Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI
Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weigh...
Saved in:
| Published in | IEEE access Vol. 13; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3553035 |
Cover
| Abstract | Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weighing the boundary pixels across tumor regions, poses a significant challenge in precise tumor delineation. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and serves as a reliable modality to extract the region of interest (ROI). However, capturing intricate intensity variations and heterogeneous tumor morphology in DCE-MRI requires a robust segmentation model. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures the intensity variations in terms of energy contributed by fidelity and regularization terms. This non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy functionals, ensuring stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on heterogeneous breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis. |
|---|---|
| AbstractList | Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from their surrounding tissues, particularly in weighing the boundary pixels across tumor regions poses a significant challenge in precise tumor delineation. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and is a reliable modality for extracting the region of interest (ROI). Nevertheless, the intricate intensity variations in DCE-MRI owing to heterogeneous tumor morphology pose considerable challenges in tumor delineation, necessitating a highly adaptive and robust model for precise tumor segmentation. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures these intensity variations in the form of energies contributed by data fidelity and regularization terms. The formulated non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy-based cost function, obtaining stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on complex breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively on par with trending SOTA methods. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis. Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in clinical practice. The imprecision of trending segmentation models in differentiating tumors from surrounding tissues, particularly in weighing the boundary pixels across tumor regions, poses a significant challenge in precise tumor delineation. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) effectively captures tumor vascularity and perfusion dynamics and serves as a reliable modality to extract the region of interest (ROI). However, capturing intricate intensity variations and heterogeneous tumor morphology in DCE-MRI requires a robust segmentation model. Accordingly, this manuscript presents a Contextual Regularization-Based Energy Optimization (CRBEO) model that effectively captures the intensity variations in terms of energy contributed by fidelity and regularization terms. This non-linear energy-based convex optimizer is adaptively tuned by a variational Minimax principle to achieve the desired solution. An iterative gradient descent algorithm is engaged to minimize the energy functionals, ensuring stable convergence towards the optimal solution. The extensive relative analysis of CRBEO on heterogeneous breast DCE-MRI datasets including QIN breast DCE-MRI, TCGA-BRCA, BreastDM, RIDER, and ISPY1 has recorded significant dice improvements of 30.16%, 11.48%, 20.66%, 1.012%, and 28.107%, respectively. The complexity analysis of CRBEO with time and space has justified its extension to real-time clinical diagnosis. |
| Author | Asaithambi, Mythili Babu, Priyadharshini Suriyakumar, Sudhakar Mogappair |
| Author_xml | – sequence: 1 givenname: Priyadharshini surname: Babu fullname: Babu, Priyadharshini organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India – sequence: 2 givenname: Mythili orcidid: 0000-0003-1993-0817 surname: Asaithambi fullname: Asaithambi, Mythili email: mythili.asaithambi@vit.ac.in organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India – sequence: 3 givenname: Sudhakar Mogappair orcidid: 0000-0003-4243-9006 surname: Suriyakumar fullname: Suriyakumar, Sudhakar Mogappair organization: School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India |
| BookMark | eNplkV9r2zAUxc1oYV3XT9A9GPbsTH8t67H1si3QUWjal74IRboyDo6USTJd9unnzGGUTS8S557zg3v0rjjzwUNRXGO0wBjJTzdtu1yvFwQRvqCcU0T5m-KC4FpWlNP67NX7bXGV0hZNp5kkLi6K5zb4DD_zqIfyAbpx0LH_pXMffHWrE9hy6SF2h_J-n_vdaVK6EMs1dDvwufddeRtBp1w-jrtJ7335uV1W3x9W74tzp4cEV6f7snj6snxsv1V3919X7c1dZWiNcyWsQaaRltRCMutqxFxNQBrJgGycNBgo4xhZsFZQIbVrJAbDa9GAZJJoelmsZq4Neqv2sd_peFBB9-qPEGKndMy9GUC5jdCCOYycRYzVWooNknpDLeHQYIcnFptZo9_rw4sehr9AjNSxbqWNgZTUsW51qnuKfZxj-xh-jJCy2oYx-mlrRXFDpuYpOrro7DIxpBTB_ceev_Jf9oc51QPAq4SkXEhMfwProJpQ |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.bspc.2024.106291 10.1109/34.232073 10.1118/1.4886295 10.1007/s00500-022-07235-0 10.1109/JBHI.2024.3410274 10.1016/j.compbiomed.2023.107255 10.1016/j.acra.2021.07.017 10.1109/CVPR.2017.660 10.1016/j.ogc.2021.11.010 10.1016/j.ultrasmedbio.2016.11.018 10.1109/JTEHM.2022.3221918 10.3390/electronics12194094 10.3892/ol.2019.9916 10.1109/WACV51458.2022.00181 10.1002/9781118723203 10.1038/s41592-020-01008-z 10.1109/TMI.2024.3435450 10.1109/LSP.2015.2508039 10.1016/j.ultrasmedbio.2017.05.021 10.1186/s40644-023-00557-8 10.2307/j.ctvcm4hcj 10.1049/ipr2.12530 10.1016/j.hoc.2023.05.014 10.1016/j.diii.2023.08.005 10.1109/83.951533 10.1007/978-3-030-87193-2_4 10.1109/TNNLS.2021.3129781 10.1023/B:VISI.0000022288.19776.77 10.1016/j.media.2022.102572 10.1016/j.compbiomed.2024.107939 10.1148/radiol.221785 10.1109/ISBI.2018.8363557 10.1186/s40537-024-00974-x 10.1016/j.compbiomed.2023.106884 10.1186/s43055-020-00175-5 10.3390/s22249603 10.1109/TIP.2014.2305073 10.1186/s12880-022-00908-0 10.1016/j.compbiomed.2021.105093 10.1016/j.bspc.2024.106947 10.1016/j.bspc.2021.102607 10.1593/tlo.13838 10.1007/s10549-023-07051-6 10.3390/cancers13164150 10.1118/1.4790466 10.1016/j.compbiomed.2024.108483 10.1109/3DV.2016.79 10.1016/j.tvir.2021.100776 10.1007/s00330-022-09113-7 10.1109/TPAMI.2017.2699184 10.3322/caac.21763 10.1109/ICIP.2013.6738235 10.1016/j.bspc.2024.106691 10.1109/TIP.2009.2030468 10.1016/j.ctrv.2022.102339 10.1088/0031-9155/58/21/7757 10.1109/ACCESS.2021.3099030 10.1016/j.eswa.2021.115580 10.1109/83.902291 10.1109/TMI.2018.2865671 10.1109/ACCESS.2024.3469244 10.1109/CVPR.2015.7298965 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3553035 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present Open Access Journals (via IEEE Xplore) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_fb7a74f10fd0446a97b09ab3d25e81f1 10.1109/access.2025.3553035 10_1109_ACCESS_2025_3553035 10935791 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-7dc0c89d26794df604f62e9c94e2bf9c1e34510dedd7379af891ec5678e9492a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:34:02 EDT 2025 Sun Sep 07 11:13:58 EDT 2025 Mon Jun 30 12:12:24 EDT 2025 Wed Oct 01 06:36:31 EDT 2025 Wed Aug 27 02:03:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-7dc0c89d26794df604f62e9c94e2bf9c1e34510dedd7379af891ec5678e9492a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1993-0817 0000-0003-4243-9006 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3553035 |
| PQID | 3182536305 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10935791 doaj_primary_oai_doaj_org_article_fb7a74f10fd0446a97b09ab3d25e81f1 crossref_primary_10_1109_ACCESS_2025_3553035 proquest_journals_3182536305 unpaywall_primary_10_1109_access_2025_3553035 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 Rahimpour (ref29) 2022; 33 ref54 Newitt (ref65) 2016; 10 ref17 ref16 ref19 ref18 Qin (ref48) 2022; 26 Lv (ref49) 2022; 82 ref51 ref50 Meyer (ref64) Dai (ref32) Rehman (ref67) 2024; 95 ref47 ref41 ref44 Ruszczynski (ref57) 2011 Alghamedy (ref28) 2022; 2022 Feng (ref26) 2022; 16 ref8 ref7 ref9 ref4 ref3 Wang (ref46) 2021; 68 ref6 Ashraf (ref27) ref40 Srikham (ref22) ref34 Saha (ref60) ref37 ref36 ref31 Ru (ref35) 2023; 159 ref75 ref30 Jaglan (ref43) 2021; 185 ref74 Veeraraghavan (ref42) 2018; 8 ref76 ref2 ref1 ref39 Felzenszwalb (ref24) 2004; 59 ref71 ref70 ref73 Qiao (ref45) 2021; 90 ref72 Hong (ref38) 2013; 58 Lingle (ref62) Oktay (ref33) 2018 ref68 ref23 Duc Bui (ref77) 2017 ref25 ref20 ref63 ref66 Baba (ref5) 2007 ref21 Çiçek (ref69) Troutman (ref58) 2012 ref61 |
| References_xml | – volume: 95 year: 2024 ident: ref67 article-title: Edge of discovery: Enhancing breast tumor MRI analysis with boundary-driven deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106291 – year: 2017 ident: ref77 article-title: 3D densely convolutional networks for volumetric segmentation publication-title: arXiv:1709.03199 – ident: ref66 doi: 10.1109/34.232073 – ident: ref39 doi: 10.1118/1.4886295 – volume: 26 start-page: 8317 issue: 17 year: 2022 ident: ref48 article-title: Joint transformer and multi-scale CNN for DCE-MRI breast cancer segmentation publication-title: Soft Comput. doi: 10.1007/s00500-022-07235-0 – ident: ref51 doi: 10.1109/JBHI.2024.3410274 – ident: ref63 doi: 10.1016/j.compbiomed.2023.107255 – ident: ref16 doi: 10.1016/j.acra.2021.07.017 – ident: ref62 article-title: The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA) publication-title: The cancer imaging archive – ident: ref75 doi: 10.1109/CVPR.2017.660 – ident: ref1 doi: 10.1016/j.ogc.2021.11.010 – ident: ref12 doi: 10.1016/j.ultrasmedbio.2016.11.018 – ident: ref47 doi: 10.1109/JTEHM.2022.3221918 – ident: ref56 doi: 10.3390/electronics12194094 – ident: ref40 doi: 10.3892/ol.2019.9916 – ident: ref71 doi: 10.1109/WACV51458.2022.00181 – ident: ref59 doi: 10.1002/9781118723203 – ident: ref72 doi: 10.1038/s41592-020-01008-z – ident: ref52 doi: 10.1109/TMI.2024.3435450 – ident: ref23 doi: 10.1109/LSP.2015.2508039 – ident: ref11 doi: 10.1016/j.ultrasmedbio.2017.05.021 – ident: ref13 doi: 10.1186/s40644-023-00557-8 – volume: 10 start-page: 1 issue: 7 year: 2016 ident: ref65 article-title: Multi-center breast DCE-MRI data and segmentations from patients in the I-SPY 1/ACRIN 6657 trials publication-title: Cancer Imag. Arch. – volume-title: Nonlinear Optimization year: 2011 ident: ref57 doi: 10.2307/j.ctvcm4hcj – volume: 16 start-page: 2947 issue: 11 year: 2022 ident: ref26 article-title: Active contour model of breast cancer DCE-MRI segmentation with an extreme learning machine and a fuzzy C-means cluster publication-title: IET Image Process. doi: 10.1049/ipr2.12530 – ident: ref2 doi: 10.1016/j.hoc.2023.05.014 – volume: 90 year: 2021 ident: ref45 article-title: Three-dimensional breast tumor segmentation on DCE-MRI with a multilabel attention-guided joint-phase-learning network publication-title: Computerized Med. Imag. Graph. – ident: ref18 doi: 10.1016/j.diii.2023.08.005 – ident: ref60 article-title: Dynamic contrast-enhanced magnetic resonance images of breast cancer patients with tumor locations publication-title: The Cancer Imaging Archive – ident: ref21 doi: 10.1109/83.951533 – volume-title: Variational Calculus With Elementary Convexity year: 2012 ident: ref58 – start-page: 546 volume-title: Proc. 14th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. ident: ref27 article-title: A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model – ident: ref76 doi: 10.1007/978-3-030-87193-2_4 – volume-title: Comparative Oncology year: 2007 ident: ref5 article-title: Tumor cell morphology – ident: ref50 doi: 10.1109/TNNLS.2021.3129781 – volume: 59 start-page: 167 issue: 2 year: 2004 ident: ref24 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 – volume: 82 year: 2022 ident: ref49 article-title: A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102572 – ident: ref34 doi: 10.1016/j.compbiomed.2024.107939 – ident: ref8 doi: 10.1148/radiol.221785 – ident: ref41 doi: 10.1109/ISBI.2018.8363557 – ident: ref31 doi: 10.1186/s40537-024-00974-x – volume: 159 year: 2023 ident: ref35 article-title: Attention guided neural ODE network for breast tumor segmentation in medical images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106884 – ident: ref7 doi: 10.1186/s43055-020-00175-5 – ident: ref14 doi: 10.3390/s22249603 – ident: ref25 doi: 10.1109/TIP.2014.2305073 – ident: ref17 doi: 10.1186/s12880-022-00908-0 – ident: ref68 doi: 10.1016/j.compbiomed.2021.105093 – ident: ref53 doi: 10.1016/j.bspc.2024.106947 – volume: 68 year: 2021 ident: ref46 article-title: Mixed 2D and 3D convolutional network with multi-scale context for lesion segmentation in breast DCE-MRI publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102607 – year: 2018 ident: ref33 article-title: Attention U-Net: Learning where to look for the pancreas publication-title: arXiv:1804.03999 – ident: ref61 doi: 10.1593/tlo.13838 – ident: ref15 doi: 10.1007/s10549-023-07051-6 – ident: ref6 doi: 10.3390/cancers13164150 – ident: ref37 doi: 10.1118/1.4790466 – ident: ref9 doi: 10.1016/j.compbiomed.2024.108483 – start-page: 424 volume-title: Proc. 19th Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. ident: ref69 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation – ident: ref70 doi: 10.1109/3DV.2016.79 – ident: ref10 doi: 10.1016/j.tvir.2021.100776 – volume: 33 start-page: 959 issue: 2 year: 2022 ident: ref29 article-title: Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-022-09113-7 – ident: ref74 doi: 10.1109/TPAMI.2017.2699184 – volume: 8 start-page: 4838 issue: 1 volume-title: Sci. Rep. year: 2018 ident: ref42 article-title: Appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: A feasibility study – ident: ref4 doi: 10.3322/caac.21763 – ident: ref36 doi: 10.1109/ICIP.2013.6738235 – ident: ref54 doi: 10.1016/j.bspc.2024.106691 – ident: ref20 doi: 10.1109/TIP.2009.2030468 – volume: 2022 issue: 1 year: 2022 ident: ref28 article-title: Machine learning-based multimodel computing for medical imaging for classification and detection of Alzheimer disease publication-title: Comput. Intell. Neurosci. – ident: ref64 article-title: Rider breast MRI publication-title: The cancer imaging archive – ident: ref3 doi: 10.1016/j.ctrv.2022.102339 – volume: 58 start-page: 7757 issue: 21 year: 2013 ident: ref38 article-title: Joint estimation of shape and deformation for the detection of lesions in dynamic contrast-enhanced breast MRI publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/21/7757 – ident: ref30 doi: 10.1109/ACCESS.2021.3099030 – volume: 185 year: 2021 ident: ref43 article-title: An automatic and efficient technique for tumor location identification and classification through breast MR images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115580 – start-page: 1989 volume-title: Proc. 21st Int. Conf. Pattern Recognit. (ICPR) ident: ref22 article-title: Active contours segmentation with edge based and local region based – ident: ref19 doi: 10.1109/83.902291 – ident: ref44 doi: 10.1109/TMI.2018.2865671 – ident: ref55 doi: 10.1109/ACCESS.2024.3469244 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref32 article-title: R-FCN: Object detection via region-based fully convolutional networks – ident: ref73 doi: 10.1109/CVPR.2015.7298965 |
| SSID | ssj0000816957 |
| Score | 2.3368776 |
| Snippet | Accurate breast tumor segmentation is crucial for precise diagnosis, effective treatment planning, and the development of automated decision-support systems in... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptation models Algorithms Breast Breast tumor segmentation Breast tumors Complexity Computational modeling Contextual Regularization-Based Energy Optimization (CRBEO) Cost function Data models DCE-MRI Decision support systems Delineation Diagnosis gradient optimization Hessian Huber criteria Image segmentation Magnetic resonance imaging Optimization Real time Refining Regularization Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLrQHVChVl5d84NhAEr8yR3ZZBEi0Eg8J9WLZsY2QICDYVdt_z9gxNKgHLlydKJnMZF6J5_sI2UYHawKztuCYGwpuW4NxMA74BMbQnQzWIHF2-OSHPLzgx5fickD1FfeE9fDAveJ2g1VG8VCVwcV_jwaULcFY5mrhmyqkxqdsYNBMpRjcVBKEyjBDVQm7e5MJPhE2hLXYYZErJxG8_UtFCbE_U6y8qjYX5929-fvb3NwMEs_BZ7KUK0a610u6TD74boV8GuAIfiG_EsbUnzgKQk8TufxDHq8sxpilHJ2mCT_6E-PDbT5CsVqlZ_4qbRfqrug47k6f0fP5La5fd3R_Mi1OTo9WycXB9HxyWGTShKJlspoVyrVl24CrJXqaC7LkQdYeWuC-tgHayjOOfui8c4opMKGByrcCc5YHDrVhX8lCd9f5b4RKB5LbBkusxnARSiNsHZRHFw6yVdKMyPdn_en7HhtDp56iBN2rW0d166zuERlHHb-cGoGt0wKaW2dz67fMPSKr0UKD-wETCnB949lkOnvho8Z4VQsmMaSNSPFixv9kNYma8pWsa-8h6zr5GK_Zf7DZIAuzh7nfxBJmZrfS2_oEKR3q5w priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-BAeRQRWpAPHMk2iV_xsbvdqiC1SKWVKi6WnxWiTauSqIVf37HjXbYgJG6RY8lOxvOwPd83CL0HBWsDMaak4BtKaqwGOxgBPoEQUCcNMUjEDh8c8v0T-umUnWawesLCeO9T8pmfxMd0l-8u7RCPyrYj9RETEav-ULR8BGstD1RiBQnJRGYWgq7bO7MZfATsARs2IbE8Tqrp9tv7JJL-XFXlXoD5aOiu9M8bfX6-4mv21tHhYpZjisn3ydCbif31B4Hjf3_GM_Q0R514Z1wmz9ED371AT1a4CF-ir4mn6jbCSfBRKlB_nSGa5RQ8ncPzhBLEn8HGXOQ3GCJe_MWfpZSj7gxPY4Z7j4-HC2j_1uHd2bw8OPq4gU725sez_TIXXigt4XVfCmcr20rXcNBWF3hFA2-8tJL6xgRpa08o6LLzzgkipA6trL1l4Pe8pLLR5BVa6y47_xph7iSnpoUwrdWUhUoz0wThwQwEbgXXBfqwEIi6Gvk1VNqXVFKN8lNRfirLr0DTKLRl10iOnRrgB6usayoYoQUNdRVcvK7WUphKakNcw3xbh7pAG1EoK-ON8ijQ1mINqKzJPxTYvIYRDmaxQOVyXfw1V53KW96b65t_DLOJHsdu4znOFlrrrwf_FiKb3rxLK_oOoW30jQ priority: 102 providerName: IEEE |
| Title | Contextual Regularization-Based Energy Optimization for Segmenting Breast Tumor in DCE-MRI |
| URI | https://ieeexplore.ieee.org/document/10935791 https://www.proquest.com/docview/3182536305 https://doi.org/10.1109/access.2025.3553035 https://doaj.org/article/fb7a74f10fd0446a97b09ab3d25e81f1 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgegAOZWvFtGXkA0c8JPEWH2eGqQpSCyodqXCJvFaINlRtRiy_nmfHrWZAQnCM4yiJ3-rl-x5CL8DA6kCNIQxiA2HGavCDEeATKAVz0pCDROzw4ZE4WLC3p_w082xHLMzq_n1ZqFc6lQ2EeVzFxzSWuKH8LtoQHBLvAdpYHL2ffIzl40qhCE0bkbt_eXIt9iSK_lxTZS29vLdsL_WPb_r8fCXS7D_sIdzXiaAwHjD5Ml52Zmx__kbf-I8_8Qht5owTT3oVeYzu-PYJerDCQ_gUfUocVd8jlAQfp-L0VxmeSaYQ5RyeJ4Qgfgf-5SLfwZDt4g_-LB03as_wNJ5u7_DJ8gLaP7f49WxODo_fbKHF_vxkdkBy0QViqSg7Ip0tbK1cJcBSXRAFC6LyyirmKxOULT1lYMfOOyepVDrUqvSWQ8zziqlK0200aL-2_hnCwinBTA0pWq0ZD4XmpgrSgwsIwkqhh-jljTiay55bo0lzkkI1k9kMFLCJQ9bkIRuiaRTZbddIjJ0aYKibbGdNMFJLFsoiuLhVrZU0hdKGuor7ugzlEG1Fga-8T1EuFbTv3WhAk634ugF_V4FSgUscInKrFX98ay_etW_d-c_-u-h-vOzXdvbQoLta-ueQ7XRmlFYJRgmYOMoa_wsOtPi4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQORQOPIsIFPCBI9km8Ss-dpetttBdpLKVKi6WHdsVok2rkojHr2fseJctCIlb5DiynXnanm8GodcgYLUnxuQUbENOTaNBDwaAjycExEmDDxKww_MFn53Qd6fsNIHVIxbGOReDz9woPMa7fHvZ9OGobC-kPmIiYNVvM0opG-Ba6yOVUENCMpFyC0Hnvf3JBJYBu8CKjUgokBOruv22PzFNf6qrcsPF3O7bK_3jmz4_37A2B_fRYjXPIcjky6jvzKj5-UcKx_9eyAN0L_mdeH9glIfolmsfobsb2Qgfo08xU9X3ACjBx7FE_XUCaeZjsHUWTyNOEH8ALXOR3mDwefFHdxaDjtozPA4x7h1e9hfQ_rnFbyfTfH58uINODqbLySxPpRfyhvCyy4VtiqaWtuIgr9bzgnpeOdlI6irjZVM6QkGarbNWECG1r2XpGgaWz0kqK02eoK32snVPEeZWcmpqcNRqTZkvNDOVFw4UgeeN4DpDb1YEUVdDhg0VdyaFVAP9VKCfSvTL0DgQbd01pMeODfCDVZI25Y3Qgvqy8DZcWGspTCG1IbZiri59maGdQJSN8QZ6ZGh3xQMqyfJXBVqvYoSDYsxQvuaLv-aqY4HLG3N99o9hXqHt2XJ-pI4OF--fozvhk-FUZxdtdde9ewF-TmdeRu7-BZIf99o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGLegO8AO4zVE2UA-cCQliV_xsS2dBtIGGqs0uFh-Togtm7ZUbPvr-ex4UwsSgmMcR3H8PR379_sQegMG1gRiTEEhNhTUWA1-MAJ8AiFgThpykIgd3tvnu3P68YgdZZ7tiIVZ3r-vSvlOp7KBsI6r2YjEEjeE3UdrnEHiPUBr8_3P46-xfFzFZUHSRuTWX55ciT2Joj_XVFlJLx8s2nN9_VOfnCxFmp1HPYT7MhEUxgMmP0aLzozszW_0jf_4EY_RRs448bhXkSfonm-fovUlHsJn6FviqLqKUBJ8kIrTX2R4ZjGBKOfwLCEE8SfwL6f5DoZsF3_xx-m4UXuMJ_F0e4cPF6fQ_r3F76ezYu_gwyaa78wOp7tFLrpQWMKrrhDOlraRruZgqS7wkgZee2kl9bUJ0laeULBj550TREgdGll5yyDmeUllrclzNGjPWv8CYe4kp6aBFK3RlIVSM1MH4cEFBG4F10P09lYc6rzn1lBpTVJKNZ5OQQFVnDKVp2yIJlFkd10jMXZqgKlW2c5UMEILGqoyuLhVraUwpdSGuJr5pgrVEG1GgS-9TxImJLRv32qAylZ8qcDf1aBU4BKHqLjTij_G2ot3Zawv_7P_FnoYL_t_O9to0F0s_CvIdjrzOmv5L3bC9sI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Regularization-Based+Energy+Optimization+for+Segmenting+Breast+Tumor+in+DCE-MRI&rft.jtitle=IEEE+access&rft.au=Babu%2C+Priyadharshini&rft.au=Asaithambi%2C+Mythili&rft.au=Mogappair+Suriyakumar%2C+Sudhakar&rft.date=2025-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=51986&rft.epage=52005&rft_id=info:doi/10.1109%2FACCESS.2025.3553035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3553035 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |