Optimal Management for Parking-Lot Electric Vehicle Charging by Two-Stage Approximate Dynamic Programming
This paper targets the day-time charging scenario for plug-in electric vehicles at parking-lots near commercial places, where most vehicles have extended parking time. Compared with night-time charge scenarios for residential buildings, commercial building parking-lot charging during day-time featur...
Saved in:
Published in | IEEE transactions on smart grid Vol. 8; no. 4; pp. 1722 - 1730 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3053 1949-3061 |
DOI | 10.1109/TSG.2015.2505298 |
Cover
Abstract | This paper targets the day-time charging scenario for plug-in electric vehicles at parking-lots near commercial places, where most vehicles have extended parking time. Compared with night-time charge scenarios for residential buildings, commercial building parking-lot charging during day-time feature significant stochastic vehicle arrival and departure, as well as highly dynamic electricity price. A two-stage approximate dynamic programming framework is proposed to determine the optimal charging strategy, utilizing the predicted short-term future information and long-term estimation from historical data. All the vehicles are desired to be charged to full prior to the departure time specified under constrained total charging capacity. The uncharged amount is subject to a significant penalty cost. Simulation scenarios are created by modeling the vehicle arrival behavior as Poisson process, including arrival time, departure time, and arrival state of charge. The simulation results show that the proposed method can significantly decrease the energy cost. |
---|---|
AbstractList | This paper targets the day-time charging scenario for plug-in electric vehicles at parking-lots near commercial places, where most vehicles have extended parking time. Compared with night-time charge scenarios for residential buildings, commercial building parking-lot charging during day-time feature significant stochastic vehicle arrival and departure, as well as highly dynamic electricity price. A two-stage approximate dynamic programming framework is proposed to determine the optimal charging strategy, utilizing the predicted short-term future information and long-term estimation from historical data. All the vehicles are desired to be charged to full prior to the departure time specified under constrained total charging capacity. The uncharged amount is subject to a significant penalty cost. Simulation scenarios are created by modeling the vehicle arrival behavior as Poisson process, including arrival time, departure time, and arrival state of charge. The simulation results show that the proposed method can significantly decrease the energy cost. |
Author | Lei Zhang Yaoyu Li |
Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 2 givenname: Yaoyu surname: Li fullname: Li, Yaoyu |
BookMark | eNp9kMFPwjAUxhuDiYjcTbw08Txs17VbjwQRTTCQQLwupbxBcVtnV6L895ZAOHjwXfrafr_vvXy3qFPbGhC6p2RAKZFPy8VkEBPKBzEnPJbZFepSmciIEUE7l56zG9Rv2x0JxRgTsewiM2u8qVSJ31WtNlBB7XFhHZ4r92nqTTS1Ho9L0N4ZjT9ga3QJeLRVbhN-8eqAl982WviA4mHTOPsTzDzg50OtqkDMnd04VVVBfIeuC1W20D-fPbR8GS9Hr9F0NnkbDaeRZoL6KE15JriAmBDICANJlOZJTNYZ50mR0IwXoNRKr9YyIZyGZ51JcbzJFNZr1kOPJ9uwzNceWp_v7N7VYWJOJY1TLjNOg4qcVNrZtnVQ5I0Lm7tDTkl-jDQPkebHSPNzpAERfxBtvPLG1t4pU_4HPpxAAwCXOSkTJGaC_QKKTYUq |
CODEN | ITSGBQ |
CitedBy_id | crossref_primary_10_1007_s10479_025_06509_8 crossref_primary_10_1016_j_est_2022_104136 crossref_primary_10_1109_ACCESS_2021_3082430 crossref_primary_10_1049_iet_rpg_2019_0794 crossref_primary_10_1007_s00158_024_03737_7 crossref_primary_10_1016_j_apenergy_2022_120111 crossref_primary_10_1016_j_energy_2022_123482 crossref_primary_10_1007_s40565_017_0350_8 crossref_primary_10_1109_TSG_2024_3422330 crossref_primary_10_1109_TII_2020_3020166 crossref_primary_10_1016_j_ijepes_2019_105542 crossref_primary_10_1016_j_automatica_2021_109746 crossref_primary_10_1109_ACCESS_2020_3039507 crossref_primary_10_3390_app12178914 crossref_primary_10_1007_s00202_023_01942_z crossref_primary_10_1016_j_epsr_2024_110572 crossref_primary_10_1049_iet_stg_2019_0282 crossref_primary_10_1109_TSG_2016_2576902 crossref_primary_10_1109_ACCESS_2020_3000820 crossref_primary_10_3390_en16010438 crossref_primary_10_1016_j_apenergy_2024_123862 crossref_primary_10_3233_JIFS_210930 crossref_primary_10_1016_j_ijepes_2019_105776 crossref_primary_10_1109_TSG_2024_3395497 crossref_primary_10_1016_j_susoc_2021_02_002 crossref_primary_10_1109_TPWRS_2022_3172286 crossref_primary_10_1109_TSTE_2018_2855039 crossref_primary_10_1016_j_epsr_2024_110739 crossref_primary_10_1016_j_asoc_2018_07_008 crossref_primary_10_1016_j_est_2022_103973 crossref_primary_10_1109_TSG_2021_3074437 crossref_primary_10_3390_en16248112 crossref_primary_10_1016_j_egyr_2022_09_023 crossref_primary_10_1016_j_jnca_2020_102935 crossref_primary_10_1016_j_enbuild_2022_111916 crossref_primary_10_1080_23080477_2018_1488205 crossref_primary_10_1109_TPDS_2020_3003270 crossref_primary_10_1186_s44147_023_00193_w crossref_primary_10_3390_en11071812 crossref_primary_10_1109_TVT_2020_3045833 crossref_primary_10_1109_TASE_2021_3130179 crossref_primary_10_1109_ACCESS_2019_2963860 crossref_primary_10_1109_TSTE_2018_2859186 crossref_primary_10_1016_j_est_2021_103147 crossref_primary_10_1016_j_jpowsour_2020_228504 crossref_primary_10_1016_j_ifacol_2021_11_209 crossref_primary_10_1016_j_apenergy_2022_120140 crossref_primary_10_1109_ACCESS_2019_2930564 crossref_primary_10_3390_app9163420 crossref_primary_10_1016_j_trc_2022_104010 crossref_primary_10_1061__ASCE_EY_1943_7897_0000778 crossref_primary_10_3390_en13081950 crossref_primary_10_1016_j_ijepes_2022_108061 crossref_primary_10_1016_j_ejor_2023_05_039 crossref_primary_10_3390_en13195003 crossref_primary_10_1016_j_apenergy_2020_115153 crossref_primary_10_1016_j_apenergy_2022_119793 crossref_primary_10_3390_en13112939 crossref_primary_10_1109_TAI_2024_3404913 crossref_primary_10_1016_j_ijepes_2021_107427 crossref_primary_10_1016_j_energy_2020_117555 crossref_primary_10_1109_TSG_2016_2558319 crossref_primary_10_1088_1757_899X_602_1_012038 crossref_primary_10_1109_TCST_2017_2695160 crossref_primary_10_1016_j_apenergy_2022_120393 crossref_primary_10_3390_en13225858 crossref_primary_10_1016_j_jclepro_2021_127792 crossref_primary_10_1109_TSG_2019_2893962 crossref_primary_10_3390_e27030303 crossref_primary_10_1016_j_enconman_2019_06_058 crossref_primary_10_1109_TITS_2021_3099825 crossref_primary_10_1016_j_ijhydene_2023_10_146 crossref_primary_10_1002_2050_7038_13065 crossref_primary_10_1109_TVT_2020_2979637 crossref_primary_10_1109_ACCESS_2019_2925559 crossref_primary_10_1016_j_ijepes_2022_108005 crossref_primary_10_1109_ACCESS_2024_3367133 crossref_primary_10_1007_s42979_023_01708_1 crossref_primary_10_1016_j_ijhydene_2019_11_030 crossref_primary_10_1109_ACCESS_2022_3174077 crossref_primary_10_3390_en15072323 crossref_primary_10_1016_j_renene_2023_119444 crossref_primary_10_1016_j_scs_2018_12_016 crossref_primary_10_1109_TSG_2022_3160390 crossref_primary_10_1016_j_ijepes_2022_108017 crossref_primary_10_23919_CSMS_2023_0005 crossref_primary_10_1109_TSG_2020_3000850 crossref_primary_10_1109_TSTE_2019_2921024 crossref_primary_10_1016_j_ijhydene_2024_09_228 crossref_primary_10_1002_oca_2619 crossref_primary_10_1016_j_tranpol_2023_07_003 crossref_primary_10_31590_ejosat_527350 crossref_primary_10_1088_1755_1315_598_1_012092 crossref_primary_10_1109_TSG_2021_3111029 crossref_primary_10_1016_j_ijepes_2020_106567 crossref_primary_10_3390_app10093247 crossref_primary_10_3390_en13236384 crossref_primary_10_1016_j_energy_2018_01_128 crossref_primary_10_1016_j_apenergy_2024_123883 crossref_primary_10_1016_j_energy_2023_127844 crossref_primary_10_1063_1_5034352 crossref_primary_10_3390_en16237793 crossref_primary_10_1016_j_segan_2022_100992 crossref_primary_10_1007_s00521_024_09530_3 crossref_primary_10_1016_j_apenergy_2021_118241 crossref_primary_10_1016_j_energy_2020_117790 crossref_primary_10_1016_j_est_2018_12_010 crossref_primary_10_1049_gtd2_12210 |
Cites_doi | 10.1109/TPWRS.2005.846054 10.1109/JSYST.2011.2163012 10.1109/TSG.2011.2159278 10.1109/ITSC.2010.5625299 10.1109/TPWRS.2010.2086083 10.1109/MCI.2011.941588 10.1504/IJEHV.2011.044371 10.1109/PES.2009.5275921 10.1109/TPWRS.2012.2210288 10.1002/9781118029176 10.1515/9781400874668 10.1109/TSG.2011.2172643 10.1109/CDC.2005.1582107 10.1109/TSG.2011.2159816 10.1109/PSCE.2009.4839973 10.1109/TVT.2010.2090178 10.1007/BF02283607 10.1109/TSG.2012.2217761 10.1109/TPWRS.2009.2036481 10.1109/TSG.2010.2090913 10.1109/TSG.2012.2211901 10.1109/TSG.2012.2185075 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TSG.2015.2505298 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 1730 |
ExternalDocumentID | 10_1109_TSG_2015_2505298 7360236 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M RIG |
ID | FETCH-LOGICAL-c361t-7758656e200e803e90ac5420d8554f4185feaabcbd94051d85c896bd9497edd3 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Mon Jun 30 09:54:18 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Oct 01 03:11:05 EDT 2025 Tue Aug 26 16:37:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-7758656e200e803e90ac5420d8554f4185feaabcbd94051d85c896bd9497edd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1912759851 |
PQPubID | 2040408 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TSG_2015_2505298 proquest_journals_1912759851 ieee_primary_7360236 crossref_citationtrail_10_1109_TSG_2015_2505298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 bertsekas (ref25) 1996 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ross (ref16) 2009 (ref26) 0 ref24 ref23 ref22 ref21 dasarathy (ref27) 1991 ref8 ref7 ref9 ref4 ref3 ref6 ref5 li (ref20) 2007 |
References_xml | – ident: ref21 doi: 10.1109/TPWRS.2005.846054 – ident: ref14 doi: 10.1109/JSYST.2011.2163012 – ident: ref17 doi: 10.1109/TSG.2011.2159278 – ident: ref1 doi: 10.1109/ITSC.2010.5625299 – ident: ref8 doi: 10.1109/TPWRS.2010.2086083 – ident: ref4 doi: 10.1109/MCI.2011.941588 – year: 1996 ident: ref25 publication-title: Neuro-Dynamic Programming – ident: ref19 doi: 10.1504/IJEHV.2011.044371 – ident: ref3 doi: 10.1109/PES.2009.5275921 – ident: ref9 doi: 10.1109/TPWRS.2012.2210288 – ident: ref18 doi: 10.1002/9781118029176 – ident: ref22 doi: 10.1515/9781400874668 – year: 2009 ident: ref16 publication-title: Introduction to Probability Models – ident: ref15 doi: 10.1109/TSG.2011.2172643 – ident: ref24 doi: 10.1109/CDC.2005.1582107 – ident: ref13 doi: 10.1109/TSG.2011.2159816 – ident: ref5 doi: 10.1109/PSCE.2009.4839973 – ident: ref2 doi: 10.1109/TVT.2010.2090178 – ident: ref23 doi: 10.1007/BF02283607 – ident: ref11 doi: 10.1109/TSG.2012.2217761 – ident: ref6 doi: 10.1109/TPWRS.2009.2036481 – year: 0 ident: ref26 – ident: ref7 doi: 10.1109/TSG.2010.2090913 – year: 2007 ident: ref20 article-title: A power price model and its application to the risk managements publication-title: Proc 26th Annu Eastern Conf – ident: ref10 doi: 10.1109/TSG.2012.2211901 – year: 1991 ident: ref27 publication-title: Nearest Neighbor (NN) Norms NN Pattern Classification Techniques – ident: ref12 doi: 10.1109/TSG.2012.2185075 |
SSID | ssj0000333629 |
Score | 2.5468264 |
Snippet | This paper targets the day-time charging scenario for plug-in electric vehicles at parking-lots near commercial places, where most vehicles have extended... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1722 |
SubjectTerms | approximate dynamic programming Approximation methods Batteries Charge simulation Charging management Charging stations Commercial buildings Computer simulation Constraints demand response Dynamic programming electric vehicle Electric vehicle charging Electric vehicles Electricity pricing Modelling Night Optimization Parking Poisson density functions Probability theory Residential buildings smart grid State of charge Stochastic processes Vehicles |
Title | Optimal Management for Parking-Lot Electric Vehicle Charging by Two-Stage Approximate Dynamic Programming |
URI | https://ieeexplore.ieee.org/document/7360236 https://www.proquest.com/docview/1912759851 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3IAWkAspZUPvSCR3WDHTnxEFIpQC0jdIm5RYk8AAbsIsirw65lxskv5UMUticZWpLE9z57nNwDfZJXpQqcY-dKZKKkKGRUynDYRGK-MVTSlmG1xYPb-JPsn-mQKNiZ3YRAxkM-wy48hl--HbsRHZb1UGRY8n4bpNLXNXa3JeUqsFK3FNiSRE07nazXOSsa21__9g2lcussRX9rsWRQKZVVercUhwOzOw6_xrzW8kovuqC677uGFauN7_30B5lqkKbaaofERpnDwCWb_0R9chPNDWjCuyOiJBCMIxAq-Ck0G0c9hLXZCnZxzJ47xjDsSnKDnykaivBf9v8OI4Oopii3WJr-jzmoU35sq9-Ko4X5dkfES9Hd3-tt7UVt7IXLKbNYEunVGUA9pEmEWK7Rx4XQiY8-0tooVbyositKV3hLk26TPLrOG32yK3qtlmBkMB7gCwqnEeTTOYJIltkgK7WXlbUpjw6hKmg70xq7IXatLzuUxLvOwP4ltTs7L2Xl567wOrE9aXDeaHP-xXWRfTOxaN3RgbeztvJ20tzltXWWqLWHQ1bdbfYYPkqN6YOuuwUx9M8IvhEnq8msYjI8sYN2h |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6Vcig9QEupWGiLD71UIrtZO3biY0Vblnb7kAiotyixJ6Uq3UWQFY9fz4yTXZ5C3JJobEX6bM9nz-cZgF1ZZ7rUKUa-ciZK6lJGpQynTUTGa2MVTSlWW5yZ0Zvk-FJfLsHzxV0YRAziM-zzY4jl-6mb8VHZIFWGE57fgbuadhVpe1trcaISK0WrsQ1h5IQD-lrN45KxHeSvX7KQS_fZ50ub_eKHQmGVP1bj4GKOHsDp_OdaZclNf9ZUffftt7yN__v3a3C_45pivx0c67CEk4ew-lMGwg24Pqcl45aMfshgBNFYwZehySAaTxtxGCrlXDvxFt9xR4JD9FzbSFRfRf55GhFhvUKxz9nJv1BnDYqDts69uGjVX7dk_Ajyo8P8xSjqqi9ETplhQ7RbZ0T2kKYRZrFCG5dOJzL2LGyrOedNjWVZucpbIn1D-uwya_jNpui92oTlyXSCj0E4lTiPxhlMssSWSam9rL1NaXQYVUvTg8EcisJ1mcm5QMb7IuxQYlsQeAWDV3Tg9WBv0eJDm5XjH7YbjMXCroOhB1tztItu2n4qaPMqU22JhT75e6tnsDLKT8fF-NXZyVO4J9nHB-3uFiw3H2e4TQylqXbCwPwO-ZDg8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Management+for+Parking-Lot+Electric+Vehicle+Charging+by+Two-Stage+Approximate+Dynamic+Programming&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Lei+Zhang&rft.au=Yaoyu+Li&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=8&rft.issue=4&rft.spage=1722&rft.epage=1730&rft_id=info:doi/10.1109%2FTSG.2015.2505298&rft.externalDocID=7360236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |