
  doi: 10.1016/j.compbiomed.2024.108483
– start-page: 424
  volume-title: Proc. 19th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.
  ident: ref69
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
– ident: ref70
  doi: 10.1109/3DV.2016.79
– ident: ref10
  doi: 10.1016/j.tvir.2021.100776
– volume: 33
  start-page: 959
  issue: 2
  year: 2022
  ident: ref29
  article-title: Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-09113-7
– ident: ref74
  doi: 10.1109/TPAMI.2017.2699184
– volume: 8
  start-page: 4838
  issue: 1
  volume-title: Sci. Rep.
  year: 2018
  ident: ref42
  article-title: Appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: A feasibility study
– ident: ref4
  doi: 10.3322/caac.21763
– ident: ref36
  doi: 10.1109/ICIP.2013.6738235
– ident: ref54
  doi: 10.1016/j.bspc.2024.106691
– ident: ref20
  doi: 10.1109/TIP.2009.2030468
– volume: 2022
  issue: 1
  year: 2022
  ident: ref28
  article-title: Machine learning-based multimodel computing for medical imaging for classification and detection of Alzheimer disease
  publication-title: Comput. Intell. Neurosci.
– ident: ref64
  article-title: Rider breast MRI
  publication-title: The cancer imaging archive
– ident: ref3
  doi: 10.1016/j.ctrv.2022.102339
– volume: 58
  start-page: 7757
  issue: 21
  year: 2013
  ident: ref38
  article-title: Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/21/7757
– ident: ref30
  doi: 10.1109/ACCESS.2021.3099030
– volume: 185
  year: 2021
  ident: ref43
  article-title: An automatic and efficient technique for tumor location identification and classification through breast MR images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115580
– start-page: 1989
  volume-title: Proc. 21st Int. Conf. Pattern Recognit. (ICPR)
  ident: ref22
  article-title: Active contours segmentation with edge based and local region based
– ident: ref19
  doi: 10.1109/83.902291
– ident: ref44
  doi: 10.1109/TMI.2018.2865671
– ident: ref55
  doi: 10.1109/ACCESS.2024.3469244
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref32
  article-title: R-FCN: Object detection via region-based fully convolutional networks
– ident: ref73
  doi: 10.1109/CVPR.2015.7298965
SSID ssj0000816957
Score 2.3368776
Snippet Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Algorithms
Breast
Breast tumor segmentation
Breast tumors
Complexity
Computational modeling
Contextual Regularization-Based Energy Optimization (CRBEO)
Cost function
Data models
DCE-MRI
Decision support systems
Delineation
Diagnosis
gradient optimization
Hessian
Huber criteria
Image segmentation
Magnetic resonance imaging
Optimization
Real time
Refining
Regularization
Tumors
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLrQHVChVl5d84NhAEr8yR3ZZBEi0Eg8J9WLZsY2QICDYVdt_z9gxNKgHLlydKJnMZF6J5_sI2UYHawKztuCYGwpuW4NxMA74BMbQnQzWIHF2-OSHPLzgx5fickD1FfeE9fDAveJ2g1VG8VCVwcV_jwaULcFY5mrhmyqkxqdsYNBMpRjcVBKEyjBDVQm7e5MJPhE2hLXYYZErJxG8_UtFCbE_U6y8qjYX5929-fvb3NwMEs_BZ7KUK0a610u6TD74boV8GuAIfiG_EsbUnzgKQk8TufxDHq8sxpilHJ2mCT_6E-PDbT5CsVqlZ_4qbRfqrug47k6f0fP5La5fd3R_Mi1OTo9WycXB9HxyWGTShKJlspoVyrVl24CrJXqaC7LkQdYeWuC-tgHayjOOfui8c4opMKGByrcCc5YHDrVhX8lCd9f5b4RKB5LbBkusxnARSiNsHZRHFw6yVdKMyPdn_en7HhtDp56iBN2rW0d166zuERlHHb-cGoGt0wKaW2dz67fMPSKr0UKD-wETCnB949lkOnvho8Z4VQsmMaSNSPFixv9kNYma8pWsa-8h6zr5GK_Zf7DZIAuzh7nfxBJmZrfS2_oEKR3q5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-BAeRQRWpAPHMk2iV_xsbvdqiC1SKWVKi6WnxWiTauSqIVf37HjXbYgJG6RY8lOxvOwPd83CL0HBWsDMaak4BtKaqwGOxgBPoEQUCcNMUjEDh8c8v0T-umUnWawesLCeO9T8pmfxMd0l-8u7RCPyrYj9RETEav-ULR8BGstD1RiBQnJRGYWgq7bO7MZfATsARs2IbE8Tqrp9tv7JJL-XFXlXoD5aOiu9M8bfX6-4mv21tHhYpZjisn3ydCbif31B4Hjf3_GM_Q0R514Z1wmz9ED371AT1a4CF-ir4mn6jbCSfBRKlB_nSGa5RQ8ncPzhBLEn8HGXOQ3GCJe_MWfpZSj7gxPY4Z7j4-HC2j_1uHd2bw8OPq4gU725sez_TIXXigt4XVfCmcr20rXcNBWF3hFA2-8tJL6xgRpa08o6LLzzgkipA6trL1l4Pe8pLLR5BVa6y47_xph7iSnpoUwrdWUhUoz0wThwQwEbgXXBfqwEIi6Gvk1VNqXVFKN8lNRfirLr0DTKLRl10iOnRrgB6usayoYoQUNdRVcvK7WUphKakNcw3xbh7pAG1EoK-ON8ijQ1mINqKzJPxTYvIYRDmaxQOVyXfw1V53KW96b65t_DLOJHsdu4znOFlrrrwf_FiKb3rxLK_oOoW30jQ
  priority: 102
  providerName: IEEE
Title Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI
URI https://ieeexplore.ieee.org/document/10935791
https://www.proquest.com/docview/3182536305
https://doi.org/10.1109/access.2025.3553035
https://doaj.org/article/fb7a74f10fd0446a97b09ab3d25e81f1
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgegAOZWvFtGXkA0c8JPEWH2eGqQpSCyodqXCJvFaINlRtRiy_nmfHrWZAQnCM4yiJ3-rl-x5CL8DA6kCNIQxiA2HGavCDEeATKAVz0pCDROzw4ZE4WLC3p_w082xHLMzq_n1ZqFc6lQ2EeVzFxzSWuKH8LtoQHBLvAdpYHL2ffIzl40qhCE0bkbt_eXIt9iSK_lxTZS29vLdsL_WPb_r8fCXS7D_sIdzXiaAwHjD5Ml52Zmx__kbf-I8_8Qht5owTT3oVeYzu-PYJerDCQ_gUfUocVd8jlAQfp-L0VxmeSaYQ5RyeJ4Qgfgf-5SLfwZDt4g_-LB03as_wNJ5u7_DJ8gLaP7f49WxODo_fbKHF_vxkdkBy0QViqSg7Ip0tbK1cJcBSXRAFC6LyyirmKxOULT1lYMfOOyepVDrUqvSWQ8zziqlK0200aL-2_hnCwinBTA0pWq0ZD4XmpgrSgwsIwkqhh-jljTiay55bo0lzkkI1k9kMFLCJQ9bkIRuiaRTZbddIjJ0aYKibbGdNMFJLFsoiuLhVrZU0hdKGuor7ugzlEG1Fga-8T1EuFbTv3WhAk634ugF_V4FSgUscInKrFX98ay_etW_d-c_-u-h-vOzXdvbQoLta-ueQ7XRmlFYJRgmYOMoa_wsOtPi4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQORQOPIsIFPCBI9km8Ss-dpetttBdpLKVKi6WHdsVok2rkojHr2fseJctCIlb5DiynXnanm8GodcgYLUnxuQUbENOTaNBDwaAjycExEmDDxKww_MFn53Qd6fsNIHVIxbGOReDz9woPMa7fHvZ9OGobC-kPmIiYNVvM0opG-Ba6yOVUENCMpFyC0Hnvf3JBJYBu8CKjUgokBOruv22PzFNf6qrcsPF3O7bK_3jmz4_37A2B_fRYjXPIcjky6jvzKj5-UcKx_9eyAN0L_mdeH9glIfolmsfobsb2Qgfo08xU9X3ACjBx7FE_XUCaeZjsHUWTyNOEH8ALXOR3mDwefFHdxaDjtozPA4x7h1e9hfQ_rnFbyfTfH58uINODqbLySxPpRfyhvCyy4VtiqaWtuIgr9bzgnpeOdlI6irjZVM6QkGarbNWECG1r2XpGgaWz0kqK02eoK32snVPEeZWcmpqcNRqTZkvNDOVFw4UgeeN4DpDb1YEUVdDhg0VdyaFVAP9VKCfSvTL0DgQbd01pMeODfCDVZI25Y3Qgvqy8DZcWGspTCG1IbZiri59maGdQJSN8QZ6ZGh3xQMqyfJXBVqvYoSDYsxQvuaLv-aqY4HLG3N99o9hXqHt2XJ-pI4OF--fozvhk-FUZxdtdde9ewF-TmdeRu7-BZIf99o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGLegO8AO4zVE2UA-cCQliV_xsS2dBtIGGqs0uFh-Togtm7ZUbPvr-ex4UwsSgmMcR3H8PR379_sQegMG1gRiTEEhNhTUWA1-MAJ8AiFgThpykIgd3tvnu3P68YgdZZ7tiIVZ3r-vSvlOp7KBsI6r2YjEEjeE3UdrnEHiPUBr8_3P46-xfFzFZUHSRuTWX55ciT2Joj_XVFlJLx8s2nN9_VOfnCxFmp1HPYT7MhEUxgMmP0aLzozszW_0jf_4EY_RRs448bhXkSfonm-fovUlHsJn6FviqLqKUBJ8kIrTX2R4ZjGBKOfwLCEE8SfwL6f5DoZsF3_xx-m4UXuMJ_F0e4cPF6fQ_r3F76ezYu_gwyaa78wOp7tFLrpQWMKrrhDOlraRruZgqS7wkgZee2kl9bUJ0laeULBj550TREgdGll5yyDmeUllrclzNGjPWv8CYe4kp6aBFK3RlIVSM1MH4cEFBG4F10P09lYc6rzn1lBpTVJKNZ5OQQFVnDKVp2yIJlFkd10jMXZqgKlW2c5UMEILGqoyuLhVraUwpdSGuJr5pgrVEG1GgS-9TxImJLRv32qAylZ8qcDf1aBU4BKHqLjTij_G2ot3Zawv_7P_FnoYL_t_O9to0F0s_CvIdjrzOmv5L3bC9sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Regularization-Based+Energy+Optimization+for+Segmenting+Breast+Tumor+in+DCE-MRI&rft.jtitle=IEEE+access&rft.au=Babu%2C+Priyadharshini&rft.au=Asaithambi%2C+Mythili&rft.au=Mogappair+Suriyakumar%2C+Sudhakar&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=51986&rft.epage=52005&rft_id=info:doi/10.1109%2FACCESS.2025.3553035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3553035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon