Feasibility of cold plasma for the control of biofilms in food industry

The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with t...

Full description

Saved in:
Bibliographic Details
Published inTrends in food science & technology Vol. 99; pp. 142 - 151
Main Authors Zhu, Yulin, Li, Changzhu, Cui, Haiying, Lin, Lin
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Ltd 01.05.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-2244
1879-3053
DOI10.1016/j.tifs.2020.03.001

Cover

Abstract The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject. This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method. Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions. •The biofilms showed increased resistance against traditional sterilization technology.•Cold plasma was an effective method for the control of biofilms.•The possible mechanism of the action of cold plasma on biofilms was discussed.•The factors influencing the anti-biofilms efficiency of cold plasma were summarized.
AbstractList The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject.This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method.Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions.
Background: The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject. Scope and approach: This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method. Key findings and conclusions: Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions.
The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of the biofilm architecture, the microorganisms embedded within the biofilms show increased resistance to antibacterial treatment compared with those in planktonic state. In order to effectively remove biofilms from the surfaces of food and food-contacted materials, cold plasma, as a novel non-thermal processing technology, is adopted in food industry. The effective biofilms elimination by cold plasma treatment has resulted in a boost of concerns in this subject. This review gives readers a comprehensive summary about the anti-biofilms application of cold plasma in food industry. Specifically, the possible mechanisms, which are responsible for the biofilms control of cold plasma technology, were discussed. In addition, the factors may affect the efficiency of cold plasma against biofilms are emphatically investigated, along with the final evaluation of cold plasma as a novel anti-biofilms method. Increasing numbers of studies prove the excellent anti-biofilms activity of cold plasma technology. The reactive species, etching effect and control of quorum sensing are involved into the mechanisms responsible for anti-biofilms activity of cold plasma, which can be affected by a series of factors including gas composition, attachment surface, processing parameters, type of bacteria, biofilms thickness etc. In the process of eliminating biofilms, cold plasma can exert minimum impact on the organoleptic properties of food products, while lipid oxidation is detected which needs special attentions. •The biofilms showed increased resistance against traditional sterilization technology.•Cold plasma was an effective method for the control of biofilms.•The possible mechanism of the action of cold plasma on biofilms was discussed.•The factors influencing the anti-biofilms efficiency of cold plasma were summarized.
Author Li, Changzhu
Zhu, Yulin
Lin, Lin
Cui, Haiying
Author_xml – sequence: 1
  givenname: Yulin
  surname: Zhu
  fullname: Zhu, Yulin
  organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 2
  givenname: Changzhu
  surname: Li
  fullname: Li, Changzhu
  organization: Department of Bioresource, Hunan Academy of Forestry, Changsha, 410007, China
– sequence: 3
  givenname: Haiying
  surname: Cui
  fullname: Cui, Haiying
  email: cuihaiying@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 4
  givenname: Lin
  surname: Lin
  fullname: Lin, Lin
  email: linl@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
BookMark eNp9kE1LAzEQhoNUsFX_gKcFL152nXzsbhe8SLEqCF70HLLZCaakm5qkQv-9WerJQ08DM-8zzDwLMhv9iITcUKgo0OZ-UyVrYsWAQQW8AqBnZE6XbVdyqPmMzKFjomRMiAuyiHEDkNt1PSfPa1TR9tbZdCi8KbR3Q7FzKm5VYXwo0hfm3piCd9O4t95Yt42FHfPYD7kO-5jC4YqcG-UiXv_VS_K5fvpYvZRv78-vq8e3UvOGprKl3bKtdc_6uukb2qFoWYNCcaM1g65nQ41DQzUTrRG9Mv2gNe8ADdfcNFzwS3J33LsL_nuPMcmtjRqdUyP6fZRM5M9Yw6DN0dt_0Y3fhzFfl1MCOgF1V-fU8pjSwccY0Ehtk0p2-llZJynIybDcyMmwnAxL4DIbzij7h-6C3apwOA09HCHMln4sBhm1xVHjYAPqJAdvT-G_lO6WeA
CitedBy_id crossref_primary_10_2147_IDR_S285690
crossref_primary_10_1016_j_tifs_2020_10_012
crossref_primary_10_1016_j_culher_2023_05_027
crossref_primary_10_3389_fvets_2023_1240596
crossref_primary_10_3390_microorganisms10010162
crossref_primary_10_1007_s00253_023_12618_w
crossref_primary_10_15237_gida_GD23133
crossref_primary_10_1080_10408398_2023_2200861
crossref_primary_10_1016_j_meatsci_2024_109596
crossref_primary_10_1002_fsn3_3355
crossref_primary_10_3390_ijms25126638
crossref_primary_10_3390_app112411597
crossref_primary_10_1111_1750_3841_16754
crossref_primary_10_1016_j_ijbiomac_2022_01_186
crossref_primary_10_1080_09603123_2022_2149710
crossref_primary_10_1080_10408398_2022_2077298
crossref_primary_10_1016_j_fufo_2024_100400
crossref_primary_10_1111_jam_14823
crossref_primary_10_3390_foods10061234
crossref_primary_10_3390_foods11223683
crossref_primary_10_1007_s11696_021_01860_z
crossref_primary_10_1021_acs_jafc_0c05028
crossref_primary_10_1109_TRPMS_2024_3370503
crossref_primary_10_1016_j_lwt_2021_111633
crossref_primary_10_1039_D0NJ05714B
crossref_primary_10_1080_10408398_2024_2354524
crossref_primary_10_1016_j_foodcont_2020_107804
crossref_primary_10_1007_s42824_024_00114_z
crossref_primary_10_1016_j_fochms_2022_100098
crossref_primary_10_1016_j_foodres_2023_113575
crossref_primary_10_3390_foods13101522
crossref_primary_10_1111_jfpp_17133
crossref_primary_10_1007_s12393_023_09348_0
crossref_primary_10_3390_ijms23084131
crossref_primary_10_1111_1541_4337_12885
crossref_primary_10_1007_s12010_022_04262_3
crossref_primary_10_1016_j_jfp_2023_100078
crossref_primary_10_1111_jfpe_13593
crossref_primary_10_63095_NBSEH_25_650223
crossref_primary_10_1016_j_foodcont_2025_111319
crossref_primary_10_1016_j_ijfoodmicro_2023_110127
crossref_primary_10_1002_ppap_202300066
crossref_primary_10_1088_1755_1315_854_1_012024
crossref_primary_10_1002_jobm_202000678
crossref_primary_10_1016_j_foodcont_2023_109645
crossref_primary_10_17844_jphpi_v27i10_53930
crossref_primary_10_1016_j_fpsl_2023_101087
crossref_primary_10_1111_jfs_12988
crossref_primary_10_3390_microorganisms13030548
crossref_primary_10_1007_s10068_023_01312_2
crossref_primary_10_3390_foods13203251
crossref_primary_10_1007_s13197_022_05434_z
crossref_primary_10_1007_s11947_024_03476_z
crossref_primary_10_3390_plants11070856
crossref_primary_10_5851_kosfa_2023_e31
crossref_primary_10_1111_1541_4337_13027
crossref_primary_10_3390_foods10122927
crossref_primary_10_1016_j_ifset_2023_103340
crossref_primary_10_3390_pathogens14010010
crossref_primary_10_1007_s11274_024_04054_3
crossref_primary_10_1016_j_micres_2024_127656
crossref_primary_10_1111_1541_4337_12852
crossref_primary_10_1016_j_lwt_2020_110210
crossref_primary_10_1016_j_ifset_2022_103260
crossref_primary_10_1016_j_foodres_2024_114650
crossref_primary_10_1007_s00217_021_03750_w
crossref_primary_10_3390_foods10071484
crossref_primary_10_1016_j_foodres_2023_112593
crossref_primary_10_1016_j_foodcont_2025_111259
crossref_primary_10_1016_j_foodres_2021_110126
crossref_primary_10_1016_j_ijbiomac_2024_133307
crossref_primary_10_1016_j_fufo_2021_100095
crossref_primary_10_1016_j_lwt_2024_116843
crossref_primary_10_1021_acsomega_2c01077
crossref_primary_10_1016_j_foodres_2023_112867
crossref_primary_10_1080_87559129_2023_2212061
crossref_primary_10_1111_lam_13799
crossref_primary_10_3390_foods11162469
crossref_primary_10_3390_plants10081616
crossref_primary_10_1089_fpd_2021_0035
crossref_primary_10_1016_j_scitotenv_2024_178184
crossref_primary_10_1039_D4EW00226A
crossref_primary_10_1111_1541_4337_12820
crossref_primary_10_1109_TPS_2020_3019995
crossref_primary_10_1016_j_foodres_2024_114067
crossref_primary_10_1080_00439339_2023_2163044
crossref_primary_10_3390_v14122685
crossref_primary_10_1080_10408398_2020_1865872
crossref_primary_10_1111_1541_4337_70056
Cites_doi 10.1016/j.ijantimicag.2013.08.022
10.1016/j.foodcont.2016.01.035
10.1016/j.ifset.2013.03.001
10.1016/j.tifs.2017.08.007
10.1016/j.ifset.2019.01.013
10.1016/j.fm.2018.01.003
10.1016/j.cofs.2017.07.008
10.4315/0362-028X-71.7.1357
10.1016/j.foodres.2013.11.005
10.1016/j.fbp.2015.07.011
10.1016/j.foodcont.2011.10.002
10.1016/j.ifset.2016.06.007
10.1007/s11483-014-9382-z
10.1016/j.foodcont.2010.02.002
10.1016/j.ijfoodmicro.2015.05.019
10.1016/j.tifs.2018.02.008
10.1111/ijfs.13159
10.1016/j.foodcont.2018.09.034
10.1111/j.1365-2672.2007.03286.x
10.1016/j.chom.2019.06.002
10.1016/j.ijms.2003.11.016
10.1111/j.1574-695X.2012.00942.x
10.1016/j.ijfoodmicro.2015.07.022
10.1016/j.ifset.2013.04.002
10.1021/jp411440k
10.1016/j.cofs.2019.03.006
10.1016/j.jbiosc.2014.02.005
10.1016/j.jwpe.2016.01.003
10.1016/j.cofs.2015.02.003
10.1016/j.meatsci.2013.05.023
10.1016/j.ijfoodmicro.2019.108385
10.1016/j.foodhyd.2014.08.019
10.1111/jfs.12316
10.1016/j.foodcont.2015.03.003
10.1016/j.cap.2013.04.021
10.1088/0022-3727/45/16/165205
10.1016/j.ijfoodmicro.2018.01.004
10.1016/j.biotechadv.2015.01.002
10.1016/j.jfoodeng.2019.109696
10.1016/j.ibiod.2019.03.003
10.1016/j.fm.2014.08.003
10.1016/j.ijfoodmicro.2019.01.005
10.2514/1.9562
10.1016/j.jgeb.2018.07.001
10.1111/j.1365-2672.2007.03694.x
10.1016/j.fm.2014.09.010
10.1046/j.1472-765X.2001.01004.x
10.1080/08927014.2011.602188
10.3389/fmicb.2016.00977
10.1111/jam.13429
10.1016/j.lwt.2014.08.036
10.1016/j.foodcont.2015.08.043
10.1371/journal.pone.0138209
10.1016/j.fm.2013.02.005
10.1016/j.foodcont.2016.05.056
10.1016/j.jfoodeng.2018.08.020
10.1128/microbiolspec.MB-0010-2014
10.1371/journal.pone.0044289
10.1016/j.ijfoodmicro.2010.10.029
10.1016/j.biomaterials.2015.12.027
10.1016/j.foodchem.2015.05.135
10.1016/j.lwt.2019.108582
10.1016/j.tifs.2018.07.014
10.1111/1541-4337.12144
10.1016/j.foodres.2014.03.067
10.1016/j.ijfoodmicro.2017.11.019
10.4315/0362-028X-71.3.634
10.1016/j.tibtech.2018.03.007
10.1016/j.ifset.2019.01.019
10.1038/nrmicro.2017.107
10.1016/j.tifs.2016.07.001
10.1016/j.cap.2012.12.024
10.1016/j.tifs.2017.04.005
10.1016/j.ijfoodmicro.2018.03.026
10.1016/j.foodres.2013.11.042
10.1016/j.cap.2013.01.030
10.1016/j.ijfoodmicro.2015.09.006
10.1016/j.ifset.2016.07.015
10.4315/0362-028X-68.4.711
10.1016/j.fm.2012.08.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 2020
DBID AAYXX
CITATION
7QO
7QR
7ST
7T7
8FD
C1K
F28
FR3
P64
SOI
7S9
L.6
DOI 10.1016/j.tifs.2020.03.001
DatabaseName CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Biotechnology Research Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3053
EndPage 151
ExternalDocumentID 10_1016_j_tifs_2020_03_001
S0924224419311665
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
WH7
WUQ
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QO
7QR
7ST
7T7
8FD
C1K
EFKBS
F28
FR3
P64
SOI
7S9
L.6
ID FETCH-LOGICAL-c361t-719875cb2b56b619e4726e4a3fcc209b2d5ed61c247f4bafbdcc390ef3c3f6343
IEDL.DBID .~1
ISSN 0924-2244
IngestDate Fri Sep 05 03:56:26 EDT 2025
Wed Aug 13 10:35:50 EDT 2025
Tue Jul 01 04:02:36 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Fri Feb 23 02:46:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Food preservation
Quorum sensing
Cold plasma
Biofilms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-719875cb2b56b619e4726e4a3fcc209b2d5ed61c247f4bafbdcc390ef3c3f6343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2440940595
PQPubID 2045388
PageCount 10
ParticipantIDs proquest_miscellaneous_2400526207
proquest_journals_2440940595
crossref_citationtrail_10_1016_j_tifs_2020_03_001
crossref_primary_10_1016_j_tifs_2020_03_001
elsevier_sciencedirect_doi_10_1016_j_tifs_2020_03_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Trends in food science & technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Srey, Park, Jahid, Ha (bib69) 2014; 62
Traba, Liang (bib74) 2011; 27
Sarangapani, Misra, Milosavljevic, Bourke, Cullen (bib65) 2016; 9
Zhang, Wei, Yuan, Chen, Dai, Wang (bib81) 2019; 52
Hertwig, Kai, Ehlbeck, Knorr, Schlüter (bib32) 2015; 55
Bol'shakov, Cruden, Mogul, Rao, Shama (bib6) 2004; 42
Chizoba Ekezie, Sun, Cheng (bib8) 2017; 69
Coutinho (bib12) 2018; 74
Katja (bib38) 2012; 7
Jahid, Han, Srey, Ha (bib35) 2014; 55
Kamgang, Briandet, Herry, Brisset, Natali (bib37) 2007; 103
Kim, Yong, Park, Choe, Jo (bib40) 2013; 13
Dasan, Mutlu, Boyaci (bib18) 2016; 216
Yun, Kim, Jung, Kruk, Kim, Choe (bib80) 2010; 21
Minei, Gomes, Ratti, D'Angelis, De Martinis (bib49) 2008; 71
Gilmore, Flynn, O'Brien, Hickok, Freeman, Bourke (bib26) 2018; 36
Cui, Wu, Li, Lin (bib17) 2017; 37
Hussain, Kwon, Park, Seheli, Huque, Oh (bib33) 2019; 116
Norwood, Gilmour (bib55) 2010; 33
Lunov (bib45) 2016; 82
Xu, Xie, Soteyome, Peters, Shirtliff, Liu (bib78) 2019; 26
Cui, Ma, Lin (bib16) 2016; 66
Patange, Boehm, Ziuzina, Cullen, Gilmore, Bourke (bib59) 2019; 293
Pei (bib60) 2012; 45
Jahid, Han, Zhang, Ha (bib36) 2015; 46
Govaert, Smet, Vergauwen, Ećimović, Walsh, Baka (bib27) 2019; 52
Misra, Keener, Bourke, Mosnier, Cullen (bib52) 2014; 118
Cui, Ma, Li, Lin (bib15) 2016; 70
Traba, Chen, Liang (bib73) 2013; 13
Han (bib29) 2016; 7
Cui, Bai, Rashed, Lin (bib13) 2018; 266
Schlisselberg, Sima (bib66) 2013; 35
Ziuzina, Boehm, Patil, Cullen, Bourke (bib83) 2015; 10
Alkawareek, Algwari, Laverty, Gorman, Graham, O'Connell (bib4) 2012; 7
Abdallah, Khelissa, Ibrahim, Benoliel, Heliot, Dhulster (bib1) 2015; 214
Dygico, Gahan, Grogan, Burgess (bib19) 2019; 317
Misra, Kaur, Tiwari, Kaur, Singh, Cullen (bib51) 2015; 44
Laroussi, Leipold (bib42) 2004; 233
Misra, Jo (bib50) 2017; 64
Gabriel, Ugay, Siringan, Rosario, Tumlos, Ramos (bib22) 2016; 36
Jahid, Han, Ha (bib34) 2014; 55
Whitehead, Verran (bib77) 2015; 2
Zhu, Li, Cui, Lin (bib82) 2020; 266
van der Veen, Abee (bib76) 2011; 144
Giaouris (bib25) 2014; 97
Farber, Dabush-Busheri, Chaniel, Rozenfeld, Bormashenko, Multanen (bib20) 2019; 139
Garofulić, Jambrak, Milošević, Dragović-Uzelac, Zorić, Herceg (bib24) 2015; 62
Thirumdas, Sarangapani, Annapure (bib72) 2015; 10
Herceg (bib31) 2016; 190
Cho, Ha (bib9) 2019; 96
Pankaj, Keener (bib56) 2017; 16
Alkawareek, Gorman, Graham, Gilmore (bib5) 2014; 43
Christian, Liang (bib11) 2011; 27
Misra, Pankaj, Segat, Ishikawa (bib53) 2016; 55
Vadakkan, Choudhury, Gunasekaran, Hemapriya, Vijayanand (bib75) 2018; 16
Cui, Bai, Yuan, Surendhiran, Lin (bib14) 2018; 268
Meinlschmidt, Ueberham, Lehmann, Reineke, Schlüter, Schweiggert-Weisz (bib47) 2016; 38
Rodriguez-Romo, Yousef (bib62) 2005; 68
Fernández, Noriega, Thompson (bib21) 2013; 33
Pasquali (bib58) 2016; 60
Sadekuzzaman, Yang, Mizan, Ha (bib64) 2015; 14
Surowsky, Fischer, Schlueter, Knorr (bib71) 2013; 19
Gannesen, Zhurina, Veselova, Khmel, Plakunov (bib23) 2015; 84
Stewart (bib70) 2015; 3
Alegbeleye, Singleton, Sant'Ana (bib2) 2018; 73
Alkawareek, Algwari, Gorman, Graham, O'Connell, Gilmore (bib3) 2012; 65
Heir, Møretrø, Simensen, Langsrud (bib30) 2018; 275
Niemira, Sites (bib54) 2008; 71
Mandal, Singh, Pratap Singh (bib46) 2018; 80
Scholtz, Pazlarova, Souskova, Khun, Julak (bib67) 2015; 33
Setsuhara, Cho, Shiratani, Sekine, Hori (bib68) 2013; 13
Millan-Sango, Han, Milosavljevic, Van Impe, Bourke, Cullen (bib48) 2015; 96
Yan, Bassler (bib79) 2019; 26
Phillips (bib61) 2016; 51
Kim, Bang, Min (bib39) 2019; 242
Chorianopoulos, Giaouris, Skandamis, Haroutounian, Nychas (bib10) 2010; 104
Lohse, Gulati, Johnson, Nobile (bib44) 2017; 16
Ziuzina, Han, Cullen, Bourke (bib84) 2015; 210
Bourke, Ziuzina, Han, Cullen, Gilmore (bib7) 2017; 123
Lacombe, Niemira, Gurtler, Fan, Sites, Boyd (bib41) 2015; 46
Saá Ibusquiza, Herrera, Vázquez-Sánchez, Cabo (bib63) 2012; 25
Pankaj, Misra, Cullen (bib57) 2013; 19
Li, Kojtari, Friedman, Brooks, Fridman, Ji (bib43) 2014; 118
Bol'shakov (10.1016/j.tifs.2020.03.001_bib6) 2004; 42
Alkawareek (10.1016/j.tifs.2020.03.001_bib5) 2014; 43
Sarangapani (10.1016/j.tifs.2020.03.001_bib65) 2016; 9
Xu (10.1016/j.tifs.2020.03.001_bib78) 2019; 26
Jahid (10.1016/j.tifs.2020.03.001_bib35) 2014; 55
Kim (10.1016/j.tifs.2020.03.001_bib39) 2019; 242
Srey (10.1016/j.tifs.2020.03.001_bib69) 2014; 62
Lacombe (10.1016/j.tifs.2020.03.001_bib41) 2015; 46
Scholtz (10.1016/j.tifs.2020.03.001_bib67) 2015; 33
Traba (10.1016/j.tifs.2020.03.001_bib74) 2011; 27
Whitehead (10.1016/j.tifs.2020.03.001_bib77) 2015; 2
Mandal (10.1016/j.tifs.2020.03.001_bib46) 2018; 80
Gabriel (10.1016/j.tifs.2020.03.001_bib22) 2016; 36
Millan-Sango (10.1016/j.tifs.2020.03.001_bib48) 2015; 96
Thirumdas (10.1016/j.tifs.2020.03.001_bib72) 2015; 10
Traba (10.1016/j.tifs.2020.03.001_bib73) 2013; 13
Farber (10.1016/j.tifs.2020.03.001_bib20) 2019; 139
Giaouris (10.1016/j.tifs.2020.03.001_bib25) 2014; 97
Kim (10.1016/j.tifs.2020.03.001_bib40) 2013; 13
Setsuhara (10.1016/j.tifs.2020.03.001_bib68) 2013; 13
Norwood (10.1016/j.tifs.2020.03.001_bib55) 2010; 33
Patange (10.1016/j.tifs.2020.03.001_bib59) 2019; 293
Pankaj (10.1016/j.tifs.2020.03.001_bib57) 2013; 19
Katja (10.1016/j.tifs.2020.03.001_bib38) 2012; 7
Fernández (10.1016/j.tifs.2020.03.001_bib21) 2013; 33
Misra (10.1016/j.tifs.2020.03.001_bib51) 2015; 44
Christian (10.1016/j.tifs.2020.03.001_bib11) 2011; 27
Stewart (10.1016/j.tifs.2020.03.001_bib70) 2015; 3
Surowsky (10.1016/j.tifs.2020.03.001_bib71) 2013; 19
Cui (10.1016/j.tifs.2020.03.001_bib13) 2018; 266
Alkawareek (10.1016/j.tifs.2020.03.001_bib3) 2012; 65
Gilmore (10.1016/j.tifs.2020.03.001_bib26) 2018; 36
Han (10.1016/j.tifs.2020.03.001_bib29) 2016; 7
Laroussi (10.1016/j.tifs.2020.03.001_bib42) 2004; 233
Ziuzina (10.1016/j.tifs.2020.03.001_bib83) 2015; 10
Hertwig (10.1016/j.tifs.2020.03.001_bib32) 2015; 55
Jahid (10.1016/j.tifs.2020.03.001_bib34) 2014; 55
Misra (10.1016/j.tifs.2020.03.001_bib53) 2016; 55
Rodriguez-Romo (10.1016/j.tifs.2020.03.001_bib62) 2005; 68
Vadakkan (10.1016/j.tifs.2020.03.001_bib75) 2018; 16
Saá Ibusquiza (10.1016/j.tifs.2020.03.001_bib63) 2012; 25
Cui (10.1016/j.tifs.2020.03.001_bib14) 2018; 268
Niemira (10.1016/j.tifs.2020.03.001_bib54) 2008; 71
Garofulić (10.1016/j.tifs.2020.03.001_bib24) 2015; 62
Abdallah (10.1016/j.tifs.2020.03.001_bib1) 2015; 214
Pasquali (10.1016/j.tifs.2020.03.001_bib58) 2016; 60
Phillips (10.1016/j.tifs.2020.03.001_bib61) 2016; 51
Schlisselberg (10.1016/j.tifs.2020.03.001_bib66) 2013; 35
Govaert (10.1016/j.tifs.2020.03.001_bib27) 2019; 52
Kamgang (10.1016/j.tifs.2020.03.001_bib37) 2007; 103
Minei (10.1016/j.tifs.2020.03.001_bib49) 2008; 71
Zhu (10.1016/j.tifs.2020.03.001_bib82) 2020; 266
Alegbeleye (10.1016/j.tifs.2020.03.001_bib2) 2018; 73
Dygico (10.1016/j.tifs.2020.03.001_bib19) 2019; 317
Li (10.1016/j.tifs.2020.03.001_bib43) 2014; 118
Bourke (10.1016/j.tifs.2020.03.001_bib7) 2017; 123
Lohse (10.1016/j.tifs.2020.03.001_bib44) 2017; 16
Dasan (10.1016/j.tifs.2020.03.001_bib18) 2016; 216
Heir (10.1016/j.tifs.2020.03.001_bib30) 2018; 275
Lunov (10.1016/j.tifs.2020.03.001_bib45) 2016; 82
Herceg (10.1016/j.tifs.2020.03.001_bib31) 2016; 190
Sadekuzzaman (10.1016/j.tifs.2020.03.001_bib64) 2015; 14
Misra (10.1016/j.tifs.2020.03.001_bib52) 2014; 118
Coutinho (10.1016/j.tifs.2020.03.001_bib12) 2018; 74
Cui (10.1016/j.tifs.2020.03.001_bib17) 2017; 37
Gannesen (10.1016/j.tifs.2020.03.001_bib23) 2015; 84
Alkawareek (10.1016/j.tifs.2020.03.001_bib4) 2012; 7
Ziuzina (10.1016/j.tifs.2020.03.001_bib84) 2015; 210
Misra (10.1016/j.tifs.2020.03.001_bib50) 2017; 64
Chizoba Ekezie (10.1016/j.tifs.2020.03.001_bib8) 2017; 69
Pankaj (10.1016/j.tifs.2020.03.001_bib56) 2017; 16
Pei (10.1016/j.tifs.2020.03.001_bib60) 2012; 45
Cho (10.1016/j.tifs.2020.03.001_bib9) 2019; 96
Cui (10.1016/j.tifs.2020.03.001_bib16) 2016; 66
van der Veen (10.1016/j.tifs.2020.03.001_bib76) 2011; 144
Yun (10.1016/j.tifs.2020.03.001_bib80) 2010; 21
Chorianopoulos (10.1016/j.tifs.2020.03.001_bib10) 2010; 104
Hussain (10.1016/j.tifs.2020.03.001_bib33) 2019; 116
Cui (10.1016/j.tifs.2020.03.001_bib15) 2016; 70
Zhang (10.1016/j.tifs.2020.03.001_bib81) 2019; 52
Yan (10.1016/j.tifs.2020.03.001_bib79) 2019; 26
Jahid (10.1016/j.tifs.2020.03.001_bib36) 2015; 46
Meinlschmidt (10.1016/j.tifs.2020.03.001_bib47) 2016; 38
References_xml – volume: 190
  start-page: 665
  year: 2016
  end-page: 672
  ident: bib31
  article-title: Gas phase plasma impact on phenolic compounds in pomegranate juice
  publication-title: Food Chemistry
– volume: 16
  year: 2017
  ident: bib44
  article-title: Development and regulation of single- and multi-species Candida albicans biofilms
  publication-title: Nature Reviews Microbiology
– volume: 33
  start-page: 320
  year: 2010
  end-page: 324
  ident: bib55
  article-title: The differential adherence capabilities of two Listeria monocytogenesstrains in monoculture and multispecies biofilms as a function oftemperature
  publication-title: Letters in Applied Microbiology
– volume: 64
  start-page: 74
  year: 2017
  end-page: 86
  ident: bib50
  article-title: Applications of cold plasma technology for microbiological safety in meat industry
  publication-title: Trends in Food Science & Technology
– volume: 71
  start-page: 634
  year: 2008
  end-page: 638
  ident: bib49
  article-title: Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation
  publication-title: Journal of Food Protection
– volume: 44
  start-page: 115
  year: 2015
  end-page: 121
  ident: bib51
  article-title: Atmospheric pressure cold plasma (ACP) treatment of wheat flour
  publication-title: Food Hydrocolloids
– volume: 7
  year: 2012
  ident: bib38
  article-title: Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms
  publication-title: PloS One
– volume: 96
  start-page: 343
  year: 2019
  end-page: 350
  ident: bib9
  article-title: Application of X-ray for inactivation of foodborne pathogens in ready-to-eat sliced ham and mechanism of the bactericidal action
  publication-title: Food Control
– volume: 317
  start-page: 108385
  year: 2019
  ident: bib19
  article-title: The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment
  publication-title: International Journal of Food Microbiology
– volume: 82
  start-page: 71
  year: 2016
  end-page: 83
  ident: bib45
  article-title: The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma
  publication-title: Biomaterials
– volume: 10
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib83
  article-title: Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors
  publication-title: PloS One
– volume: 216
  start-page: 50
  year: 2016
  end-page: 59
  ident: bib18
  article-title: Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor
  publication-title: International Journal of Food Microbiology
– volume: 266
  start-page: 109696
  year: 2020
  ident: bib82
  article-title: Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters
  publication-title: Journal of Food Engineering
– volume: 14
  start-page: 491
  year: 2015
  end-page: 509
  ident: bib64
  article-title: Current and recent advanced strategies for combating biofilm
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 70
  start-page: 183
  year: 2016
  end-page: 190
  ident: bib15
  article-title: Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process
  publication-title: Food Control
– volume: 242
  start-page: 55
  year: 2019
  end-page: 67
  ident: bib39
  article-title: Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment
  publication-title: Journal of Food Engineering
– volume: 268
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib14
  article-title: Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables
  publication-title: International Journal of Food Microbiology
– volume: 55
  start-page: 181
  year: 2014
  end-page: 189
  ident: bib34
  article-title: Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce
  publication-title: Food Research International
– volume: 80
  start-page: 93
  year: 2018
  end-page: 103
  ident: bib46
  article-title: Recent developments in cold plasma decontamination technology in the food industry
  publication-title: Trends in Food Science & Technology
– volume: 9
  start-page: 225
  year: 2016
  end-page: 232
  ident: bib65
  article-title: Pesticide degradation in water using atmospheric air cold plasma
  publication-title: Journal of Water Process Engineering
– volume: 73
  start-page: 177
  year: 2018
  end-page: 208
  ident: bib2
  article-title: Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review
  publication-title: Food Microbiology
– volume: 43
  start-page: 154
  year: 2014
  end-page: 160
  ident: bib5
  article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma
  publication-title: International Journal of Antimicrobial Agents
– volume: 33
  start-page: 24
  year: 2013
  end-page: 29
  ident: bib21
  article-title: Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology
  publication-title: Food Microbiology
– volume: 118
  start-page: 1612
  year: 2014
  end-page: 1620
  ident: bib43
  article-title: Decomposition of L-valine under nonthermal dielectric barrier discharge plasma
  publication-title: Journal of Physical Chemistry B
– volume: 38
  start-page: 374
  year: 2016
  end-page: 383
  ident: bib47
  article-title: The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 68
  start-page: 711
  year: 2005
  end-page: 717
  ident: bib62
  article-title: Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation
  publication-title: Journal of Food Protection
– volume: 66
  start-page: 8
  year: 2016
  end-page: 16
  ident: bib16
  article-title: Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce
  publication-title: Food Control
– volume: 2
  start-page: 84
  year: 2015
  end-page: 91
  ident: bib77
  article-title: Formation, architecture and functionality of microbial biofilms in the food industry
  publication-title: Current Opinion in Food Science
– volume: 25
  start-page: 202
  year: 2012
  end-page: 210
  ident: bib63
  article-title: Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida
  publication-title: Food Control
– volume: 16
  start-page: 49
  year: 2017
  end-page: 52
  ident: bib56
  article-title: Cold plasma: Background, applications and current trends
  publication-title: Current Opinion in Food Science
– volume: 52
  start-page: 394
  year: 2019
  end-page: 405
  ident: bib81
  article-title: Bactericidal effect of cold plasma on microbiota of commercial fish balls
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 51
  start-page: 1731
  year: 2016
  end-page: 1743
  ident: bib61
  article-title: Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control
  publication-title: International Journal of Food Science and Technology
– volume: 55
  start-page: 39
  year: 2016
  end-page: 47
  ident: bib53
  article-title: Cold plasma interactions with enzymes in foods and model systems
  publication-title: Trends in Food Science & Technology
– volume: 55
  start-page: 445
  year: 2014
  end-page: 454
  ident: bib35
  article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation
  publication-title: Food Research International
– volume: 35
  start-page: 65
  year: 2013
  end-page: 72
  ident: bib66
  article-title: The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine
  publication-title: Food Microbiology
– volume: 97
  start-page: 298
  year: 2014
  end-page: 309
  ident: bib25
  article-title: Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods
  publication-title: Meat Science
– volume: 26
  start-page: 57
  year: 2019
  end-page: 64
  ident: bib78
  article-title: Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: An underestimated concern in food safety
  publication-title: Current Opinion in Food Science
– volume: 62
  start-page: 894
  year: 2015
  end-page: 900
  ident: bib24
  article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 19
  start-page: 153
  year: 2013
  end-page: 157
  ident: bib57
  article-title: Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 123
  start-page: 308
  year: 2017
  end-page: 324
  ident: bib7
  article-title: Microbiological interactions with cold plasma
  publication-title: Journal of Applied Microbiology
– volume: 62
  start-page: 484
  year: 2014
  end-page: 491
  ident: bib69
  article-title: Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage
  publication-title: Food Research International
– volume: 33
  start-page: 1108
  year: 2015
  end-page: 1119
  ident: bib67
  article-title: Nonthermal plasma — a tool for decontamination and disinfection
  publication-title: Biotechnology Advances
– volume: 16
  start-page: 239
  year: 2018
  end-page: 252
  ident: bib75
  article-title: Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression
  publication-title: Journal of Genetic Engineering and Biotechnology
– volume: 104
  start-page: 1586
  year: 2010
  end-page: 1596
  ident: bib10
  article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of satureja thymbra and comparison with standard acid-base sanitizers
  publication-title: Journal of Applied Microbiology
– volume: 96
  start-page: 154
  year: 2015
  end-page: 160
  ident: bib48
  article-title: Assessing bacterial recovery and efficacy of cold atmospheric plasma treatments
  publication-title: Food and Bioproducts Processing
– volume: 71
  start-page: 1357
  year: 2008
  ident: bib54
  article-title: Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples
  publication-title: Journal of Food Protection
– volume: 210
  start-page: 53
  year: 2015
  end-page: 61
  ident: bib84
  article-title: Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli
  publication-title: International Journal of Food Microbiology
– volume: 21
  start-page: 1182
  year: 2010
  end-page: 1186
  ident: bib80
  article-title: Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma
  publication-title: Food Control
– volume: 26
  start-page: 15
  year: 2019
  end-page: 21
  ident: bib79
  article-title: Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms
  publication-title: Cell Host & Microbe
– volume: 42
  start-page: 823
  year: 2004
  end-page: 832
  ident: bib6
  article-title: Radio-frequency oxygen plasma as a sterilization source
  publication-title: AIAA Journal
– volume: 84
  start-page: 281
  year: 2015
  end-page: 290
  ident: bib23
  article-title: Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system
  publication-title: Mikrobiologiia
– volume: 293
  start-page: 137
  year: 2019
  end-page: 145
  ident: bib59
  article-title: High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce
  publication-title: International Journal of Food Microbiology
– volume: 69
  start-page: 46
  year: 2017
  end-page: 58
  ident: bib8
  article-title: A review on recent advances in cold plasma technology for the food industry: Current applications and future trends
  publication-title: Trends in Food Science & Technology
– volume: 3
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib70
  article-title: Antimicrobial tolerance in biofilms
  publication-title: Microbiology Spectrum
– volume: 116
  start-page: 108582
  year: 2019
  ident: bib33
  article-title: Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 65
  start-page: 381
  year: 2012
  end-page: 384
  ident: bib3
  article-title: Application of atmospheric pressure nonthermal plasma for thein vitroeradication of bacterial biofilms
  publication-title: FEMS Immunology and Medical Microbiology
– volume: 60
  start-page: 552
  year: 2016
  end-page: 559
  ident: bib58
  article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, cichorium intybus L.)
  publication-title: Food Control
– volume: 266
  start-page: 69
  year: 2018
  end-page: 78
  ident: bib13
  article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber
  publication-title: International Journal of Food Microbiology
– volume: 27
  start-page: 763
  year: 2011
  end-page: 772
  ident: bib74
  article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases
  publication-title: Biofouling
– volume: 13
  start-page: 1420
  year: 2013
  end-page: 1425
  ident: bib40
  article-title: Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin
  publication-title: Current Applied Physics
– volume: 13
  start-page: 59
  year: 2013
  end-page: 63
  ident: bib68
  article-title: Plasma interactions with aminoacid (l-alanine) as a basis of fundamental processes in plasma medicine
  publication-title: Current Applied Physics
– volume: 214
  start-page: 38
  year: 2015
  end-page: 47
  ident: bib1
  article-title: Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants
  publication-title: International Journal of Food Microbiology
– volume: 36
  start-page: 627
  year: 2018
  end-page: 638
  ident: bib26
  article-title: Cold plasmas for biofilm control: Opportunities and challenges
  publication-title: Trends in Biotechnology
– volume: 118
  start-page: 177
  year: 2014
  end-page: 182
  ident: bib52
  article-title: In-package atmospheric pressure cold plasma treatment of cherry tomatoes
  publication-title: Journal of Bioscience and Bioengineering
– volume: 144
  start-page: 421
  year: 2011
  end-page: 431
  ident: bib76
  article-title: Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid
  publication-title: International Journal of Food Microbiology
– volume: 46
  start-page: 383
  year: 2015
  end-page: 394
  ident: bib36
  article-title: Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma
  publication-title: Food Microbiology
– volume: 46
  start-page: 479
  year: 2015
  end-page: 484
  ident: bib41
  article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes
  publication-title: Food Microbiology
– volume: 7
  start-page: 977
  year: 2016
  end-page: 1008
  ident: bib29
  article-title: Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma
  publication-title: Frontiers in Microbiology
– volume: 13
  start-page: 12
  year: 2013
  end-page: 18
  ident: bib73
  article-title: Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials
  publication-title: Current Applied Physics
– volume: 36
  start-page: 311
  year: 2016
  end-page: 319
  ident: bib22
  article-title: Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 74
  start-page: 56
  year: 2018
  end-page: 68
  ident: bib12
  article-title: Cold plasma processing of milk and dairy products
  publication-title: Trends in Food Science & Technology
– volume: 7
  year: 2012
  ident: bib4
  article-title: Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma
  publication-title: PloS One
– volume: 19
  start-page: 146
  year: 2013
  end-page: 152
  ident: bib71
  article-title: Cold plasma effects on enzyme activity in a model food system
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 10
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib72
  article-title: Cold plasma: A novel non-thermal technology for food processing
  publication-title: Food Biophysics
– volume: 103
  start-page: 621
  year: 2007
  end-page: 628
  ident: bib37
  article-title: Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air
  publication-title: Journal of Applied Microbiology
– volume: 233
  start-page: 81
  year: 2004
  end-page: 86
  ident: bib42
  article-title: Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure
  publication-title: International Journal of Mass Spectrometry
– volume: 27
  start-page: 763
  year: 2011
  end-page: 772
  ident: bib11
  article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases
  publication-title: Biofouling
– volume: 275
  start-page: 46
  year: 2018
  end-page: 55
  ident: bib30
  article-title: Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments
  publication-title: International Journal of Food Microbiology
– volume: 45
  start-page: 1
  year: 2012
  end-page: 5
  ident: bib60
  article-title: Inactivation of a 25.5 lm Enterococcus faecalis biofilm by a room-temperature,battery-operated, handheld air plasma jet
  publication-title: Journal of Physics D: Applied Physics
– volume: 37
  year: 2017
  ident: bib17
  article-title: Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist
  publication-title: Journal of Food Safety
– volume: 55
  start-page: 221
  year: 2015
  end-page: 229
  ident: bib32
  article-title: Decontamination of whole black pepper using different cold atmospheric pressure plasma applications
  publication-title: Food Control
– volume: 52
  start-page: 376
  year: 2019
  end-page: 386
  ident: bib27
  article-title: Influence of plasma characteristics on the efficacy of Cold Atmospheric Plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 139
  start-page: 62
  year: 2019
  end-page: 69
  ident: bib20
  article-title: Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation
  publication-title: International Biodeterioration & Biodegradation
– volume: 43
  start-page: 154
  issue: 2
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib5
  article-title: Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma
  publication-title: International Journal of Antimicrobial Agents
  doi: 10.1016/j.ijantimicag.2013.08.022
– volume: 66
  start-page: 8
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib16
  article-title: Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.01.035
– volume: 19
  start-page: 153
  issue: 4
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib57
  article-title: Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2013.03.001
– volume: 69
  start-page: 46
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib8
  article-title: A review on recent advances in cold plasma technology for the food industry: Current applications and future trends
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2017.08.007
– volume: 52
  start-page: 376
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib27
  article-title: Influence of plasma characteristics on the efficacy of Cold Atmospheric Plasma (CAP) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2019.01.013
– volume: 73
  start-page: 177
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib2
  article-title: Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2018.01.003
– volume: 16
  start-page: 49
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib56
  article-title: Cold plasma: Background, applications and current trends
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2017.07.008
– volume: 7
  issue: 8
  year: 2012
  ident: 10.1016/j.tifs.2020.03.001_bib38
  article-title: Atmospheric pressure plasma: A high-performance tool for the efficient removal of biofilms
  publication-title: PloS One
– volume: 71
  start-page: 1357
  issue: 7
  year: 2008
  ident: 10.1016/j.tifs.2020.03.001_bib54
  article-title: Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-71.7.1357
– volume: 55
  start-page: 181
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib34
  article-title: Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2013.11.005
– volume: 96
  start-page: 154
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib48
  article-title: Assessing bacterial recovery and efficacy of cold atmospheric plasma treatments
  publication-title: Food and Bioproducts Processing
  doi: 10.1016/j.fbp.2015.07.011
– volume: 25
  start-page: 202
  issue: 1
  year: 2012
  ident: 10.1016/j.tifs.2020.03.001_bib63
  article-title: Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2011.10.002
– volume: 38
  start-page: 374
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib47
  article-title: The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2016.06.007
– volume: 10
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib72
  article-title: Cold plasma: A novel non-thermal technology for food processing
  publication-title: Food Biophysics
  doi: 10.1007/s11483-014-9382-z
– volume: 21
  start-page: 1182
  issue: 8
  year: 2010
  ident: 10.1016/j.tifs.2020.03.001_bib80
  article-title: Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2010.02.002
– volume: 210
  start-page: 53
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib84
  article-title: Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2015.05.019
– volume: 74
  start-page: 56
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib12
  article-title: Cold plasma processing of milk and dairy products
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.02.008
– volume: 51
  start-page: 1731
  issue: 8
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib61
  article-title: Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/ijfs.13159
– volume: 96
  start-page: 343
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib9
  article-title: Application of X-ray for inactivation of foodborne pathogens in ready-to-eat sliced ham and mechanism of the bactericidal action
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.09.034
– volume: 103
  start-page: 621
  year: 2007
  ident: 10.1016/j.tifs.2020.03.001_bib37
  article-title: Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/j.1365-2672.2007.03286.x
– volume: 26
  start-page: 15
  issue: 10
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib79
  article-title: Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2019.06.002
– volume: 233
  start-page: 81
  issue: 1–3
  year: 2004
  ident: 10.1016/j.tifs.2020.03.001_bib42
  article-title: Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure
  publication-title: International Journal of Mass Spectrometry
  doi: 10.1016/j.ijms.2003.11.016
– volume: 65
  start-page: 381
  issue: 2
  year: 2012
  ident: 10.1016/j.tifs.2020.03.001_bib3
  article-title: Application of atmospheric pressure nonthermal plasma for thein vitroeradication of bacterial biofilms
  publication-title: FEMS Immunology and Medical Microbiology
  doi: 10.1111/j.1574-695X.2012.00942.x
– volume: 214
  start-page: 38
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib1
  article-title: Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2015.07.022
– volume: 19
  start-page: 146
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib71
  article-title: Cold plasma effects on enzyme activity in a model food system
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2013.04.002
– volume: 118
  start-page: 1612
  issue: 6
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib43
  article-title: Decomposition of L-valine under nonthermal dielectric barrier discharge plasma
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp411440k
– volume: 26
  start-page: 57
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib78
  article-title: Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: An underestimated concern in food safety
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2019.03.006
– volume: 118
  start-page: 177
  issue: 2
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib52
  article-title: In-package atmospheric pressure cold plasma treatment of cherry tomatoes
  publication-title: Journal of Bioscience and Bioengineering
  doi: 10.1016/j.jbiosc.2014.02.005
– volume: 9
  start-page: 225
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib65
  article-title: Pesticide degradation in water using atmospheric air cold plasma
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2016.01.003
– volume: 2
  start-page: 84
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib77
  article-title: Formation, architecture and functionality of microbial biofilms in the food industry
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2015.02.003
– volume: 97
  start-page: 298
  issue: 3
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib25
  article-title: Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods
  publication-title: Meat Science
  doi: 10.1016/j.meatsci.2013.05.023
– volume: 317
  start-page: 108385
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib19
  article-title: The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2019.108385
– volume: 44
  start-page: 115
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib51
  article-title: Atmospheric pressure cold plasma (ACP) treatment of wheat flour
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.08.019
– volume: 37
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib17
  article-title: Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist
  publication-title: Journal of Food Safety
  doi: 10.1111/jfs.12316
– volume: 55
  start-page: 221
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib32
  article-title: Decontamination of whole black pepper using different cold atmospheric pressure plasma applications
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.03.003
– volume: 13
  start-page: 1420
  issue: 7
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib40
  article-title: Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2013.04.021
– volume: 45
  start-page: 1
  year: 2012
  ident: 10.1016/j.tifs.2020.03.001_bib60
  article-title: Inactivation of a 25.5 lm Enterococcus faecalis biofilm by a room-temperature,battery-operated, handheld air plasma jet
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/45/16/165205
– volume: 268
  start-page: 1
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib14
  article-title: Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2018.01.004
– volume: 33
  start-page: 1108
  issue: 6
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib67
  article-title: Nonthermal plasma — a tool for decontamination and disinfection
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2015.01.002
– volume: 266
  start-page: 109696
  year: 2020
  ident: 10.1016/j.tifs.2020.03.001_bib82
  article-title: Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2019.109696
– volume: 139
  start-page: 62
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib20
  article-title: Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation
  publication-title: International Biodeterioration & Biodegradation
  doi: 10.1016/j.ibiod.2019.03.003
– volume: 46
  start-page: 383
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib36
  article-title: Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2014.08.003
– volume: 293
  start-page: 137
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib59
  article-title: High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2019.01.005
– volume: 42
  start-page: 823
  issue: 4
  year: 2004
  ident: 10.1016/j.tifs.2020.03.001_bib6
  article-title: Radio-frequency oxygen plasma as a sterilization source
  publication-title: AIAA Journal
  doi: 10.2514/1.9562
– volume: 16
  start-page: 239
  issue: 2
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib75
  article-title: Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression
  publication-title: Journal of Genetic Engineering and Biotechnology
  doi: 10.1016/j.jgeb.2018.07.001
– volume: 104
  start-page: 1586
  issue: 6
  year: 2010
  ident: 10.1016/j.tifs.2020.03.001_bib10
  article-title: Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of satureja thymbra and comparison with standard acid-base sanitizers
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/j.1365-2672.2007.03694.x
– volume: 46
  start-page: 479
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib41
  article-title: Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2014.09.010
– volume: 33
  start-page: 320
  issue: 4
  year: 2010
  ident: 10.1016/j.tifs.2020.03.001_bib55
  article-title: The differential adherence capabilities of two Listeria monocytogenesstrains in monoculture and multispecies biofilms as a function oftemperature
  publication-title: Letters in Applied Microbiology
  doi: 10.1046/j.1472-765X.2001.01004.x
– volume: 27
  start-page: 763
  issue: 7
  year: 2011
  ident: 10.1016/j.tifs.2020.03.001_bib74
  article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases
  publication-title: Biofouling
  doi: 10.1080/08927014.2011.602188
– volume: 7
  start-page: 977
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib29
  article-title: Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00977
– volume: 123
  start-page: 308
  issue: 2
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib7
  article-title: Microbiological interactions with cold plasma
  publication-title: Journal of Applied Microbiology
  doi: 10.1111/jam.13429
– volume: 62
  start-page: 894
  issue: 1
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib24
  article-title: The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2014.08.036
– volume: 60
  start-page: 552
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib58
  article-title: Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, cichorium intybus L.)
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2015.08.043
– volume: 10
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib83
  article-title: Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors
  publication-title: PloS One
  doi: 10.1371/journal.pone.0138209
– volume: 35
  start-page: 65
  issue: 1
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib66
  article-title: The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2013.02.005
– volume: 70
  start-page: 183
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib15
  article-title: Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.05.056
– volume: 242
  start-page: 55
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib39
  article-title: Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2018.08.020
– volume: 3
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib70
  article-title: Antimicrobial tolerance in biofilms
  publication-title: Microbiology Spectrum
  doi: 10.1128/microbiolspec.MB-0010-2014
– volume: 27
  start-page: 763
  issue: 7
  year: 2011
  ident: 10.1016/j.tifs.2020.03.001_bib11
  article-title: Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases
  publication-title: Biofouling
  doi: 10.1080/08927014.2011.602188
– volume: 7
  issue: 8
  year: 2012
  ident: 10.1016/j.tifs.2020.03.001_bib4
  article-title: Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma
  publication-title: PloS One
  doi: 10.1371/journal.pone.0044289
– volume: 144
  start-page: 421
  issue: 3
  year: 2011
  ident: 10.1016/j.tifs.2020.03.001_bib76
  article-title: Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2010.10.029
– volume: 84
  start-page: 281
  issue: 3
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib23
  article-title: Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system
  publication-title: Mikrobiologiia
– volume: 82
  start-page: 71
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib45
  article-title: The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.12.027
– volume: 190
  start-page: 665
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib31
  article-title: Gas phase plasma impact on phenolic compounds in pomegranate juice
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.05.135
– volume: 116
  start-page: 108582
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib33
  article-title: Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2019.108582
– volume: 80
  start-page: 93
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib46
  article-title: Recent developments in cold plasma decontamination technology in the food industry
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.07.014
– volume: 14
  start-page: 491
  issue: 4
  year: 2015
  ident: 10.1016/j.tifs.2020.03.001_bib64
  article-title: Current and recent advanced strategies for combating biofilm
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12144
– volume: 62
  start-page: 484
  issue: 8
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib69
  article-title: Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.03.067
– volume: 266
  start-page: 69
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib13
  article-title: The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2017.11.019
– volume: 71
  start-page: 634
  issue: 3
  year: 2008
  ident: 10.1016/j.tifs.2020.03.001_bib49
  article-title: Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-71.3.634
– volume: 36
  start-page: 627
  issue: 6
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib26
  article-title: Cold plasmas for biofilm control: Opportunities and challenges
  publication-title: Trends in Biotechnology
  doi: 10.1016/j.tibtech.2018.03.007
– volume: 52
  start-page: 394
  year: 2019
  ident: 10.1016/j.tifs.2020.03.001_bib81
  article-title: Bactericidal effect of cold plasma on microbiota of commercial fish balls
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2019.01.019
– volume: 16
  issue: 1
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib44
  article-title: Development and regulation of single- and multi-species Candida albicans biofilms
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro.2017.107
– volume: 55
  start-page: 39
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib53
  article-title: Cold plasma interactions with enzymes in foods and model systems
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2016.07.001
– volume: 13
  start-page: 12
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib73
  article-title: Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2012.12.024
– volume: 64
  start-page: 74
  year: 2017
  ident: 10.1016/j.tifs.2020.03.001_bib50
  article-title: Applications of cold plasma technology for microbiological safety in meat industry
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2017.04.005
– volume: 275
  start-page: 46
  year: 2018
  ident: 10.1016/j.tifs.2020.03.001_bib30
  article-title: Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2018.03.026
– volume: 55
  start-page: 445
  issue: 7
  year: 2014
  ident: 10.1016/j.tifs.2020.03.001_bib35
  article-title: Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2013.11.042
– volume: 13
  start-page: 59
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib68
  article-title: Plasma interactions with aminoacid (l-alanine) as a basis of fundamental processes in plasma medicine
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2013.01.030
– volume: 216
  start-page: 50
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib18
  article-title: Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor
  publication-title: International Journal of Food Microbiology
  doi: 10.1016/j.ijfoodmicro.2015.09.006
– volume: 36
  start-page: 311
  year: 2016
  ident: 10.1016/j.tifs.2020.03.001_bib22
  article-title: Atmospheric pressure plasma jet inactivation of Pseudomonas aeruginosa biofilms on stainless steel surfaces
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2016.07.015
– volume: 68
  start-page: 711
  issue: 4
  year: 2005
  ident: 10.1016/j.tifs.2020.03.001_bib62
  article-title: Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation
  publication-title: Journal of Food Protection
  doi: 10.4315/0362-028X-68.4.711
– volume: 33
  start-page: 24
  issue: 1
  year: 2013
  ident: 10.1016/j.tifs.2020.03.001_bib21
  article-title: Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology
  publication-title: Food Microbiology
  doi: 10.1016/j.fm.2012.08.007
SSID ssj0005355
Score 2.590993
SecondaryResourceType review_article
Snippet The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective effect of...
Background: The increasingly grim situation caused by biofilms infection has undoubtedly become the challenge in the area of food safety. Due to the protective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Antiinfectives and antibacterials
bacteria
biofilm
Biofilms
Cold
Cold plasma
Cold plasmas
Cold treatment
Etching
Food
Food industry
Food preservation
Food processing industry
Food safety
foods
Gas composition
Lipid peroxidation
Lipids
Microorganisms
nonthermal processing
Organoleptic properties
Oxidation
plankton
Plasma
Process parameters
protective effect
Quorum sensing
sensory properties
Title Feasibility of cold plasma for the control of biofilms in food industry
URI https://dx.doi.org/10.1016/j.tifs.2020.03.001
https://www.proquest.com/docview/2440940595
https://www.proquest.com/docview/2400526207
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBfOL6IoI3qdsmadoeRdTVRQ8-0Ftp0gQq2l10PXjxtzvTpqKCHjyFdia05DHzpf1mBmAvlVZwncrAOCphFhYiKBBVB0qjvUxtik6fYocvLtXgVp7fx_dTcNTFwhCt0tv-1qY31trf6fvR7I-rqn8d4tEBHZBECBJFSlGguZQJrfWD9y80D9FUPiXlgLR94EzL8ZpUjlJ287BNdBr95px-mOnG95wswoIHjeywfa8lmLL1Msx2McUvyzD_Ja3gCpwirvOs1zc2cgznumRjhMlPBUOMyhDzMU9RJ7GuqGz30wurahSPSmybch5vq3B7cnxzNAh8wYTACBVNgoS-IMRGcx0rjScjKxOurCyEM4aHmeZlbEsVGS4TJ3XhdGmMyELrhBFOCSnWYLoe1XYdmIkyl3BdZpnNpIp5WmqRuriUXBcyCnUPom6kcuOziVNRi8e8o4095DS6OY1uHgrizvVg_7PPuM2l8ad23E1A_m1F5Gjs_-y31c1W7vcjyiWdYxFKxj3Y_RTjTqLfI0VtR6-k0yS_4WGy8c9Hb8IcXbV8yC2Ynjy_2m3ELBO90yzKHZg5PBsOLqkdXt0NPwCHeuuR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAcUAtULNDWSL1VYRO_khwRArblcSlI3KzYsaUgyK5gOXDhtzOTOIgiwaGnSJmxEo3tmc_JNzMAPwvpBbeFTFygFmZpJZIKUXWiLfrLwhcY9Cl3-PRMTy7kn0t1uQD7Qy4M0Sqj7-99euet451xtOZ41jTjvykeHTAASYQgWaa1-gAfpRI5FdDffXzB8xBd61PSTkg9Zs70JK95E6hmN0_7SqfZW9HplZ_ugs_hZ1iJqJHt9S_2BRZ8uwpLQ1Lx3Sosv6gruAZHCOwi7fWBTQPDya7ZDHHyTcUQpDIEfSxy1ElsG-rbfXPHmhbF0xqvXT-Ph3W4ODw4358ksWNC4oTO5klOnxCUs9wqbfFo5GXOtZeVCM7xtLS8Vr7WmeMyD9JWwdbOiTL1QTgRtJDiKyy209ZvAHNZGXJu67L0pdSKF7UVRVC15LaSWWpHkA2WMi6WE6euFtdm4I1dGbKuIeuaVBB5bgS_nsfM-mIa72qrYQLMP0vCoLd_d9z2MFsmbkiUSzrIIpZUI9h5FuNWov8jVeun96TTVb_hab75n4_-AUuT89MTc_L77HgLPpGkJ0duw-L89t5_QwAzt9-7BfoEorDrgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+cold+plasma+for+the+control+of+biofilms+in+food+industry&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Zhu%2C+Yulin&rft.au=Li%2C+Changzhu&rft.au=Cui%2C+Haiying&rft.au=Lin%2C+Lin&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0924-2244&rft.eissn=1879-3053&rft.volume=99&rft.spage=142&rft.epage=151&rft_id=info:doi/10.1016%2Fj.tifs.2020.03.001&rft.externalDocID=S0924224419311665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon