Trajectory Tracking Control of an Aerial Manipulator in the Presence of Disturbances and Model Uncertainties
The precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external disturbances and dynamic disturbances due to manipulator motions. In this paper, we introduce two Closed-Loop Inverse Kinematics (CLIK) control alg...
Saved in:
| Published in | Applied sciences Vol. 14; no. 6; p. 2512 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app14062512 |
Cover
| Abstract | The precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external disturbances and dynamic disturbances due to manipulator motions. In this paper, we introduce two Closed-Loop Inverse Kinematics (CLIK) control algorithms tailored to aerial manipulators. The first algorithm operates at the velocity level and uses the Generalized Jacobian for inverse kinematics, while the second one operates at the acceleration level. We evaluate their performance in a simulated environment, replicating real-world challenges such as the wind effect, sensors noise, uncertainty of the system inertial parameters, and impulsive forces at the end-effector. Trajectory tracking simulated experiments are carried out for a two- and three-degree-of-freedom (DOF) aerial manipulator tracking a circular trajectory with its end-effector. Both algorithms demonstrate promising results in coping with external disturbances and variations in the inertial parameters, enhancing the precision of the trajectory tracking control. The acceleration-level algorithm shows overall better performance compared to the velocity-level one in the face of greater implementation complexity and computational burden. |
|---|---|
| AbstractList | Featured ApplicationInspection of structures, e.g., offshore/nuclear/eolic plants, bridges, and tall buildings. Inspection of archaeological sites. Placement and retrieval of sensors. Assembly of structures in places not accessible/safe for humans.AbstractThe precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external disturbances and dynamic disturbances due to manipulator motions. In this paper, we introduce two Closed-Loop Inverse Kinematics (CLIK) control algorithms tailored to aerial manipulators. The first algorithm operates at the velocity level and uses the Generalized Jacobian for inverse kinematics, while the second one operates at the acceleration level. We evaluate their performance in a simulated environment, replicating real-world challenges such as the wind effect, sensors noise, uncertainty of the system inertial parameters, and impulsive forces at the end-effector. Trajectory tracking simulated experiments are carried out for a two- and three-degree-of-freedom (DOF) aerial manipulator tracking a circular trajectory with its end-effector. Both algorithms demonstrate promising results in coping with external disturbances and variations in the inertial parameters, enhancing the precision of the trajectory tracking control. The acceleration-level algorithm shows overall better performance compared to the velocity-level one in the face of greater implementation complexity and computational burden. The precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external disturbances and dynamic disturbances due to manipulator motions. In this paper, we introduce two Closed-Loop Inverse Kinematics (CLIK) control algorithms tailored to aerial manipulators. The first algorithm operates at the velocity level and uses the Generalized Jacobian for inverse kinematics, while the second one operates at the acceleration level. We evaluate their performance in a simulated environment, replicating real-world challenges such as the wind effect, sensors noise, uncertainty of the system inertial parameters, and impulsive forces at the end-effector. Trajectory tracking simulated experiments are carried out for a two- and three-degree-of-freedom (DOF) aerial manipulator tracking a circular trajectory with its end-effector. Both algorithms demonstrate promising results in coping with external disturbances and variations in the inertial parameters, enhancing the precision of the trajectory tracking control. The acceleration-level algorithm shows overall better performance compared to the velocity-level one in the face of greater implementation complexity and computational burden. Inspection of structures, e.g., offshore/nuclear/eolic plants, bridges, and tall buildings. Inspection of archaeological sites. Placement and retrieval of sensors. Assembly of structures in places not accessible/safe for humans. The precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external disturbances and dynamic disturbances due to manipulator motions. In this paper, we introduce two Closed-Loop Inverse Kinematics (CLIK) control algorithms tailored to aerial manipulators. The first algorithm operates at the velocity level and uses the Generalized Jacobian for inverse kinematics, while the second one operates at the acceleration level. We evaluate their performance in a simulated environment, replicating real-world challenges such as the wind effect, sensors noise, uncertainty of the system inertial parameters, and impulsive forces at the end-effector. Trajectory tracking simulated experiments are carried out for a two- and three-degree-of-freedom (DOF) aerial manipulator tracking a circular trajectory with its end-effector. Both algorithms demonstrate promising results in coping with external disturbances and variations in the inertial parameters, enhancing the precision of the trajectory tracking control. The acceleration-level algorithm shows overall better performance compared to the velocity-level one in the face of greater implementation complexity and computational burden. |
| Audience | Academic |
| Author | Pedrocco, Mattia Fanti, Giulio Cocuzza, Silvio Pasetto, Alberto Benato, Alberto |
| Author_xml | – sequence: 1 givenname: Mattia surname: Pedrocco fullname: Pedrocco, Mattia – sequence: 2 givenname: Alberto orcidid: 0000-0001-7463-8136 surname: Pasetto fullname: Pasetto, Alberto – sequence: 3 givenname: Giulio surname: Fanti fullname: Fanti, Giulio – sequence: 4 givenname: Alberto orcidid: 0000-0002-0122-1353 surname: Benato fullname: Benato, Alberto – sequence: 5 givenname: Silvio orcidid: 0000-0001-9746-4642 surname: Cocuzza fullname: Cocuzza, Silvio |
| BookMark | eNp9UU1v1DAQjVCRWkpP_QOWOMIWfySxfVwtFCq1gkN7jib2ePGS2sF2hPbf1yUI9YR98LzRe08zz2-akxADNs0lo1dCaPoR5pm1tOcd46-aM05lvxEtkycv6tPmIucDrUczoRg9a6b7BAc0JaYjqaX56cOe7GIoKU4kOgKBbDF5mMgdBD8vE1Qq8YGUH0i-J8wYDD4TP_lcljRChbmqLLmLFifyUHEq4EPxmN82rx1MGS_-vufNw_Xn-93Xze23Lze77e3GiJ6VjTTQGQntyKUW2radlUq6EaRAcJ1ue2RcghydsXUHBLAO2k6AGSuQDsR5c7P62giHYU7-EdJxiOCHP42Y9gOk4s2EA7UGhdZge6StUZ0C02pQQvWOGq5d9fqwei1hhuNvmKZ_howOz8EPL4Kv9HcrfU7x14K5DIe4pFC3HbhWigndqa6yrlbWHuoMPrhYavb1Wnz0pn6r87W_lUrxVlCuq-D9KjAp5pzQ_XeIJ_3Vo8o |
| Cites_doi | 10.3390/robotics12020031 10.1109/ME49197.2020.9286694 10.3389/frobt.2018.00041 10.1109/70.143357 10.1109/70.34766 10.1007/s10846-012-9734-1 10.1016/j.robot.2018.06.012 10.1007/978-1-84628-642-1 10.1017/S0263574718000553 10.5772/5797 10.3390/app122312254 10.1016/j.ast.2020.105731 10.1007/978-1-4615-3588-1 10.1109/SIET.2018.8693163 10.1109/MED.2013.6608869 10.1109/LRA.2018.2808541 10.1017/S0263574700000096 10.1016/S1474-6670(17)37926-0 10.1007/978-3-319-61022-1 10.1109/ICRA.2015.7139938 10.1109/IROS.2014.6943038 10.1163/156855301750398347 10.2514/1.45874 10.1016/j.actaastro.2009.05.007 10.1109/TRO.2021.3084395 10.3390/app10248927 10.1109/IROS.2018.8593940 10.1109/IROS.2016.7759566 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app14062512 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_0dce399ad6e04c858ac49a8386f0c29f 10.3390/app14062512 A788243029 10_3390_app14062512 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-7ca5c7a4b27939d45d787fba73eaf5946e127a7bfcd810eaadfa453acb0ea7fa3 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 14:43:40 EDT 2025 Sun Oct 26 03:18:26 EDT 2025 Mon Jun 30 13:34:50 EDT 2025 Mon Oct 20 17:06:35 EDT 2025 Thu Oct 16 04:40:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-7ca5c7a4b27939d45d787fba73eaf5946e127a7bfcd810eaadfa453acb0ea7fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7463-8136 0000-0002-0122-1353 0000-0001-9746-4642 |
| OpenAccessLink | https://www.proquest.com/docview/2988139585?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2988139585 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0dce399ad6e04c858ac49a8386f0c29f unpaywall_primary_10_3390_app14062512 proquest_journals_2988139585 gale_infotracacademiconefile_A788243029 crossref_primary_10_3390_app14062512 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Salazar (ref_28) 2013; 70 ref_14 ref_12 Ruggiero (ref_2) 2018; 3 ref_33 ref_32 ref_30 ref_19 ref_17 ref_16 Cocuzza (ref_23) 2012; 35 Viktor (ref_31) 2015; 10 Siciliano (ref_11) 1990; 8 Cocuzza (ref_24) 2010; 67 Ollero (ref_3) 2022; 38 ref_25 Huang (ref_7) 2005; 2 Pierri (ref_13) 2018; 36 Wilde (ref_18) 2018; 5 Antonelli (ref_20) 2000; 33 Caccavale (ref_21) 2001; 15 Abdessameud (ref_1) 2018; 107 Umetani (ref_10) 1989; 5 ref_29 Acosta (ref_15) 2020; 99 ref_27 ref_26 ref_9 ref_8 ref_5 Mukherjee (ref_22) 1992; 8 ref_4 ref_6 |
| References_xml | – ident: ref_8 doi: 10.3390/robotics12020031 – ident: ref_16 doi: 10.1109/ME49197.2020.9286694 – ident: ref_30 – ident: ref_26 – volume: 5 start-page: 41 year: 2018 ident: ref_18 article-title: Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer’s Tutorial publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00041 – volume: 8 start-page: 400 year: 1992 ident: ref_22 article-title: Formulation and Efficient Computation of Inverse Dynamics of Space Robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.143357 – volume: 5 start-page: 303 year: 1989 ident: ref_10 article-title: Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.34766 – volume: 70 start-page: 51 year: 2013 ident: ref_28 article-title: Trajectory Control of a Quadrotor Subject to 2D Wind Disturbances publication-title: J. Intell. Robot Syst. doi: 10.1007/s10846-012-9734-1 – volume: 107 start-page: 221 year: 2018 ident: ref_1 article-title: Aerial Manipulation—A Literature Survey publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.06.012 – ident: ref_17 doi: 10.1007/978-1-84628-642-1 – volume: 36 start-page: 1527 year: 2018 ident: ref_13 article-title: An adaptive hierarchical control for aerial manipulators publication-title: Robotica doi: 10.1017/S0263574718000553 – volume: 2 start-page: 13 year: 2005 ident: ref_7 article-title: Dynamic Balance Control of Multi-Arm Free-Floating Space Robots publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/5797 – ident: ref_9 doi: 10.3390/app122312254 – volume: 99 start-page: 105731 year: 2020 ident: ref_15 article-title: Accurate control of Aerial Manipulators outdoors. A reliable and self-coordinated nonlinear approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105731 – volume: 10 start-page: 1535 year: 2015 ident: ref_31 article-title: Simulation of Wind Effect on a Quadrotor Flight publication-title: ARPN J. Eng. Appl. Sci. – ident: ref_29 – ident: ref_27 – ident: ref_19 doi: 10.1007/978-1-4615-3588-1 – ident: ref_25 doi: 10.1109/SIET.2018.8693163 – ident: ref_33 doi: 10.1109/MED.2013.6608869 – volume: 3 start-page: 1957 year: 2018 ident: ref_2 article-title: Aerial Manipulation: A Literature Review publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2808541 – volume: 8 start-page: 231 year: 1990 ident: ref_11 article-title: A Closed-Loop Inverse Kinematic Scheme for On-Line Joint-Based Robot Control publication-title: Robotica doi: 10.1017/S0263574700000096 – volume: 33 start-page: 183 year: 2000 ident: ref_20 article-title: Kinematic Control of Redundant Manipulators with On-Line End-Effector Path Tracking Capability Under Velocity and Acceleration Constraints publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)37926-0 – ident: ref_32 doi: 10.1007/978-3-319-61022-1 – ident: ref_14 doi: 10.1109/ICRA.2015.7139938 – ident: ref_6 doi: 10.1109/IROS.2014.6943038 – volume: 15 start-page: 429 year: 2001 ident: ref_21 article-title: Kinematic Control of Redundant Free-Floating Robotic Systems publication-title: Adv. Robot. doi: 10.1163/156855301750398347 – volume: 35 start-page: 976 year: 2012 ident: ref_23 article-title: Least-Squares-Based Reaction Control of Space Manipulators publication-title: J. Guid. Control Dyn. doi: 10.2514/1.45874 – volume: 67 start-page: 285 year: 2010 ident: ref_24 article-title: Reaction Torque Control of Redundant Space Robotic Systems for Orbital Maintenance and Simulated Microgravity Tests publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2009.05.007 – volume: 38 start-page: 626 year: 2022 ident: ref_3 article-title: Past, Present, and Future of Aerial Robotic Manipulators publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3084395 – ident: ref_5 doi: 10.3390/app10248927 – ident: ref_4 doi: 10.1109/IROS.2018.8593940 – ident: ref_12 doi: 10.1109/IROS.2016.7759566 |
| SSID | ssj0000913810 |
| Score | 2.2863324 |
| Snippet | The precise control of an aerial manipulator presents a formidable challenge due to the inherent mobility of its base, which is subject to both external... Inspection of structures, e.g., offshore/nuclear/eolic plants, bridges, and tall buildings. Inspection of archaeological sites. Placement and retrieval of... Featured ApplicationInspection of structures, e.g., offshore/nuclear/eolic plants, bridges, and tall buildings. Inspection of archaeological sites. Placement... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2512 |
| SubjectTerms | aerial manipulation Algorithms Archaeology Control algorithms inverse kinematics Kinematics robot Robotics Sensors trajectory tracking control UAV Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kF-1BbFXcWiWHinpY3E2y2eT4rJYiVDz4oLcw-YLKY195fQ_pf-8kuy0rgl68bZbADpmZzMfO_AbgJDguvUtd3Uftahkjr01oRa1dajCaFmNJDVx8VedL-eWyu5yN-so1YSM88HhwH5rgIxlRDCo20utOo5cGtdAqNZ6blG_fRptZMFXuYNNm6KqxIU9QXJ__B1MsobI5_80EFaT-P-_jfXi4G67x9ieuVjODc_YEHk-eIluMFB7Agzgcwv4MP_AQDibNvGHvJvjo909hRebnR8nF3zJ69DkXzk7HinS2TgwHtihixy5wuCrju9YbdjUwcgXZt9KN5GPe-IkkYLdxWD6AQ2B5btqKLWldyggyFOszWJ59_n56Xk8zFWovVLute4-d71E6ToppguwCaWxy2IuIqTNSxZb32LvkA51fRAwJZSfQO1r0CcVz2BvWQ3wBLDnluqaNKkQvk1FGhJwdKc27faN0BSd3x2yvR-gMSyFH5oadcaOCj5kF91sy3nV5QVJgJymw_5KCCt5mBtqslVs6WpyaC4jSjG9lFxTpcykabio4vuOxndT1xnKjNbnCFDpV8Oae73-j-uh_UP0SHnHykcaStmPY22528RX5OFv3uojzL5DO-2w priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AA9AC0gAgXtoQg4uPFjXz6hUKgqpFY9EKmczOyrCkROlDig8uuZXW-qABJC4ua11vbaMzsvz3xDyKHVJTPa80w6pTPmXJnVtqgypX0Ori7AxdDA2bk4nbAPl_wy9TldpbRKdMWnUUiX6GRnKGblqGAjMQqqeLSw_s23FEoqZOhSyxhHGbwjOBrjA7IzOb8Yfwot5TYX91V5FTr34acwOhQi3OgXPRTh-v8Uyrvk9rpdwPV3mM22tM7JPfJ5s94-2eTr0brTR-bHb1CO__FC98ndZJHScc9Ce-SWa_fJ7hZO4T7ZSxJgRV8lmOrXD8gM1dyXGPO_pnhoQsydHveZ73TuKbR0HNmbnkE7jW3C5ks6bSmanPQiVj0ZFya-Q05bLzXEB0BraejPNqMTHMd0hQD5-pBMTt5_PD7NUu-GzFSi6DJpgBsJTJcoAGrLuEXJ4DXIyoHnNROuKCVI7Y1VRe4ArAfGKzAaB9JD9YgM2nnrHhPqtdA8L5ywzjBfi7qyIQoTi4RlLtSQHG4o2Sx6iI4GXZtA8GaL4EPyNlD5ZkrA1Y4n5surJm3TJrfGockGVricGcUVGFaDqpTwuSlrPyQvA480Yfd3-GkhFTHgSgOOVjOW6LGwKi_rITnYsFGTxMKqKWul0ORGF21IXtyw1t9W_eQf5z0ld0o0t_rsuAMy6JZr9wzNpU4_T1viJz86EEQ priority: 102 providerName: Unpaywall |
| Title | Trajectory Tracking Control of an Aerial Manipulator in the Presence of Disturbances and Model Uncertainties |
| URI | https://www.proquest.com/docview/2988139585 https://www.mdpi.com/2076-3417/14/6/2512/pdf?version=1710574452 https://doaj.org/article/0dce399ad6e04c858ac49a8386f0c29f |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAbEBIjAqPwwBDxH5cBznAaFurExIqypEpfEUnb_QUJWUrhXaf8_ZSUsR0t7iyEos353vw3e_Azg1KuNauSIurVQxtzaLK5PmsVQuQVulaENo4GoiLmf8y3VxvQeTTS2MT6vcnInhoDat9jHy91klJVkrZN1-XPyKfdcof7u6aaGBfWsF8yFAjO3DQeaRsQZwcHYxmX7dRl08CqZMk65QLyd_398Tk48hvJr_RzUFBP__z-lDeLBuFnj3G-fzHUU0fgyPeguSjTqSH8GebY7hcAdX8BiOeom9ZW97WOl3T2BOaulniNHfMXrUPkbOzrtMddY6hg0bBXZkV9jchLZe7ZLdNIxMRDYNVUra-omfiDPWS4XhB9gY5vupzdmMxiG9wEO0PoXZ-OLb-WXc91qIdS7SVVxqLHSJXGUksJXhhSFJdgrL3KIrKi5smpVYKqcN7Z9FNA55kaNWNCgd5s9g0LSNfQ7MKaGKJLXCWM1dJarc-KhJKOotEyEjON1sc73oIDVqckU8NeodakRw5kmwneJxsMOLdvmj7sWqToy2ZGKhETbhWhYSNa9Q5lK4RGeVi-CNJ2DtpXVFW4t90QGt1ONe1aOSPAyeJ1kVwcmGxnUvxrf1X6aL4PWW7vet-sX9n3kJDzOyirokthMYrJZr-4qsmpUawr4cfx72DDsMsQEazSbT0fc_9m78gA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QLSAGijgQyvgsGJ37X34UKH0pZQ2UYVaqbdl_EJF0SbkoSp_jt_G2NmEIKTeeluvvF7LMx5_M54HwL5RqdDKZVFhSxUJa9NImoRHpXIxWpmgDaaBbi_v3Iivt9ntGvxexMJ4t8qFTAyC2gy0t5F_TmVZElohdPtl-CvyVaP87eqihAY2pRXMYUgx1gR2XNjZPalw48PzE6L3QZqenV4fd6KmykCkeZ5MokJjpgsUKiVWlUZkhnjYKSy4RZdJkdskLbBQTpsyiS2icSgyjlpRo3DIadwnsCG4kKT8bRyd9q6-La08PusmfTUPDORcxv5emnSa3MOKf47CUDHg_3NhCzan9RBn99jvrxx8Z8_hWYNYWXvOYtuwZusd2FrJY7gD242EGLOPTRrrTy-gT8fgz3AnMGP0qL1Nnh3PPePZwDGsWTuwP-tifRfKiA1G7K5mBEnZVYiK0tZ3PCFOnI4Uhh9gbZiv39ZnN9QO7gw-JexLuHmUVX8F6_WgtrvAnMpVFic2N1YLJ3PJjbfShCDiIs7LFuwvlrkazlN4VKT6eGpUK9RowZEnwbKLz7sdXgxGP6pmG1ex0ZYgHZrcxkKXWYlaSCx5mbtYp9K14IMnYOWlw4SWFpsgB5qpz7NVtQvSaASPU9mCvQWNq0ZsjKu_TN6CgyXdH5r164eHeQ-bnevuZXV53rt4A09TQmRzB7o9WJ-MpvYtIaqJetewLYPvj71T_gBktDi8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkF7QLSACBTwoRVwiJqH8_ABoaXL0lJa9cBKvYXxC7VaJcs-VO1f49cxdrLLIqTeeosjx7E84_HMeOYbgH0tE66kzcLClDLkxiSh0HEaltJGaESMxrsGzs7z4yH_epldbsDvZS6MC6tcykQvqHWjnI_8MBFlSdoKabeHtguLuOgPPo5_ha6ClLtpXZbTaFnk1CxuyHybfjjpE60PkmTw-fvRcdhVGAhVmsezsFCYqQK5TIhNheaZJv61EovUoM0Ez02cFFhIq3QZRwZRW-RZikpSo7CY0rj34H7hUNxdlvrgy8q_4_A26Zs2JTBNReRupMmayZ1C8c8h6GsF_H8ibMPDeT3GxQ2ORmtH3uAxPOp0VdZrmWsHNky9C9trCIa7sNPJhil71wFYv38CIzoAr_1twILRo3LeeHbUxsSzxjKsWc8zPjvD-soXEGsm7KpmpIyyC58PpYzr2CcenE8k-h9grZmr3DZiQ2r7QAYHBvsUhney5s9gs25q8xyYlbnMotjk2ihuRS5S7fwzPn24iPIygP3lMlfjFryjIqPHUaNao0YAnxwJVl0c4rZ_0Ux-Vt0GriKtDClzqHMTcVVmJSousEzL3EYqETaAt46AlZMLM1pa7NIbaKYOYavqFWTL8DRKRAB7SxpXncCYVn_ZO4CDFd1vm_WL24d5Aw9of1TfTs5PX8JWQqpYGzm3B5uzydy8IlVqJl97nmXw4643yR_qHjZW |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AA9AC0gAgXtoQg4uPFjXz6hUKgqpFY9EKmczOyrCkROlDig8uuZXW-qABJC4ua11vbaMzsvz3xDyKHVJTPa80w6pTPmXJnVtqgypX0Ori7AxdDA2bk4nbAPl_wy9TldpbRKdMWnUUiX6GRnKGblqGAjMQqqeLSw_s23FEoqZOhSyxhHGbwjOBrjA7IzOb8Yfwot5TYX91V5FTr34acwOhQi3OgXPRTh-v8Uyrvk9rpdwPV3mM22tM7JPfJ5s94-2eTr0brTR-bHb1CO__FC98ndZJHScc9Ce-SWa_fJ7hZO4T7ZSxJgRV8lmOrXD8gM1dyXGPO_pnhoQsydHveZ73TuKbR0HNmbnkE7jW3C5ks6bSmanPQiVj0ZFya-Q05bLzXEB0BraejPNqMTHMd0hQD5-pBMTt5_PD7NUu-GzFSi6DJpgBsJTJcoAGrLuEXJ4DXIyoHnNROuKCVI7Y1VRe4ArAfGKzAaB9JD9YgM2nnrHhPqtdA8L5ywzjBfi7qyIQoTi4RlLtSQHG4o2Sx6iI4GXZtA8GaL4EPyNlD5ZkrA1Y4n5surJm3TJrfGockGVricGcUVGFaDqpTwuSlrPyQvA480Yfd3-GkhFTHgSgOOVjOW6LGwKi_rITnYsFGTxMKqKWul0ORGF21IXtyw1t9W_eQf5z0ld0o0t_rsuAMy6JZr9wzNpU4_T1viJz86EEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Tracking+Control+of+an+Aerial+Manipulator+in+the+Presence+of+Disturbances+and+Model+Uncertainties&rft.jtitle=Applied+sciences&rft.au=Pedrocco%2C+Mattia&rft.au=Pasetto%2C+Alberto&rft.au=Fanti%2C+Giulio&rft.au=Benato%2C+Alberto&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Fapp14062512&rft.externalDocID=A788243029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |