Feasibility of cold plasma for the control of biofilms in food industry
The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with t...
Saved in:
Published in | Trends in food science & technology Vol. 99; pp. 142 - 151 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Ltd
01.05.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-2244 1879-3053 |
DOI | 10.1016/j.tifs.2020.03.001 |
Cover
Abstract | The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject.
This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method.
Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions.
•The biofilms showed increased resistance against traditional sterilization technology.•Cold plasma was an effective method for the control of biofilms.•The possible mechanism of the action of cold plasma on biofilms was discussed.•The factors influencing the anti-biofilms efficiency of cold plasma were summarized. |
---|---|
AbstractList | The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject.This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method.Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions. Background: The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject. Scope and approach: This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method. Key findings and conclusions: Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions. The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject. This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method. Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions. •The biofilms showed increased resistance against traditional sterilization technology.•Cold plasma was an effective method for the control of biofilms.•The possible mechanism of the action of cold plasma on biofilms was discussed.•The factors influencing the anti-biofilms efficiency of cold plasma were summarized. |
Author | Li, Changzhu Zhu, Yulin Lin, Lin Cui, Haiying |
Author_xml | – sequence: 1 givenname: Yulin surname: Zhu fullname: Zhu, Yulin organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China – sequence: 2 givenname: Changzhu surname: Li fullname: Li, Changzhu organization: Department of Bioresource, Hunan Academy of Forestry, Changsha, 410007, China – sequence: 3 givenname: Haiying surname: Cui fullname: Cui, Haiying email: cuihaiying@ujs.edu.cn organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China – sequence: 4 givenname: Lin surname: Lin fullname: Lin, Lin email: linl@ujs.edu.cn organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China |
BookMark | eNp9kE1LAzEQhoNUsFX_gKcFL152nXzsbhe8SLEqCF70HLLZCaakm5qkQv-9WerJQ08DM-8zzDwLMhv9iITcUKgo0OZ-UyVrYsWAQQW8AqBnZE6XbVdyqPmMzKFjomRMiAuyiHEDkNt1PSfPa1TR9tbZdCi8KbR3Q7FzKm5VYXwo0hfm3piCd9O4t95Yt42FHfPYD7kO-5jC4YqcG-UiXv_VS_K5fvpYvZRv78-vq8e3UvOGprKl3bKtdc_6uukb2qFoWYNCcaM1g65nQ41DQzUTrRG9Mv2gNe8ADdfcNFzwS3J33LsL_nuPMcmtjRqdUyP6fZRM5M9Yw6DN0dt_0Y3fhzFfl1MCOgF1V-fU8pjSwccY0Ehtk0p2-llZJynIybDcyMmwnAxL4DIbzij7h-6C3apwOA09HCHMln4sBhm1xVHjYAPqJAdvT-G_lO6WeA |
CitedBy_id | crossref_primary_10_2147_IDR_S285690 crossref_primary_10_1016_j_tifs_2020_10_012 crossref_primary_10_1016_j_culher_2023_05_027 crossref_primary_10_3389_fvets_2023_1240596 crossref_primary_10_3390_microorganisms10010162 crossref_primary_10_1007_s00253_023_12618_w crossref_primary_10_15237_gida_GD23133 crossref_primary_10_1080_10408398_2023_2200861 crossref_primary_10_1016_j_meatsci_2024_109596 crossref_primary_10_1002_fsn3_3355 crossref_primary_10_3390_ijms25126638 crossref_primary_10_3390_app112411597 crossref_primary_10_1111_1750_3841_16754 crossref_primary_10_1016_j_ijbiomac_2022_01_186 crossref_primary_10_1080_09603123_2022_2149710 crossref_primary_10_1080_10408398_2022_2077298 crossref_primary_10_1016_j_fufo_2024_100400 crossref_primary_10_1111_jam_14823 crossref_primary_10_3390_foods10061234 crossref_primary_10_3390_foods11223683 crossref_primary_10_1007_s11696_021_01860_z crossref_primary_10_1021_acs_jafc_0c05028 crossref_primary_10_1109_TRPMS_2024_3370503 crossref_primary_10_1016_j_lwt_2021_111633 crossref_primary_10_1039_D0NJ05714B crossref_primary_10_1080_10408398_2024_2354524 crossref_primary_10_1016_j_foodcont_2020_107804 crossref_primary_10_1007_s42824_024_00114_z crossref_primary_10_1016_j_fochms_2022_100098 crossref_primary_10_1016_j_foodres_2023_113575 crossref_primary_10_3390_foods13101522 crossref_primary_10_1111_jfpp_17133 crossref_primary_10_1007_s12393_023_09348_0 crossref_primary_10_3390_ijms23084131 crossref_primary_10_1111_1541_4337_12885 crossref_primary_10_1007_s12010_022_04262_3 crossref_primary_10_1016_j_jfp_2023_100078 crossref_primary_10_1111_jfpe_13593 crossref_primary_10_63095_NBSEH_25_650223 crossref_primary_10_1016_j_foodcont_2025_111319 crossref_primary_10_1016_j_ijfoodmicro_2023_110127 crossref_primary_10_1002_ppap_202300066 crossref_primary_10_1088_1755_1315_854_1_012024 crossref_primary_10_1002_jobm_202000678 crossref_primary_10_1016_j_foodcont_2023_109645 crossref_primary_10_17844_jphpi_v27i10_53930 crossref_primary_10_1016_j_fpsl_2023_101087 crossref_primary_10_1111_jfs_12988 crossref_primary_10_3390_microorganisms13030548 crossref_primary_10_1007_s10068_023_01312_2 crossref_primary_10_3390_foods13203251 crossref_primary_10_1007_s13197_022_05434_z crossref_primary_10_1007_s11947_024_03476_z crossref_primary_10_3390_plants11070856 crossref_primary_10_5851_kosfa_2023_e31 crossref_primary_10_1111_1541_4337_13027 crossref_primary_10_3390_foods10122927 crossref_primary_10_1016_j_ifset_2023_103340 crossref_primary_10_3390_pathogens14010010 crossref_primary_10_1007_s11274_024_04054_3 crossref_primary_10_1016_j_micres_2024_127656 crossref_primary_10_1111_1541_4337_12852 crossref_primary_10_1016_j_lwt_2020_110210 crossref_primary_10_1016_j_ifset_2022_103260 crossref_primary_10_1016_j_foodres_2024_114650 crossref_primary_10_1007_s00217_021_03750_w crossref_primary_10_3390_foods10071484 crossref_primary_10_1016_j_foodres_2023_112593 crossref_primary_10_1016_j_foodcont_2025_111259 crossref_primary_10_1016_j_foodres_2021_110126 crossref_primary_10_1016_j_ijbiomac_2024_133307 crossref_primary_10_1016_j_fufo_2021_100095 crossref_primary_10_1016_j_lwt_2024_116843 crossref_primary_10_1021_acsomega_2c01077 crossref_primary_10_1016_j_foodres_2023_112867 crossref_primary_10_1080_87559129_2023_2212061 crossref_primary_10_1111_lam_13799 crossref_primary_10_3390_foods11162469 crossref_primary_10_3390_plants10081616 crossref_primary_10_1089_fpd_2021_0035 crossref_primary_10_1016_j_scitotenv_2024_178184 crossref_primary_10_1039_D4EW00226A crossref_primary_10_1111_1541_4337_12820 crossref_primary_10_1109_TPS_2020_3019995 crossref_primary_10_1016_j_foodres_2024_114067 crossref_primary_10_1080_00439339_2023_2163044 crossref_primary_10_3390_v14122685 crossref_primary_10_1080_10408398_2020_1865872 crossref_primary_10_1111_1541_4337_70056 |
Cites_doi | 10.1016/j.ijantimicag.2013.08.022 10.1016/j.foodcont.2016.01.035 10.1016/j.ifset.2013.03.001 10.1016/j.tifs.2017.08.007 10.1016/j.ifset.2019.01.013 10.1016/j.fm.2018.01.003 10.1016/j.cofs.2017.07.008 10.4315/0362-028X-71.7.1357 10.1016/j.foodres.2013.11.005 10.1016/j.fbp.2015.07.011 10.1016/j.foodcont.2011.10.002 10.1016/j.ifset.2016.06.007 10.1007/s11483-014-9382-z 10.1016/j.foodcont.2010.02.002 10.1016/j.ijfoodmicro.2015.05.019 10.1016/j.tifs.2018.02.008 10.1111/ijfs.13159 10.1016/j.foodcont.2018.09.034 10.1111/j.1365-2672.2007.03286.x 10.1016/j.chom.2019.06.002 10.1016/j.ijms.2003.11.016 10.1111/j.1574-695X.2012.00942.x 10.1016/j.ijfoodmicro.2015.07.022 10.1016/j.ifset.2013.04.002 10.1021/jp411440k 10.1016/j.cofs.2019.03.006 10.1016/j.jbiosc.2014.02.005 10.1016/j.jwpe.2016.01.003 10.1016/j.cofs.2015.02.003 10.1016/j.meatsci.2013.05.023 10.1016/j.ijfoodmicro.2019.108385 10.1016/j.foodhyd.2014.08.019 10.1111/jfs.12316 10.1016/j.foodcont.2015.03.003 10.1016/j.cap.2013.04.021 10.1088/0022-3727/45/16/165205 10.1016/j.ijfoodmicro.2018.01.004 10.1016/j.biotechadv.2015.01.002 10.1016/j.jfoodeng.2019.109696 10.1016/j.ibiod.2019.03.003 10.1016/j.fm.2014.08.003 10.1016/j.ijfoodmicro.2019.01.005 10.2514/1.9562 10.1016/j.jgeb.2018.07.001 10.1111/j.1365-2672.2007.03694.x 10.1016/j.fm.2014.09.010 10.1046/j.1472-765X.2001.01004.x 10.1080/08927014.2011.602188 10.3389/fmicb.2016.00977 10.1111/jam.13429 10.1016/j.lwt.2014.08.036 10.1016/j.foodcont.2015.08.043 10.1371/journal.pone.0138209 10.1016/j.fm.2013.02.005 10.1016/j.foodcont.2016.05.056 10.1016/j.jfoodeng.2018.08.020 10.1128/microbiolspec.MB-0010-2014 10.1371/journal.pone.0044289 10.1016/j.ijfoodmicro.2010.10.029 10.1016/j.biomaterials.2015.12.027 10.1016/j.foodchem.2015.05.135 10.1016/j.lwt.2019.108582 10.1016/j.tifs.2018.07.014 10.1111/1541-4337.12144 10.1016/j.foodres.2014.03.067 10.1016/j.ijfoodmicro.2017.11.019 10.4315/0362-028X-71.3.634 10.1016/j.tibtech.2018.03.007 10.1016/j.ifset.2019.01.019 10.1038/nrmicro.2017.107 10.1016/j.tifs.2016.07.001 10.1016/j.cap.2012.12.024 10.1016/j.tifs.2017.04.005 10.1016/j.ijfoodmicro.2018.03.026 10.1016/j.foodres.2013.11.042 10.1016/j.cap.2013.01.030 10.1016/j.ijfoodmicro.2015.09.006 10.1016/j.ifset.2016.07.015 10.4315/0362-028X-68.4.711 10.1016/j.fm.2012.08.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV May 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV May 2020 |
DBID | AAYXX CITATION 7QO 7QR 7ST 7T7 8FD C1K F28 FR3 P64 SOI 7S9 L.6 |
DOI | 10.1016/j.tifs.2020.03.001 |
DatabaseName | CrossRef Biotechnology Research Abstracts Chemoreception Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-3053 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_tifs_2020_03_001 S0924224419311665 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K WH7 WUQ XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QO 7QR 7ST 7T7 8FD C1K EFKBS F28 FR3 P64 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c361t-719875cb2b56b619e4726e4a3fcc209b2d5ed61c247f4bafbdcc390ef3c3f6343 |
IEDL.DBID | .~1 |
ISSN | 0924-2244 |
IngestDate | Fri Sep 05 03:56:26 EDT 2025 Wed Aug 13 10:35:50 EDT 2025 Tue Jul 01 04:02:36 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Fri Feb 23 02:46:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Food preservation Quorum sensing Cold plasma Biofilms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-719875cb2b56b619e4726e4a3fcc209b2d5ed61c247f4bafbdcc390ef3c3f6343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2440940595 |
PQPubID | 2045388 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2400526207 proquest_journals_2440940595 crossref_citationtrail_10_1016_j_tifs_2020_03_001 crossref_primary_10_1016_j_tifs_2020_03_001 elsevier_sciencedirect_doi_10_1016_j_tifs_2020_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Trends in food science & technology |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Srey, Park, Jahid, Ha (bib69) 2014; 62 Traba, Liang (bib74) 2011; 27 Sarangapani, Misra, Milosavljevic, Bourke, Cullen (bib65) 2016; 9 Zhang, Wei, Yuan, Chen, Dai, Wang (bib81) 2019; 52 Hertwig, Kai, Ehlbeck, Knorr, Schlüter (bib32) 2015; 55 Bol'shakov, Cruden, Mogul, Rao, Shama (bib6) 2004; 42 Chizoba Ekezie, Sun, Cheng (bib8) 2017; 69 Coutinho (bib12) 2018; 74 Katja (bib38) 2012; 7 Jahid, Han, Srey, Ha (bib35) 2014; 55 Kamgang, Briandet, Herry, Brisset, Natali (bib37) 2007; 103 Kim, Yong, Park, Choe, Jo (bib40) 2013; 13 Dasan, Mutlu, Boyaci (bib18) 2016; 216 Yun, Kim, Jung, Kruk, Kim, Choe (bib80) 2010; 21 Minei, Gomes, Ratti, D'Angelis, De Martinis (bib49) 2008; 71 Gilmore, Flynn, O'Brien, Hickok, Freeman, Bourke (bib26) 2018; 36 Cui, Wu, Li, Lin (bib17) 2017; 37 Hussain, Kwon, Park, Seheli, Huque, Oh (bib33) 2019; 116 Norwood, Gilmour (bib55) 2010; 33 Lunov (bib45) 2016; 82 Xu, Xie, Soteyome, Peters, Shirtliff, Liu (bib78) 2019; 26 Cui, Ma, Lin (bib16) 2016; 66 Patange, Boehm, Ziuzina, Cullen, Gilmore, Bourke (bib59) 2019; 293 Pei (bib60) 2012; 45 Jahid, Han, Zhang, Ha (bib36) 2015; 46 Govaert, Smet, Vergauwen, Ećimović, Walsh, Baka (bib27) 2019; 52 Misra, Keener, Bourke, Mosnier, Cullen (bib52) 2014; 118 Cui, Ma, Li, Lin (bib15) 2016; 70 Traba, Chen, Liang (bib73) 2013; 13 Han (bib29) 2016; 7 Cui, Bai, Rashed, Lin (bib13) 2018; 266 Schlisselberg, Sima (bib66) 2013; 35 Ziuzina, Boehm, Patil, Cullen, Bourke (bib83) 2015; 10 Alkawareek, Algwari, Laverty, Gorman, Graham, O'Connell (bib4) 2012; 7 Abdallah, Khelissa, Ibrahim, Benoliel, Heliot, Dhulster (bib1) 2015; 214 Dygico, Gahan, Grogan, Burgess (bib19) 2019; 317 Misra, Kaur, Tiwari, Kaur, Singh, Cullen (bib51) 2015; 44 Laroussi, Leipold (bib42) 2004; 233 Misra, Jo (bib50) 2017; 64 Gabriel, Ugay, Siringan, Rosario, Tumlos, Ramos (bib22) 2016; 36 Jahid, Han, Ha (bib34) 2014; 55 Whitehead, Verran (bib77) 2015; 2 Zhu, Li, Cui, Lin (bib82) 2020; 266 van der Veen, Abee (bib76) 2011; 144 Giaouris (bib25) 2014; 97 Farber, Dabush-Busheri, Chaniel, Rozenfeld, Bormashenko, Multanen (bib20) 2019; 139 Garofulić, Jambrak, Milošević, Dragović-Uzelac, Zorić, Herceg (bib24) 2015; 62 Thirumdas, Sarangapani, Annapure (bib72) 2015; 10 Herceg (bib31) 2016; 190 Cho, Ha (bib9) 2019; 96 Pankaj, Keener (bib56) 2017; 16 Alkawareek, Gorman, Graham, Gilmore (bib5) 2014; 43 Christian, Liang (bib11) 2011; 27 Misra, Pankaj, Segat, Ishikawa (bib53) 2016; 55 Vadakkan, Choudhury, Gunasekaran, Hemapriya, Vijayanand (bib75) 2018; 16 Cui, Bai, Yuan, Surendhiran, Lin (bib14) 2018; 268 Meinlschmidt, Ueberham, Lehmann, Reineke, Schlüter, Schweiggert-Weisz (bib47) 2016; 38 Rodriguez-Romo, Yousef (bib62) 2005; 68 Fernández, Noriega, Thompson (bib21) 2013; 33 Pasquali (bib58) 2016; 60 Sadekuzzaman, Yang, Mizan, Ha (bib64) 2015; 14 Surowsky, Fischer, Schlueter, Knorr (bib71) 2013; 19 Gannesen, Zhurina, Veselova, Khmel, Plakunov (bib23) 2015; 84 Stewart (bib70) 2015; 3 Alegbeleye, Singleton, Sant'Ana (bib2) 2018; 73 Alkawareek, Algwari, Gorman, Graham, O'Connell, Gilmore (bib3) 2012; 65 Heir, Møretrø, Simensen, Langsrud (bib30) 2018; 275 Niemira, Sites (bib54) 2008; 71 Mandal, Singh, Pratap Singh (bib46) 2018; 80 Scholtz, Pazlarova, Souskova, Khun, Julak (bib67) 2015; 33 Setsuhara, Cho, Shiratani, Sekine, Hori (bib68) 2013; 13 Millan-Sango, Han, Milosavljevic, Van Impe, Bourke, Cullen (bib48) 2015; 96 Yan, Bassler (bib79) 2019; 26 Phillips (bib61) 2016; 51 Kim, Bang, Min (bib39) 2019; 242 Chorianopoulos, Giaouris, Skandamis, Haroutounian, Nychas (bib10) 2010; 104 Lohse, Gulati, Johnson, Nobile (bib44) 2017; 16 Ziuzina, Han, Cullen, Bourke (bib84) 2015; 210 Bourke, Ziuzina, Han, Cullen, Gilmore (bib7) 2017; 123 Lacombe, Niemira, Gurtler, Fan, Sites, Boyd (bib41) 2015; 46 Saá Ibusquiza, Herrera, Vázquez-Sánchez, Cabo (bib63) 2012; 25 Pankaj, Misra, Cullen (bib57) 2013; 19 Li, Kojtari, Friedman, Brooks, Fridman, Ji (bib43) 2014; 118 Bol'shakov (10.1016/j.tifs.2020.03.001_bib6) 2004; 42 Alkawareek (10.1016/j.tifs.2020.03.001_bib5) 2014; 43 Sarangapani (10.1016/j.tifs.2020.03.001_bib65) 2016; 9 Xu (10.1016/j.tifs.2020.03.001_bib78) 2019; 26 Jahid (10.1016/j.tifs.2020.03.001_bib35) 2014; 55 Kim (10.1016/j.tifs.2020.03.001_bib39) 2019; 242 Srey (10.1016/j.tifs.2020.03.001_bib69) 2014; 62 Lacombe (10.1016/j.tifs.2020.03.001_bib41) 2015; 46 Scholtz (10.1016/j.tifs.2020.03.001_bib67) 2015; 33 Traba (10.1016/j.tifs.2020.03.001_bib74) 2011; 27 Whitehead (10.1016/j.tifs.2020.03.001_bib77) 2015; 2 Mandal (10.1016/j.tifs.2020.03.001_bib46) 2018; 80 Gabriel (10.1016/j.tifs.2020.03.001_bib22) 2016; 36 Millan-Sango (10.1016/j.tifs.2020.03.001_bib48) 2015; 96 Thirumdas (10.1016/j.tifs.2020.03.001_bib72) 2015; 10 Traba (10.1016/j.tifs.2020.03.001_bib73) 2013; 13 Farber (10.1016/j.tifs.2020.03.001_bib20) 2019; 139 Giaouris (10.1016/j.tifs.2020.03.001_bib25) 2014; 97 Kim (10.1016/j.tifs.2020.03.001_bib40) 2013; 13 Setsuhara (10.1016/j.tifs.2020.03.001_bib68) 2013; 13 Norwood (10.1016/j.tifs.2020.03.001_bib55) 2010; 33 Patange (10.1016/j.tifs.2020.03.001_bib59) 2019; 293 Pankaj (10.1016/j.tifs.2020.03.001_bib57) 2013; 19 Katja (10.1016/j.tifs.2020.03.001_bib38) 2012; 7 Fernández (10.1016/j.tifs.2020.03.001_bib21) 2013; 33 Misra (10.1016/j.tifs.2020.03.001_bib51) 2015; 44 Christian (10.1016/j.tifs.2020.03.001_bib11) 2011; 27 Stewart (10.1016/j.tifs.2020.03.001_bib70) 2015; 3 Surowsky (10.1016/j.tifs.2020.03.001_bib71) 2013; 19 Cui (10.1016/j.tifs.2020.03.001_bib13) 2018; 266 Alkawareek (10.1016/j.tifs.2020.03.001_bib3) 2012; 65 Gilmore (10.1016/j.tifs.2020.03.001_bib26) 2018; 36 Han (10.1016/j.tifs.2020.03.001_bib29) 2016; 7 Laroussi (10.1016/j.tifs.2020.03.001_bib42) 2004; 233 Ziuzina (10.1016/j.tifs.2020.03.001_bib83) 2015; 10 Hertwig (10.1016/j.tifs.2020.03.001_bib32) 2015; 55 Jahid (10.1016/j.tifs.2020.03.001_bib34) 2014; 55 Misra (10.1016/j.tifs.2020.03.001_bib53) 2016; 55 Rodriguez-Romo (10.1016/j.tifs.2020.03.001_bib62) 2005; 68 Vadakkan (10.1016/j.tifs.2020.03.001_bib75) 2018; 16 Saá Ibusquiza (10.1016/j.tifs.2020.03.001_bib63) 2012; 25 Cui (10.1016/j.tifs.2020.03.001_bib14) 2018; 268 Niemira (10.1016/j.tifs.2020.03.001_bib54) 2008; 71 Garofulić (10.1016/j.tifs.2020.03.001_bib24) 2015; 62 Abdallah (10.1016/j.tifs.2020.03.001_bib1) 2015; 214 Pasquali (10.1016/j.tifs.2020.03.001_bib58) 2016; 60 Phillips (10.1016/j.tifs.2020.03.001_bib61) 2016; 51 Schlisselberg (10.1016/j.tifs.2020.03.001_bib66) 2013; 35 Govaert (10.1016/j.tifs.2020.03.001_bib27) 2019; 52 Kamgang (10.1016/j.tifs.2020.03.001_bib37) 2007; 103 Minei (10.1016/j.tifs.2020.03.001_bib49) 2008; 71 Zhu (10.1016/j.tifs.2020.03.001_bib82) 2020; 266 Alegbeleye (10.1016/j.tifs.2020.03.001_bib2) 2018; 73 Dygico (10.1016/j.tifs.2020.03.001_bib19) 2019; 317 Li (10.1016/j.tifs.2020.03.001_bib43) 2014; 118 Bourke (10.1016/j.tifs.2020.03.001_bib7) 2017; 123 Lohse (10.1016/j.tifs.2020.03.001_bib44) 2017; 16 Dasan (10.1016/j.tifs.2020.03.001_bib18) 2016; 216 Heir (10.1016/j.tifs.2020.03.001_bib30) 2018; 275 Lunov (10.1016/j.tifs.2020.03.001_bib45) 2016; 82 Herceg (10.1016/j.tifs.2020.03.001_bib31) 2016; 190 Sadekuzzaman (10.1016/j.tifs.2020.03.001_bib64) 2015; 14 Misra (10.1016/j.tifs.2020.03.001_bib52) 2014; 118 Coutinho (10.1016/j.tifs.2020.03.001_bib12) 2018; 74 Cui (10.1016/j.tifs.2020.03.001_bib17) 2017; 37 Gannesen (10.1016/j.tifs.2020.03.001_bib23) 2015; 84 Alkawareek (10.1016/j.tifs.2020.03.001_bib4) 2012; 7 Ziuzina (10.1016/j.tifs.2020.03.001_bib84) 2015; 210 Misra (10.1016/j.tifs.2020.03.001_bib50) 2017; 64 Chizoba Ekezie (10.1016/j.tifs.2020.03.001_bib8) 2017; 69 Pankaj (10.1016/j.tifs.2020.03.001_bib56) 2017; 16 Pei (10.1016/j.tifs.2020.03.001_bib60) 2012; 45 Cho (10.1016/j.tifs.2020.03.001_bib9) 2019; 96 Cui (10.1016/j.tifs.2020.03.001_bib16) 2016; 66 van der Veen (10.1016/j.tifs.2020.03.001_bib76) 2011; 144 Yun (10.1016/j.tifs.2020.03.001_bib80) 2010; 21 Chorianopoulos (10.1016/j.tifs.2020.03.001_bib10) 2010; 104 Hussain (10.1016/j.tifs.2020.03.001_bib33) 2019; 116 Cui (10.1016/j.tifs.2020.03.001_bib15) 2016; 70 Zhang (10.1016/j.tifs.2020.03.001_bib81) 2019; 52 Yan (10.1016/j.tifs.2020.03.001_bib79) 2019; 26 Jahid (10.1016/j.tifs.2020.03.001_bib36) 2015; 46 Meinlschmidt (10.1016/j.tifs.2020.03.001_bib47) 2016; 38 |
References_xml | – volume: 190 start-page: 665 year: 2016 end-page: 672 ident: bib31 article-title: Gas phase plasma impact on phenolic compounds in pomegranate juice publication-title: Food Chemistry – volume: 16 year: 2017 ident: bib44 article-title: Development and regulation of single- and multi-species Candida albicans biofilms publication-title: Nature Reviews Microbiology – volume: 33 start-page: 320 year: 2010 end-page: 324 ident: bib55 article-title: The differential adherence capabilities of two Listeria monocytogenesstrains in monoculture and multispecies biofilms as a function oftemperature publication-title: Letters in Applied Microbiology – volume: 64 start-page: 74 year: 2017 end-page: 86 ident: bib50 article-title: Applications of cold plasma technology for microbiological safety in meat industry publication-title: Trends in Food Science & Technology – volume: 71 start-page: 634 year: 2008 end-page: 638 ident: bib49 article-title: Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation publication-title: Journal of Food Protection – volume: 44 start-page: 115 year: 2015 end-page: 121 ident: bib51 article-title: Atmospheric pressure cold plasma (ACP) treatment of wheat flour publication-title: Food Hydrocolloids – volume: 7 year: 2012 ident: bib38 article-title: Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms publication-title: PloS One – volume: 96 start-page: 343 year: 2019 end-page: 350 ident: bib9 article-title: Application of X-ray for inactivation of foodborne pathogens in ready-to-eat sliced ham and mechanism of the bactericidal action publication-title: Food Control – volume: 317 start-page: 108385 year: 2019 ident: bib19 article-title: The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment publication-title: International Journal of Food Microbiology – volume: 82 start-page: 71 year: 2016 end-page: 83 ident: bib45 article-title: The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma publication-title: Biomaterials – volume: 10 start-page: 1 year: 2015 end-page: 21 ident: bib83 article-title: Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors publication-title: PloS One – volume: 216 start-page: 50 year: 2016 end-page: 59 ident: bib18 article-title: Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor publication-title: International Journal of Food Microbiology – volume: 266 start-page: 109696 year: 2020 ident: bib82 article-title: Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters publication-title: Journal of Food Engineering – volume: 14 start-page: 491 year: 2015 end-page: 509 ident: bib64 article-title: Current and recent advanced strategies for combating biofilm publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 70 start-page: 183 year: 2016 end-page: 190 ident: bib15 article-title: Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process publication-title: Food Control – volume: 242 start-page: 55 year: 2019 end-page: 67 ident: bib39 article-title: Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment publication-title: Journal of Food Engineering – volume: 268 start-page: 1 year: 2018 end-page: 9 ident: bib14 article-title: Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables publication-title: International Journal of Food Microbiology – volume: 55 start-page: 181 year: 2014 end-page: 189 ident: bib34 article-title: Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce publication-title: Food Research International – volume: 80 start-page: 93 year: 2018 end-page: 103 ident: bib46 article-title: Recent developments in cold plasma decontamination technology in the food industry publication-title: Trends in Food Science & Technology – volume: 9 start-page: 225 year: 2016 end-page: 232 ident: bib65 article-title: Pesticide degradation in water using atmospheric air cold plasma publication-title: Journal of Water Process Engineering – volume: 73 start-page: 177 year: 2018 end-page: 208 ident: bib2 article-title: Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review publication-title: Food Microbiology – volume: 43 start-page: 154 year: 2014 end-page: 160 ident: bib5 article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma publication-title: International Journal of Antimicrobial Agents – volume: 33 start-page: 24 year: 2013 end-page: 29 ident: bib21 article-title: Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology publication-title: Food Microbiology – volume: 118 start-page: 1612 year: 2014 end-page: 1620 ident: bib43 article-title: Decomposition of L-valine under nonthermal dielectric barrier discharge plasma publication-title: Journal of Physical Chemistry B – volume: 38 start-page: 374 year: 2016 end-page: 383 ident: bib47 article-title: The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate publication-title: Innovative Food Science & Emerging Technologies – volume: 68 start-page: 711 year: 2005 end-page: 717 ident: bib62 article-title: Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation publication-title: Journal of Food Protection – volume: 66 start-page: 8 year: 2016 end-page: 16 ident: bib16 article-title: Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce publication-title: Food Control – volume: 2 start-page: 84 year: 2015 end-page: 91 ident: bib77 article-title: Formation, architecture and functionality of microbial biofilms in the food industry publication-title: Current Opinion in Food Science – volume: 25 start-page: 202 year: 2012 end-page: 210 ident: bib63 article-title: Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida publication-title: Food Control – volume: 16 start-page: 49 year: 2017 end-page: 52 ident: bib56 article-title: Cold plasma: Background, applications and current trends publication-title: Current Opinion in Food Science – volume: 52 start-page: 394 year: 2019 end-page: 405 ident: bib81 article-title: Bactericidal effect of cold plasma on microbiota of commercial fish balls publication-title: Innovative Food Science & Emerging Technologies – volume: 51 start-page: 1731 year: 2016 end-page: 1743 ident: bib61 article-title: Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control publication-title: International Journal of Food Science and Technology – volume: 55 start-page: 39 year: 2016 end-page: 47 ident: bib53 article-title: Cold plasma interactions with enzymes in foods and model systems publication-title: Trends in Food Science & Technology – volume: 55 start-page: 445 year: 2014 end-page: 454 ident: bib35 article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation publication-title: Food Research International – volume: 35 start-page: 65 year: 2013 end-page: 72 ident: bib66 article-title: The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine publication-title: Food Microbiology – volume: 97 start-page: 298 year: 2014 end-page: 309 ident: bib25 article-title: Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods publication-title: Meat Science – volume: 26 start-page: 57 year: 2019 end-page: 64 ident: bib78 article-title: Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: An underestimated concern in food safety publication-title: Current Opinion in Food Science – volume: 62 start-page: 894 year: 2015 end-page: 900 ident: bib24 article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 19 start-page: 153 year: 2013 end-page: 157 ident: bib57 article-title: Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge publication-title: Innovative Food Science & Emerging Technologies – volume: 123 start-page: 308 year: 2017 end-page: 324 ident: bib7 article-title: Microbiological interactions with cold plasma publication-title: Journal of Applied Microbiology – volume: 62 start-page: 484 year: 2014 end-page: 491 ident: bib69 article-title: Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage publication-title: Food Research International – volume: 33 start-page: 1108 year: 2015 end-page: 1119 ident: bib67 article-title: Nonthermal plasma — a tool for decontamination and disinfection publication-title: Biotechnology Advances – volume: 16 start-page: 239 year: 2018 end-page: 252 ident: bib75 article-title: Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression publication-title: Journal of Genetic Engineering and Biotechnology – volume: 104 start-page: 1586 year: 2010 end-page: 1596 ident: bib10 article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of satureja thymbra and comparison with standard acid-base sanitizers publication-title: Journal of Applied Microbiology – volume: 96 start-page: 154 year: 2015 end-page: 160 ident: bib48 article-title: Assessing bacterial recovery and efficacy of cold atmospheric plasma treatments publication-title: Food and Bioproducts Processing – volume: 71 start-page: 1357 year: 2008 ident: bib54 article-title: Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples publication-title: Journal of Food Protection – volume: 210 start-page: 53 year: 2015 end-page: 61 ident: bib84 article-title: Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli publication-title: International Journal of Food Microbiology – volume: 21 start-page: 1182 year: 2010 end-page: 1186 ident: bib80 article-title: Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma publication-title: Food Control – volume: 26 start-page: 15 year: 2019 end-page: 21 ident: bib79 article-title: Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms publication-title: Cell Host & Microbe – volume: 42 start-page: 823 year: 2004 end-page: 832 ident: bib6 article-title: Radio-frequency oxygen plasma as a sterilization source publication-title: AIAA Journal – volume: 84 start-page: 281 year: 2015 end-page: 290 ident: bib23 article-title: Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system publication-title: Mikrobiologiia – volume: 293 start-page: 137 year: 2019 end-page: 145 ident: bib59 article-title: High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce publication-title: International Journal of Food Microbiology – volume: 69 start-page: 46 year: 2017 end-page: 58 ident: bib8 article-title: A review on recent advances in cold plasma technology for the food industry: Current applications and future trends publication-title: Trends in Food Science & Technology – volume: 3 start-page: 1 year: 2015 end-page: 7 ident: bib70 article-title: Antimicrobial tolerance in biofilms publication-title: Microbiology Spectrum – volume: 116 start-page: 108582 year: 2019 ident: bib33 article-title: Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 65 start-page: 381 year: 2012 end-page: 384 ident: bib3 article-title: Application of atmospheric pressure nonthermal plasma for thein vitroeradication of bacterial biofilms publication-title: FEMS Immunology and Medical Microbiology – volume: 60 start-page: 552 year: 2016 end-page: 559 ident: bib58 article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, cichorium intybus L.) publication-title: Food Control – volume: 266 start-page: 69 year: 2018 end-page: 78 ident: bib13 article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber publication-title: International Journal of Food Microbiology – volume: 27 start-page: 763 year: 2011 end-page: 772 ident: bib74 article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases publication-title: Biofouling – volume: 13 start-page: 1420 year: 2013 end-page: 1425 ident: bib40 article-title: Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin publication-title: Current Applied Physics – volume: 13 start-page: 59 year: 2013 end-page: 63 ident: bib68 article-title: Plasma interactions with aminoacid (l-alanine) as a basis of fundamental processes in plasma medicine publication-title: Current Applied Physics – volume: 214 start-page: 38 year: 2015 end-page: 47 ident: bib1 article-title: Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants publication-title: International Journal of Food Microbiology – volume: 36 start-page: 627 year: 2018 end-page: 638 ident: bib26 article-title: Cold plasmas for biofilm control: Opportunities and challenges publication-title: Trends in Biotechnology – volume: 118 start-page: 177 year: 2014 end-page: 182 ident: bib52 article-title: In-package atmospheric pressure cold plasma treatment of cherry tomatoes publication-title: Journal of Bioscience and Bioengineering – volume: 144 start-page: 421 year: 2011 end-page: 431 ident: bib76 article-title: Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid publication-title: International Journal of Food Microbiology – volume: 46 start-page: 383 year: 2015 end-page: 394 ident: bib36 article-title: Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma publication-title: Food Microbiology – volume: 46 start-page: 479 year: 2015 end-page: 484 ident: bib41 article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes publication-title: Food Microbiology – volume: 7 start-page: 977 year: 2016 end-page: 1008 ident: bib29 article-title: Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma publication-title: Frontiers in Microbiology – volume: 13 start-page: 12 year: 2013 end-page: 18 ident: bib73 article-title: Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials publication-title: Current Applied Physics – volume: 36 start-page: 311 year: 2016 end-page: 319 ident: bib22 article-title: Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces publication-title: Innovative Food Science & Emerging Technologies – volume: 74 start-page: 56 year: 2018 end-page: 68 ident: bib12 article-title: Cold plasma processing of milk and dairy products publication-title: Trends in Food Science & Technology – volume: 7 year: 2012 ident: bib4 article-title: Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma publication-title: PloS One – volume: 19 start-page: 146 year: 2013 end-page: 152 ident: bib71 article-title: Cold plasma effects on enzyme activity in a model food system publication-title: Innovative Food Science & Emerging Technologies – volume: 10 start-page: 1 year: 2015 end-page: 11 ident: bib72 article-title: Cold plasma: A novel non-thermal technology for food processing publication-title: Food Biophysics – volume: 103 start-page: 621 year: 2007 end-page: 628 ident: bib37 article-title: Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air publication-title: Journal of Applied Microbiology – volume: 233 start-page: 81 year: 2004 end-page: 86 ident: bib42 article-title: Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure publication-title: International Journal of Mass Spectrometry – volume: 27 start-page: 763 year: 2011 end-page: 772 ident: bib11 article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases publication-title: Biofouling – volume: 275 start-page: 46 year: 2018 end-page: 55 ident: bib30 article-title: Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments publication-title: International Journal of Food Microbiology – volume: 45 start-page: 1 year: 2012 end-page: 5 ident: bib60 article-title: Inactivation of a 25.5 lm Enterococcus faecalis biofilm by a room-temperature,battery-operated, handheld air plasma jet publication-title: Journal of Physics D: Applied Physics – volume: 37 year: 2017 ident: bib17 article-title: Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist publication-title: Journal of Food Safety – volume: 55 start-page: 221 year: 2015 end-page: 229 ident: bib32 article-title: Decontamination of whole black pepper using different cold atmospheric pressure plasma applications publication-title: Food Control – volume: 52 start-page: 376 year: 2019 end-page: 386 ident: bib27 article-title: Influence of plasma characteristics on the efficacy of Cold Atmospheric Plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms publication-title: Innovative Food Science & Emerging Technologies – volume: 139 start-page: 62 year: 2019 end-page: 69 ident: bib20 article-title: Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation publication-title: International Biodeterioration & Biodegradation – volume: 43 start-page: 154 issue: 2 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib5 article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma publication-title: International Journal of Antimicrobial Agents doi: 10.1016/j.ijantimicag.2013.08.022 – volume: 66 start-page: 8 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib16 article-title: Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce publication-title: Food Control doi: 10.1016/j.foodcont.2016.01.035 – volume: 19 start-page: 153 issue: 4 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib57 article-title: Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2013.03.001 – volume: 69 start-page: 46 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib8 article-title: A review on recent advances in cold plasma technology for the food industry: Current applications and future trends publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.08.007 – volume: 52 start-page: 376 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib27 article-title: Influence of plasma characteristics on the efficacy of Cold Atmospheric Plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2019.01.013 – volume: 73 start-page: 177 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib2 article-title: Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review publication-title: Food Microbiology doi: 10.1016/j.fm.2018.01.003 – volume: 16 start-page: 49 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib56 article-title: Cold plasma: Background, applications and current trends publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2017.07.008 – volume: 7 issue: 8 year: 2012 ident: 10.1016/j.tifs.2020.03.001_bib38 article-title: Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms publication-title: PloS One – volume: 71 start-page: 1357 issue: 7 year: 2008 ident: 10.1016/j.tifs.2020.03.001_bib54 article-title: Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples publication-title: Journal of Food Protection doi: 10.4315/0362-028X-71.7.1357 – volume: 55 start-page: 181 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib34 article-title: Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce publication-title: Food Research International doi: 10.1016/j.foodres.2013.11.005 – volume: 96 start-page: 154 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib48 article-title: Assessing bacterial recovery and efficacy of cold atmospheric plasma treatments publication-title: Food and Bioproducts Processing doi: 10.1016/j.fbp.2015.07.011 – volume: 25 start-page: 202 issue: 1 year: 2012 ident: 10.1016/j.tifs.2020.03.001_bib63 article-title: Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida publication-title: Food Control doi: 10.1016/j.foodcont.2011.10.002 – volume: 38 start-page: 374 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib47 article-title: The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2016.06.007 – volume: 10 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib72 article-title: Cold plasma: A novel non-thermal technology for food processing publication-title: Food Biophysics doi: 10.1007/s11483-014-9382-z – volume: 21 start-page: 1182 issue: 8 year: 2010 ident: 10.1016/j.tifs.2020.03.001_bib80 article-title: Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma publication-title: Food Control doi: 10.1016/j.foodcont.2010.02.002 – volume: 210 start-page: 53 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib84 article-title: Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2015.05.019 – volume: 74 start-page: 56 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib12 article-title: Cold plasma processing of milk and dairy products publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.02.008 – volume: 51 start-page: 1731 issue: 8 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib61 article-title: Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control publication-title: International Journal of Food Science and Technology doi: 10.1111/ijfs.13159 – volume: 96 start-page: 343 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib9 article-title: Application of X-ray for inactivation of foodborne pathogens in ready-to-eat sliced ham and mechanism of the bactericidal action publication-title: Food Control doi: 10.1016/j.foodcont.2018.09.034 – volume: 103 start-page: 621 year: 2007 ident: 10.1016/j.tifs.2020.03.001_bib37 article-title: Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air publication-title: Journal of Applied Microbiology doi: 10.1111/j.1365-2672.2007.03286.x – volume: 26 start-page: 15 issue: 10 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib79 article-title: Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2019.06.002 – volume: 233 start-page: 81 issue: 1–3 year: 2004 ident: 10.1016/j.tifs.2020.03.001_bib42 article-title: Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure publication-title: International Journal of Mass Spectrometry doi: 10.1016/j.ijms.2003.11.016 – volume: 65 start-page: 381 issue: 2 year: 2012 ident: 10.1016/j.tifs.2020.03.001_bib3 article-title: Application of atmospheric pressure nonthermal plasma for thein vitroeradication of bacterial biofilms publication-title: FEMS Immunology and Medical Microbiology doi: 10.1111/j.1574-695X.2012.00942.x – volume: 214 start-page: 38 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib1 article-title: Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2015.07.022 – volume: 19 start-page: 146 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib71 article-title: Cold plasma effects on enzyme activity in a model food system publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2013.04.002 – volume: 118 start-page: 1612 issue: 6 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib43 article-title: Decomposition of L-valine under nonthermal dielectric barrier discharge plasma publication-title: Journal of Physical Chemistry B doi: 10.1021/jp411440k – volume: 26 start-page: 57 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib78 article-title: Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: An underestimated concern in food safety publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2019.03.006 – volume: 118 start-page: 177 issue: 2 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib52 article-title: In-package atmospheric pressure cold plasma treatment of cherry tomatoes publication-title: Journal of Bioscience and Bioengineering doi: 10.1016/j.jbiosc.2014.02.005 – volume: 9 start-page: 225 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib65 article-title: Pesticide degradation in water using atmospheric air cold plasma publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2016.01.003 – volume: 2 start-page: 84 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib77 article-title: Formation, architecture and functionality of microbial biofilms in the food industry publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2015.02.003 – volume: 97 start-page: 298 issue: 3 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib25 article-title: Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods publication-title: Meat Science doi: 10.1016/j.meatsci.2013.05.023 – volume: 317 start-page: 108385 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib19 article-title: The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2019.108385 – volume: 44 start-page: 115 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib51 article-title: Atmospheric pressure cold plasma (ACP) treatment of wheat flour publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.08.019 – volume: 37 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib17 article-title: Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist publication-title: Journal of Food Safety doi: 10.1111/jfs.12316 – volume: 55 start-page: 221 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib32 article-title: Decontamination of whole black pepper using different cold atmospheric pressure plasma applications publication-title: Food Control doi: 10.1016/j.foodcont.2015.03.003 – volume: 13 start-page: 1420 issue: 7 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib40 article-title: Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin publication-title: Current Applied Physics doi: 10.1016/j.cap.2013.04.021 – volume: 45 start-page: 1 year: 2012 ident: 10.1016/j.tifs.2020.03.001_bib60 article-title: Inactivation of a 25.5 lm Enterococcus faecalis biofilm by a room-temperature,battery-operated, handheld air plasma jet publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/45/16/165205 – volume: 268 start-page: 1 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib14 article-title: Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2018.01.004 – volume: 33 start-page: 1108 issue: 6 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib67 article-title: Nonthermal plasma — a tool for decontamination and disinfection publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2015.01.002 – volume: 266 start-page: 109696 year: 2020 ident: 10.1016/j.tifs.2020.03.001_bib82 article-title: Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2019.109696 – volume: 139 start-page: 62 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib20 article-title: Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation publication-title: International Biodeterioration & Biodegradation doi: 10.1016/j.ibiod.2019.03.003 – volume: 46 start-page: 383 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib36 article-title: Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma publication-title: Food Microbiology doi: 10.1016/j.fm.2014.08.003 – volume: 293 start-page: 137 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib59 article-title: High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2019.01.005 – volume: 42 start-page: 823 issue: 4 year: 2004 ident: 10.1016/j.tifs.2020.03.001_bib6 article-title: Radio-frequency oxygen plasma as a sterilization source publication-title: AIAA Journal doi: 10.2514/1.9562 – volume: 16 start-page: 239 issue: 2 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib75 article-title: Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression publication-title: Journal of Genetic Engineering and Biotechnology doi: 10.1016/j.jgeb.2018.07.001 – volume: 104 start-page: 1586 issue: 6 year: 2010 ident: 10.1016/j.tifs.2020.03.001_bib10 article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of satureja thymbra and comparison with standard acid-base sanitizers publication-title: Journal of Applied Microbiology doi: 10.1111/j.1365-2672.2007.03694.x – volume: 46 start-page: 479 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib41 article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes publication-title: Food Microbiology doi: 10.1016/j.fm.2014.09.010 – volume: 33 start-page: 320 issue: 4 year: 2010 ident: 10.1016/j.tifs.2020.03.001_bib55 article-title: The differential adherence capabilities of two Listeria monocytogenesstrains in monoculture and multispecies biofilms as a function oftemperature publication-title: Letters in Applied Microbiology doi: 10.1046/j.1472-765X.2001.01004.x – volume: 27 start-page: 763 issue: 7 year: 2011 ident: 10.1016/j.tifs.2020.03.001_bib74 article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases publication-title: Biofouling doi: 10.1080/08927014.2011.602188 – volume: 7 start-page: 977 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib29 article-title: Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2016.00977 – volume: 123 start-page: 308 issue: 2 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib7 article-title: Microbiological interactions with cold plasma publication-title: Journal of Applied Microbiology doi: 10.1111/jam.13429 – volume: 62 start-page: 894 issue: 1 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib24 article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2014.08.036 – volume: 60 start-page: 552 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib58 article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, cichorium intybus L.) publication-title: Food Control doi: 10.1016/j.foodcont.2015.08.043 – volume: 10 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib83 article-title: Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors publication-title: PloS One doi: 10.1371/journal.pone.0138209 – volume: 35 start-page: 65 issue: 1 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib66 article-title: The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine publication-title: Food Microbiology doi: 10.1016/j.fm.2013.02.005 – volume: 70 start-page: 183 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib15 article-title: Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process publication-title: Food Control doi: 10.1016/j.foodcont.2016.05.056 – volume: 242 start-page: 55 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib39 article-title: Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2018.08.020 – volume: 3 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib70 article-title: Antimicrobial tolerance in biofilms publication-title: Microbiology Spectrum doi: 10.1128/microbiolspec.MB-0010-2014 – volume: 27 start-page: 763 issue: 7 year: 2011 ident: 10.1016/j.tifs.2020.03.001_bib11 article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases publication-title: Biofouling doi: 10.1080/08927014.2011.602188 – volume: 7 issue: 8 year: 2012 ident: 10.1016/j.tifs.2020.03.001_bib4 article-title: Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma publication-title: PloS One doi: 10.1371/journal.pone.0044289 – volume: 144 start-page: 421 issue: 3 year: 2011 ident: 10.1016/j.tifs.2020.03.001_bib76 article-title: Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2010.10.029 – volume: 84 start-page: 281 issue: 3 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib23 article-title: Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system publication-title: Mikrobiologiia – volume: 82 start-page: 71 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib45 article-title: The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.12.027 – volume: 190 start-page: 665 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib31 article-title: Gas phase plasma impact on phenolic compounds in pomegranate juice publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.05.135 – volume: 116 start-page: 108582 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib33 article-title: Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2019.108582 – volume: 80 start-page: 93 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib46 article-title: Recent developments in cold plasma decontamination technology in the food industry publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.07.014 – volume: 14 start-page: 491 issue: 4 year: 2015 ident: 10.1016/j.tifs.2020.03.001_bib64 article-title: Current and recent advanced strategies for combating biofilm publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12144 – volume: 62 start-page: 484 issue: 8 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib69 article-title: Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage publication-title: Food Research International doi: 10.1016/j.foodres.2014.03.067 – volume: 266 start-page: 69 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib13 article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2017.11.019 – volume: 71 start-page: 634 issue: 3 year: 2008 ident: 10.1016/j.tifs.2020.03.001_bib49 article-title: Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation publication-title: Journal of Food Protection doi: 10.4315/0362-028X-71.3.634 – volume: 36 start-page: 627 issue: 6 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib26 article-title: Cold plasmas for biofilm control: Opportunities and challenges publication-title: Trends in Biotechnology doi: 10.1016/j.tibtech.2018.03.007 – volume: 52 start-page: 394 year: 2019 ident: 10.1016/j.tifs.2020.03.001_bib81 article-title: Bactericidal effect of cold plasma on microbiota of commercial fish balls publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2019.01.019 – volume: 16 issue: 1 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib44 article-title: Development and regulation of single- and multi-species Candida albicans biofilms publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro.2017.107 – volume: 55 start-page: 39 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib53 article-title: Cold plasma interactions with enzymes in foods and model systems publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2016.07.001 – volume: 13 start-page: 12 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib73 article-title: Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials publication-title: Current Applied Physics doi: 10.1016/j.cap.2012.12.024 – volume: 64 start-page: 74 year: 2017 ident: 10.1016/j.tifs.2020.03.001_bib50 article-title: Applications of cold plasma technology for microbiological safety in meat industry publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.04.005 – volume: 275 start-page: 46 year: 2018 ident: 10.1016/j.tifs.2020.03.001_bib30 article-title: Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2018.03.026 – volume: 55 start-page: 445 issue: 7 year: 2014 ident: 10.1016/j.tifs.2020.03.001_bib35 article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation publication-title: Food Research International doi: 10.1016/j.foodres.2013.11.042 – volume: 13 start-page: 59 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib68 article-title: Plasma interactions with aminoacid (l-alanine) as a basis of fundamental processes in plasma medicine publication-title: Current Applied Physics doi: 10.1016/j.cap.2013.01.030 – volume: 216 start-page: 50 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib18 article-title: Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor publication-title: International Journal of Food Microbiology doi: 10.1016/j.ijfoodmicro.2015.09.006 – volume: 36 start-page: 311 year: 2016 ident: 10.1016/j.tifs.2020.03.001_bib22 article-title: Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2016.07.015 – volume: 68 start-page: 711 issue: 4 year: 2005 ident: 10.1016/j.tifs.2020.03.001_bib62 article-title: Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation publication-title: Journal of Food Protection doi: 10.4315/0362-028X-68.4.711 – volume: 33 start-page: 24 issue: 1 year: 2013 ident: 10.1016/j.tifs.2020.03.001_bib21 article-title: Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology publication-title: Food Microbiology doi: 10.1016/j.fm.2012.08.007 |
SSID | ssj0005355 |
Score | 2.590993 |
SecondaryResourceType | review_article |
Snippet | The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of... Background: The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Antiinfectives and antibacterials bacteria biofilm Biofilms Cold Cold plasma Cold plasmas Cold treatment Etching Food Food industry Food preservation Food processing industry Food safety foods Gas composition Lipid peroxidation Lipids Microorganisms nonthermal processing Organoleptic properties Oxidation plankton Plasma Process parameters protective effect Quorum sensing sensory properties |
Title | Feasibility of cold plasma for the control of biofilms in food industry |
URI | https://dx.doi.org/10.1016/j.tifs.2020.03.001 https://www.proquest.com/docview/2440940595 https://www.proquest.com/docview/2400526207 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBfOL6IoI3qdsmadoeRdTVRQ8-0Ftp0gQq2l10PXjxtzvTpqKCHjyFdia05DHzpf1mBmAvlVZwncrAOCphFhYiKBBVB0qjvUxtik6fYocvLtXgVp7fx_dTcNTFwhCt0tv-1qY31trf6fvR7I-rqn8d4tEBHZBECBJFSlGguZQJrfWD9y80D9FUPiXlgLR94EzL8ZpUjlJ287BNdBr95px-mOnG95wswoIHjeywfa8lmLL1Msx2McUvyzD_Ja3gCpwirvOs1zc2cgznumRjhMlPBUOMyhDzMU9RJ7GuqGz30wurahSPSmybch5vq3B7cnxzNAh8wYTACBVNgoS-IMRGcx0rjScjKxOurCyEM4aHmeZlbEsVGS4TJ3XhdGmMyELrhBFOCSnWYLoe1XYdmIkyl3BdZpnNpIp5WmqRuriUXBcyCnUPom6kcuOziVNRi8e8o4095DS6OY1uHgrizvVg_7PPuM2l8ad23E1A_m1F5Gjs_-y31c1W7vcjyiWdYxFKxj3Y_RTjTqLfI0VtR6-k0yS_4WGy8c9Hb8IcXbV8yC2Ynjy_2m3ELBO90yzKHZg5PBsOLqkdXt0NPwCHeuuR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAcUAtULNDWSL1VYRO_khwRArblcSlI3KzYsaUgyK5gOXDhtzOTOIgiwaGnSJmxEo3tmc_JNzMAPwvpBbeFTFygFmZpJZIKUXWiLfrLwhcY9Cl3-PRMTy7kn0t1uQD7Qy4M0Sqj7-99euet451xtOZ41jTjvykeHTAASYQgWaa1-gAfpRI5FdDffXzB8xBd61PSTkg9Zs70JK95E6hmN0_7SqfZW9HplZ_ugs_hZ1iJqJHt9S_2BRZ8uwpLQ1Lx3Sosv6gruAZHCOwi7fWBTQPDya7ZDHHyTcUQpDIEfSxy1ElsG-rbfXPHmhbF0xqvXT-Ph3W4ODw4358ksWNC4oTO5klOnxCUs9wqbfFo5GXOtZeVCM7xtLS8Vr7WmeMyD9JWwdbOiTL1QTgRtJDiKyy209ZvAHNZGXJu67L0pdSKF7UVRVC15LaSWWpHkA2WMi6WE6euFtdm4I1dGbKuIeuaVBB5bgS_nsfM-mIa72qrYQLMP0vCoLd_d9z2MFsmbkiUSzrIIpZUI9h5FuNWov8jVeun96TTVb_hab75n4_-AUuT89MTc_L77HgLPpGkJ0duw-L89t5_QwAzt9-7BfoEorDrgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+cold+plasma+for+the+control+of+biofilms+in+food+industry&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Zhu%2C+Yulin&rft.au=Li%2C+Changzhu&rft.au=Cui%2C+Haiying&rft.au=Lin%2C+Lin&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0924-2244&rft.eissn=1879-3053&rft.volume=99&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.tifs.2020.03.001&rft.externalDocID=S0924224419311665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |