Fuzzy Adaptive PSO-ELM Algorithm Applied to Vehicle Sound Quality Prediction
When dealing with specific tasks, the hidden layer output matrix of an extreme learning machine (ELM) may change, largely due to the random assigned weight matrix of the input layer and the threshold matrix of the hidden layer, which sequentially leads to the corresponding change to output weights....
Saved in:
| Published in | Applied sciences Vol. 13; no. 17; p. 9561 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app13179561 |
Cover
| Abstract | When dealing with specific tasks, the hidden layer output matrix of an extreme learning machine (ELM) may change, largely due to the random assigned weight matrix of the input layer and the threshold matrix of the hidden layer, which sequentially leads to the corresponding change to output weights. The unstable fluctuations of the output weights increase the structural risk and the empirical risk of ELM. This paper proposed a fuzzy adaptive particle swarm optimization (PSO) algorithm to solve this problem, which could nonlinearly control the inertia factor during the iteration by fuzzy control. Based on the fuzzy adaptive PSO-ELM algorithm, a sound quality prediction model was developed. The prediction results of this model were compared with the other three sound quality prediction models. The results showed that the fuzzy adaptive PSO-ELM model was more precise. In addition, in comparison with two other adaptive inertia factor algorithms, the fuzzy adaptive PSO-ELM model was the fastest model to reach goal accuracy. |
|---|---|
| AbstractList | When dealing with specific tasks, the hidden layer output matrix of an extreme learning machine (ELM) may change, largely due to the random assigned weight matrix of the input layer and the threshold matrix of the hidden layer, which sequentially leads to the corresponding change to output weights. The unstable fluctuations of the output weights increase the structural risk and the empirical risk of ELM. This paper proposed a fuzzy adaptive particle swarm optimization (PSO) algorithm to solve this problem, which could nonlinearly control the inertia factor during the iteration by fuzzy control. Based on the fuzzy adaptive PSO-ELM algorithm, a sound quality prediction model was developed. The prediction results of this model were compared with the other three sound quality prediction models. The results showed that the fuzzy adaptive PSO-ELM model was more precise. In addition, in comparison with two other adaptive inertia factor algorithms, the fuzzy adaptive PSO-ELM model was the fastest model to reach goal accuracy. |
| Audience | Academic |
| Author | Wang, Chenlin Yang, Gongzhuo Huang, Qibai Li, Junyu |
| Author_xml | – sequence: 1 givenname: Chenlin orcidid: 0000-0002-4065-7061 surname: Wang fullname: Wang, Chenlin – sequence: 2 givenname: Gongzhuo surname: Yang fullname: Yang, Gongzhuo – sequence: 3 givenname: Junyu orcidid: 0009-0001-9399-5304 surname: Li fullname: Li, Junyu – sequence: 4 givenname: Qibai surname: Huang fullname: Huang, Qibai |
| BookMark | eNp9UdtO3DAQtRCVyu2JH7DEI4T6kjjOY4SgRdoKKi6v1qwvi1fZODgO1fL19TZVxROeB4_GZ84cnzlE-33oLUKnlFxy3pBvMAyU07qpBN1DB4zUouAlrfc_5F_RyTiuST4N5ZKSA7S4md7ft7g1MCT_ZvH9w11xvfiJ224Vok8vG9wOQ-etwSngZ_vidWfxQ5h6g39N0Pm0xffRGq-TD_0x-uKgG-3Jv_sIPd1cP179KBZ332-v2kWhuaCpENJAbQQpDWGSLbV1wjLjGlaXpdbUSQCqueTGSmo4EEcboFXluM2vpir5EbqdeU2AtRqi30DcqgBe_S2EuFIQ006qylMq7UASIWWpqwpYbeqyWnLmsgvLHdfFzDX1A2x_Q9f9J6RE7YxVH4zN8LMZPsTwOtkxqXWYYp9_q5gUjDFCxY70ckatIGvwvQspgs5h7MbrvDbnc72tRclEXovIDedzg45hHKN1n4r4A54KlY0 |
| Cites_doi | 10.1016/j.apacoust.2020.107493 10.1016/j.apacoust.2016.06.021 10.1016/j.proenv.2011.12.075 10.1504/IJVD.2022.127024 10.1016/j.compag.2022.107298 10.4271/2009-01-2190 10.1016/j.ins.2015.01.029 10.1016/j.apacoust.2021.108419 10.1007/s11053-022-10082-3 10.1016/j.ymssp.2020.107170 10.1016/j.jobe.2022.105187 10.1016/j.apacoust.2021.108171 10.1115/1.4054489 10.1017/CBO9780511624216 10.1016/j.apacoust.2020.107693 10.1016/j.eswa.2020.113657 10.1016/j.neucom.2005.12.126 10.1016/j.apacoust.2021.108411 10.1016/j.apacoust.2018.09.015 10.1088/0957-0233/27/1/015801 10.1016/j.ymssp.2021.107713 10.1016/j.apacoust.2021.108460 10.1371/journal.pone.0262329 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app13179561 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6045cfa806884c55a27d745b32f000b4 10.3390/app13179561 A764264176 10_3390_app13179561 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-68da7d604d0282bcef6e2df92744cc1f8aa1c383de81d3a0f19a155f3ecc1d543 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:17 EDT 2025 Sun Oct 26 03:00:42 EDT 2025 Mon Jun 30 07:07:37 EDT 2025 Mon Oct 20 17:18:27 EDT 2025 Thu Oct 16 04:35:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-68da7d604d0282bcef6e2df92744cc1f8aa1c383de81d3a0f19a155f3ecc1d543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-9399-5304 0000-0002-4065-7061 |
| OpenAccessLink | https://doaj.org/article/6045cfa806884c55a27d745b32f000b4 |
| PQID | 2862220164 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6045cfa806884c55a27d745b32f000b4 unpaywall_primary_10_3390_app13179561 proquest_journals_2862220164 gale_infotracacademiconefile_A764264176 crossref_primary_10_3390_app13179561 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Jia (ref_29) 2022; 201 Lee (ref_19) 2021; 157 Wang (ref_2) 2022; 186 Shang (ref_4) 2021; 173 Tan (ref_13) 2011; 11 Pourseiedrezaei (ref_22) 2021; 46 Li (ref_30) 2022; 31 Jia (ref_28) 2022; 2022 ref_12 ref_11 Huang (ref_14) 2021; 148 Song (ref_15) 2022; 2022 ref_31 Huang (ref_18) 2020; 160 Xiong (ref_16) 2015; 305 Liu (ref_3) 2021; 182 Zhang (ref_20) 2019; 145 Zhang (ref_23) 2022; 88 Huang (ref_25) 2006; 70 Zhang (ref_6) 2016; 27 Geng (ref_1) 2022; 186 Huang (ref_24) 2016; 113 Liu (ref_7) 2016; 10 Xie (ref_10) 2023; 23 Zhao (ref_21) 2020; 170 Wang (ref_26) 2022; 60 ref_27 ref_9 ref_8 Lin (ref_5) 2021; Volume 85543 Chen (ref_17) 2022; 185 |
| References_xml | – ident: ref_9 – volume: 10 start-page: 6 year: 2016 ident: ref_7 article-title: Comparative analysis for subjective evaluation method of sound quality publication-title: Mod. Manuf. Eng. – volume: 170 start-page: 107493 year: 2020 ident: ref_21 article-title: Sound quality evaluation of electronic expansion valve using Gaussian restricted Boltzmann machines based DBN publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107493 – volume: 46 start-page: 55 year: 2021 ident: ref_22 article-title: Development of a Sound Quality Evaluation Model Based on an Optimal Analytic Wavelet Transform and an Artificial Neural Network publication-title: Arch. Acoust. – volume: 113 start-page: 149 year: 2016 ident: ref_24 article-title: Sound quality prediction of vehicle interior noise using deep belief networks publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2016.06.021 – ident: ref_11 – volume: 11 start-page: 471 year: 2011 ident: ref_13 article-title: Vehicle interior sound quality prediction based on back propagation neural network publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2011.12.075 – volume: 88 start-page: 283 year: 2022 ident: ref_23 article-title: Sound quality evaluation of pure electric vehicle with subjective and objective unified evaluation method publication-title: Int. J. Veh. Des. doi: 10.1504/IJVD.2022.127024 – volume: 201 start-page: 107298 year: 2022 ident: ref_29 article-title: Optimization of an extreme learning machine model with the sparrow search algorithm to estimate spring maize evapotranspiration with film mulching in the semiarid regions of China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107298 – ident: ref_12 doi: 10.4271/2009-01-2190 – volume: 2022 start-page: 7385456 year: 2022 ident: ref_28 article-title: Prediction of Blasting Fragmentation Based on GWO-ELM publication-title: Shock Vib. – volume: 305 start-page: 77 year: 2015 ident: ref_16 article-title: Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.01.029 – volume: 186 start-page: 108419 year: 2022 ident: ref_2 article-title: Hybrid vibro-acoustic active control method for vehicle interior sound quality under high-speed publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108419 – volume: 31 start-page: 3017 year: 2022 ident: ref_30 article-title: Six novel hybrid extreme learning machine–swarm intelligence optimization (ELM–SIO) models for predicting backbreak in open-pit blasting publication-title: Nat. Resour. Res. doi: 10.1007/s11053-022-10082-3 – volume: 148 start-page: 107170 year: 2021 ident: ref_14 article-title: Pure electric vehicle nonstationary interior sound quality prediction based on deep CNNs with an adaptable learning rate tree publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107170 – volume: 60 start-page: 105187 year: 2022 ident: ref_26 article-title: Extreme learning machine evolved by fuzzified hunger games search for energy and individual thermal comfort optimization publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105187 – volume: 182 start-page: 108171 year: 2021 ident: ref_3 article-title: Strategy and implementing techniques for the sound quality target of car interior noise during acceleration publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108171 – ident: ref_8 – volume: 23 start-page: 021011 year: 2023 ident: ref_10 article-title: Study of Electroencephalograph-Based Evaluation Method of Car Sound Quality publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4054489 – ident: ref_31 doi: 10.1017/CBO9780511624216 – volume: 173 start-page: 107693 year: 2021 ident: ref_4 article-title: Research of transfer path analysis based on contribution factor of sound quality publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107693 – volume: 160 start-page: 113657 year: 2020 ident: ref_18 article-title: Sound quality prediction and improving of vehicle interior noise based on deep convolutional neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113657 – volume: 70 start-page: 489 year: 2006 ident: ref_25 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 185 start-page: 108411 year: 2022 ident: ref_17 article-title: Research on prediction model of tractor sound quality based on genetic algorithm publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108411 – volume: 145 start-page: 27 year: 2019 ident: ref_20 article-title: Sound quality evaluation and prediction for the emitted noise of axial piston pumps publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2018.09.015 – volume: Volume 85543 start-page: V001T01A023 year: 2021 ident: ref_5 article-title: Research on Tone Quality for Vehicles Considering the Masking Effect publication-title: Proceedings of the ASME International Mechanical Engineering Congress and Exposition – volume: 27 start-page: 015801 year: 2016 ident: ref_6 article-title: Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO) publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/1/015801 – volume: 157 start-page: 107713 year: 2021 ident: ref_19 article-title: Neural network prediction of sound quality via domain Knowledge-Based data augmentation and Bayesian approach with small data sets publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107713 – volume: 186 start-page: 108460 year: 2022 ident: ref_1 article-title: Demodulated sound quality improvement for harmonic sounds in over-boosted parametric array loudspeaker publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108460 – volume: 2022 start-page: 8686785 year: 2022 ident: ref_15 article-title: Research on the Sound Quality Evaluation Method Based on Artificial Neural Network publication-title: Sci. Program. – ident: ref_27 doi: 10.1371/journal.pone.0262329 |
| SSID | ssj0000913810 |
| Score | 2.3015623 |
| Snippet | When dealing with specific tasks, the hidden layer output matrix of an extreme learning machine (ELM) may change, largely due to the random assigned weight... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 9561 |
| SubjectTerms | Accuracy Acoustics Algorithms Back propagation extreme learning machine fuzzy control Genetic algorithms Information sharing Mathematical optimization Methods Neural networks Optimization algorithms particle swarm optimization Propagation Saturn sound quality Support vector machines Velocity Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9AA9VLSASFuQDyDgsCJeP9Y5IJRWiSrUhohS1NvKz_YQkjTdCKW_Hs-ukwYh9bratWbn84xnbM83AO-s9VIYh0mOFhkX1GeaK515QQMvgje8JtI-H8rTS_7tSlxtwXBVC4PXKlc-sXbUbmpxj_xzHkPvPEdCqK-z2wy7RuHp6qqFhk6tFdyXmmLsCWznyIzVgu3j_nD0Y73rgiyYinaaQj0W8308J6ZxDcX6zn-WpprB_38_vQNPF5OZXv7R4_HGQjR4DrspgiS9BvI92PKTfdjZ4BXch71ksXfkY6KV_vQCzgaL-_sl6Tk9QxdHRhffs_7ZOemNr-N_Vje_SYpISTUlv_wNjk4usOsSaYg2lmQ0x2MdhPIlXA76P09Os9RLIbNM0iqTyunCyQ53mGQZ64P0uQtdJAi0lgalNbUxW3U-BrBMdwLt6qjKwCLE1AnOXkFrMp3410BMJ36tOCtM8FwzZ7y0oquYUpRqZmQ7zoCkxnLWUGaUMdVAbZcb2m7DMap4_QryXNcPpvPrMplNGQUWNmiFrXG4FULnhSu4MCwPEUzD2_ABASrRGqu5tjoVFURJkdeq7BUSQz5aRKmOVhiWyUzvyodJ1Yb3a1wfk_rg8WEO4Rn2o28uoR1Bq5ov_JsYtVTmbZqKfwHwXesg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeWlqoCBS0BxBwcJP1PuyckIsaVagtkUpQOVn7bCtCErlOUfLrmYk3VQAJIXHxwfKuZjWzM_N5d74h5JW1XknjEORomQjJfKJFrhMvWRBZ8EYsibRPz9TxUHy8kBdrVfx4rRKg-PXSSacAshNws1mH8Q48sQizM3Xh_W38l8RUD9wrnqTdJxtKQjbeIhvDs0HxFXvKrUY3ZXkc0D2eCjOImDjRL4Foydf_p1feJA9m46me_9Cj0VrY6W8TvRK4uW3y7WBWmwO7-I3L8X9W9IhsxZyUFo0R7ZB7frxLNteYCnfJTvQBN_RtJKp-95ic9GeLxZwWTk_RadLB-afk6OSUFqPLSXVdX32nMcel9YR-8Vc4Oz3HPk60oe6Y00GFB0VoHE_IsH_0-cNxErszJJYrVicqdzpzqiscwjZjfVA-daGHlIPWspBrzSzgX-chJea6G1hPQ_ISOBgNc1LwPdIaT8b-KaGmC6Nh1ZkJXmjujFdW9nKe54xpblQbbCqqqpw2JBwlgBfUaLmm0TY5RDXefYLM2csXk-qyjBuxBIGlDTrHZjvCSqnTzGVCGp4GiA5GtMkbNIIS93ddaatjmQJIikxZZZEpTCJZBlLtr-ykjBv_pkwBIaYp8pa1yes72_mb1M_-8bvn5CG2um_ut-2TVl3N_AtIiGrzMtr8T-GnAz8 priority: 102 providerName: Unpaywall |
| Title | Fuzzy Adaptive PSO-ELM Algorithm Applied to Vehicle Sound Quality Prediction |
| URI | https://www.proquest.com/docview/2862220164 https://www.mdpi.com/2076-3417/13/17/9561/pdf?version=1692843645 https://doaj.org/article/6045cfa806884c55a27d745b32f000b4 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgHGCHaRuglY3KBxBwiKjjH3GOGWo3oa1UjKJxsvyTIZW26lKh7q_HL_GmIKRx4ZgoiZ7el2d_n2x_D6FX1nrBjQORo3nGOPGZZlJnnpPAiuANa4y0z8fidMo-XvLLTqsv2BPW2gO3iXsvIuewQUtojsIs5zovXMG4oXmI1WwaJ9CBLDtiqhmDSwLWVe2BPBp1PawHkzhXwjnOP6agxqn_7_F4Gz1ez5d680vPZp0JZ7SLdhJTxFUb4R564Of7aLvjH7iP9lJlXuO3yT763VN0Nlrf3Gxw5fQShjI8ufiUDc_OcTX7vlj9qK9-4sQ8cb3AX_0VfB1fQHcl3BpqbPBkBcs3ANkzNB0Nv3w4zVLPhMxSQepMSKcLF5PmQEwZ64PwuQslGAFaS4LUmtioSp2PRJXqQSCljpQi0AglcZzR52hrvpj7A4TNIL4tGS1M8ExTZ7ywvJRUSkI0NaIXkU5pVMvWGkNFSQHZVp1s99AxpPjuEfCzbm5ElFVCWf0L5R56AwApqLp6pa1OhwdipOBfpapCALUjRYzq6BZDlcrxWuVRt-U5uIn10Os7XO-L-sX_iPoQPYHu9O2WtCO0Va_W_mXkMLXpo4dydNJHj46H48nnfvPzxqvpeFJ9-w2s-_BH |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeyg9IFpABAr4QAUcVqzX9j4OFUohUUqTENEW9eb62R5CEpKNqvTH8dvw7DohCKm3Xle79uzMeB625xuE3mptU64MJDmSR4wTG0mWy8hy4ljmrGIVkHavn3bO2dcLfrGBfi9rYeBa5dImVobajDXskX9MfOidJAAI9WnyK4KuUXC6umyhIUNrBXNYQYyFwo4Tu7jxKdzs8PiLl_dBkrRbZ587UegyEGmakjJKcyMzk8bMQPqhtHWpTYwrADpPa-JyKYn2eZyxPrSjMnakkH4SR_3PE8MZ9eM-QFuMssInf1tHrf7g-2qXB1A3cxLXhYGUFjGcSxPvs6Ge9B9XWHUM-N8v7KDt-WgiFzdyOFxzfO3H6FGIWHGzVrFdtGFHe2hnDcdwD-0GCzHD7wOM9YcnqNue394ucNPICZhUPDj9FrW6PdwcXnm-ltc_cYiAcTnGP-w1jI5PocsTroE9FngwhWMkUJ2n6PxeuPoMbY7GI_scYRX7r3NGM-Usk9Qom2pe5DTPCZFUpQ2vcYGNYlJDdAif2gC3xRq3G-gIWLx6BXC1qwfj6ZUIy1R4grl2ModWPExzLpPMZIwrmjgvTMUa6B0ISMDqL6dSy1DE4CkFHC3RzFIIMUnmqdpfylAEszATf5W4gQ5Wcr2L6hd3D_MGbXfOel3RPe6fvEQPEx-B1Rfg9tFmOZ3bVz5iKtXroJYYXd73SvgDFAspUw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpApBTYAxVwsOr17trOAaFAa1qalkilVW9mn-0hTULiqEp_Gr-OHXsTgpB669WyV-OZ2Xns7HwD8FZrmwplMMmRIuKC2kjyXEZWUMczZxWvgbSPjtP9U_7tXJyvwO95Lwxeq5zbxNpQm6HGM_KdxIfeSYKAUDsuXIvo7RafRr8inCCFldb5OI1GRQ7t7Nqnb5OPB7te1ttJUuz9-LIfhQkDkWYpraI0NzIzacwNph5KW5faxLg2wuZpTV0uJdU-hzPWh3VMxo62pXfAjvkfp0Zw5te9B_czRHHHLvXi6-J8B_E2cxo3LYGMtWOsSFPvrbGT9B8nWM8K-N8jrMHD6WAkZ9ey319yecUTeBxiVdJplGsdVuxgA9aWEAw3YD3Yhgl5HwCsPzyFbjG9uZmRjpEjNKakd_I92usekU7_wnOxurwiIfYl1ZCc2UtcnZzgfCfSQHrMSG-MBSRUmmdweic8fQ6rg-HAvgCiYv91zlmmnOWSGWVTLdo5y3NKJVNpy-taYGM5asA5Sp_UILfLJW634DOyePEKImrXD4bjizJs0NITLLSTOQ7h4VoImWQm40KxxHlhKt6CdyigEvd9NZZahvYFTykiaJWdLMXgkmaeqq25DMtgECblX_VtwfZCrrdRvXn7Mm_ggdf_sntwfPgSHiU-9Gpuvm3BajWe2lc-VKrU61onCfy8603wB_RjJu0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeoAeWlqoCBS0BxBwcJP1PuyckIsaVagtkUpQOVn7bCtCErlOUfLrmYk3VQAJIXHxwfKuZjWzM_N5d74h5JW1XknjEORomQjJfKJFrhMvWRBZ8EYsibRPz9TxUHy8kBdrVfx4rRKg-PXSSacAshNws1mH8Q48sQizM3Xh_W38l8RUD9wrnqTdJxtKQjbeIhvDs0HxFXvKrUY3ZXkc0D2eCjOImDjRL4Foydf_p1feJA9m46me_9Cj0VrY6W8TvRK4uW3y7WBWmwO7-I3L8X9W9IhsxZyUFo0R7ZB7frxLNteYCnfJTvQBN_RtJKp-95ic9GeLxZwWTk_RadLB-afk6OSUFqPLSXVdX32nMcel9YR-8Vc4Oz3HPk60oe6Y00GFB0VoHE_IsH_0-cNxErszJJYrVicqdzpzqiscwjZjfVA-daGHlIPWspBrzSzgX-chJea6G1hPQ_ISOBgNc1LwPdIaT8b-KaGmC6Nh1ZkJXmjujFdW9nKe54xpblQbbCqqqpw2JBwlgBfUaLmm0TY5RDXefYLM2csXk-qyjBuxBIGlDTrHZjvCSqnTzGVCGp4GiA5GtMkbNIIS93ddaatjmQJIikxZZZEpTCJZBlLtr-ykjBv_pkwBIaYp8pa1yes72_mb1M_-8bvn5CG2um_ut-2TVl3N_AtIiGrzMtr8T-GnAz8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+PSO-ELM+Algorithm+Applied+to+Vehicle+Sound+Quality+Prediction&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Chenlin&rft.au=Yang%2C+Gongzhuo&rft.au=Li%2C+Junyu&rft.au=Huang%2C+Qibai&rft.date=2023-09-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=17&rft.spage=9561&rft_id=info:doi/10.3390%2Fapp13179561&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13179561 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |