Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms
In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on n...
Saved in:
Published in | Sustainability Vol. 14; no. 14; p. 8745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
18.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2071-1050 2071-1050 |
DOI | 10.3390/su14148745 |
Cover
Abstract | In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on non-sustainable ones. Nevertheless, a deficiency in research exists about analyzing ESG through artificial intelligence algorithms due to adversity in collecting ESG-related datasets. Therefore, this paper suggests integrated AI approaches to the ESG datasets with the five different experiments. We also focus on analyzing the governance and social datasets through NLP algorithms and propose a straightforward method for predicting a specific firm’s ESG rankings. Results were evaluated through accuracy score, RMSE, and MAE, and every experiment conducted relevant scores that achieved our aim. From the results, it could be concluded that this paper successfully analyzes ESG data with various algorithms. Unlike previous related research, this paper also emphasizes the importance of the adversarial attacks on the ESG datasets and suggests methods to detect them effectively. Furthermore, this paper proposes a simple way to predict ESG rankings, which would be helpful for small businesses. Even though it is our limitation that we only use restricted datasets, our research proposes the possibility of applying the AI algorithms to the ESG datasets in an integrated approach. |
---|---|
AbstractList | In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on non-sustainable ones. Nevertheless, a deficiency in research exists about analyzing ESG through artificial intelligence algorithms due to adversity in collecting ESG-related datasets. Therefore, this paper suggests integrated AI approaches to the ESG datasets with the five different experiments. We also focus on analyzing the governance and social datasets through NLP algorithms and propose a straightforward method for predicting a specific firm’s ESG rankings. Results were evaluated through accuracy score, RMSE, and MAE, and every experiment conducted relevant scores that achieved our aim. From the results, it could be concluded that this paper successfully analyzes ESG data with various algorithms. Unlike previous related research, this paper also emphasizes the importance of the adversarial attacks on the ESG datasets and suggests methods to detect them effectively. Furthermore, this paper proposes a simple way to predict ESG rankings, which would be helpful for small businesses. Even though it is our limitation that we only use restricted datasets, our research proposes the possibility of applying the AI algorithms to the ESG datasets in an integrated approach. |
Author | Lee, Ook Joo, Hanseon Choi, Hayoung Cheon, Minjong |
Author_xml | – sequence: 1 givenname: Ook surname: Lee fullname: Lee, Ook – sequence: 2 givenname: Hanseon surname: Joo fullname: Joo, Hanseon – sequence: 3 givenname: Hayoung surname: Choi fullname: Choi, Hayoung – sequence: 4 givenname: Minjong surname: Cheon fullname: Cheon, Minjong |
BookMark | eNptkE1LAzEQhoNUsNZe_AUBb8JqsvnY3WNpay1UFNTzMs1m25RtsiapUH-9WypUxLnMMPO8LzNziXrWWY3QNSV3jBXkPuwopzzPuDhD_ZRkNKFEkN6v-gINQ9iQLhijBZV9tH7xrnXB2BUGi-c26pWHqCs8alvvQK1xdHhkodl_HZjp6wxPIAL-NICfurGxGi80eHt0qPBE6_bUGTUr501cb8MVOq-hCXr4kwfo_WH6Nn5MFs-z-Xi0SBSTNCYyzZXIq6qu-LISmeRFDTmp64xnVBYUNEAGOk8hLYQkIi-U1HTJdQYV00IpNkA3R99u_Y-dDrHcuJ3vDghlKgtOcsEo7yhypJR3IXhdl8pEiMbZ6ME0JSXl4aXl6aWd5PaPpPVmC37_H_wNyL94lg |
CitedBy_id | crossref_primary_10_3390_su152416860 crossref_primary_10_3390_su152416681 crossref_primary_10_3390_su15010309 crossref_primary_10_36818_1562_0905_2023_3_9 crossref_primary_10_1108_JFRA_10_2023_0621 crossref_primary_10_1002_sd_3306 crossref_primary_10_3390_economies12090247 crossref_primary_10_1016_j_jbusres_2024_114742 crossref_primary_10_2478_amns_2024_3451 crossref_primary_10_3390_su142113942 crossref_primary_10_1016_j_seps_2024_102078 crossref_primary_10_1142_S0219877024400054 crossref_primary_10_1016_j_dim_2024_100084 crossref_primary_10_1016_j_bar_2024_101457 crossref_primary_10_3390_jrfm16030159 crossref_primary_10_1080_14765284_2024_2428240 crossref_primary_10_3390_jrfm16080378 crossref_primary_10_1155_2022_3999868 crossref_primary_10_1016_j_jclepro_2024_144572 crossref_primary_10_3390_ijfs12020038 crossref_primary_10_1134_S1064562423701673 crossref_primary_10_1016_j_eswa_2023_119726 crossref_primary_10_1186_s40854_023_00604_0 crossref_primary_10_1007_s10462_024_10708_3 crossref_primary_10_32628_CSEIT251112378 crossref_primary_10_1016_j_bar_2025_101563 crossref_primary_10_3389_fevo_2023_1247644 crossref_primary_10_31893_multirev_2025234 |
Cites_doi | 10.2139/ssrn.3593885 10.1145/342009.335388 10.1111/j.1467-8683.2007.00580.x 10.3390/su14084515 10.3390/su12145725 10.1080/13504851.2020.1830932 10.2139/ssrn.3438533 10.1007/978-3-030-86967-0_12 10.1109/ICCECE54139.2022.9712837 10.1109/IHTC53077.2021.9698939 10.1016/j.cpa.2021.102309 10.1007/978-981-16-2990-7_2 10.1145/3383455.3422529 10.24251/HICSS.2020.666 10.1007/s10203-021-00364-5 10.1038/s41430-022-01075-9 10.1080/19361610.2020.1815491 10.1016/j.agwat.2019.105758 10.11114/aef.v8i2.5097 10.3390/bdcc5010001 10.1016/j.frl.2021.102108 10.2139/ssrn.4010256 10.1109/TNNLS.2016.2582924 10.1016/j.techfore.2020.120341 10.1049/cp:19991218 10.1063/5.0071474 10.1007/978-981-16-2990-7_4 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 4U- ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/su14148745 |
DatabaseName | CrossRef University Readers ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | 10_3390_su14148745 |
GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c361t-628c58ddfd4bd57649fa80ff7471691aeaa7ae82a29560589c6e1b4e7ad3e5cc3 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Mon Jun 30 07:32:37 EDT 2025 Tue Jul 01 02:44:05 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-628c58ddfd4bd57649fa80ff7471691aeaa7ae82a29560589c6e1b4e7ad3e5cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2694085314?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2694085314 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2694085314 crossref_citationtrail_10_3390_su14148745 crossref_primary_10_3390_su14148745 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-18 |
PublicationDateYYYYMMDD | 2022-07-18 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Greff (ref_13) 2017; 28 Levantesi (ref_19) 2021; 19 Fan (ref_36) 2019; 225 Adams (ref_5) 2022; 82 Levantesi (ref_20) 2021; 44 ref_35 ref_12 ref_34 ref_33 ref_10 ref_32 ref_31 ref_30 Kiernan (ref_11) 2007; 15 ref_18 ref_39 ref_38 ref_15 ref_37 Ferriani (ref_6) 2020; 28 Margot (ref_17) 2021; 8 Krishnamoorthy (ref_7) 2021; 9 ref_25 Nirino (ref_4) 2021; 162 ref_24 ref_22 ref_21 ref_40 ref_1 ref_3 Alghofaili (ref_23) 2020; 15 ref_2 Yoo (ref_14) 2022; 44 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 Sharma (ref_16) 2022; 2021 Joo (ref_41) 2022; 21 |
References_xml | – ident: ref_28 – ident: ref_27 doi: 10.2139/ssrn.3593885 – ident: ref_30 – volume: 21 start-page: 1 year: 2022 ident: ref_41 article-title: Efficient network traffic classification and visualizing abnormal part via Hybrid Deep Learning Approach: Xception + bidirectional gru publication-title: Glob. J. Comput. Sci. Technol. – ident: ref_32 – ident: ref_34 – ident: ref_37 doi: 10.1145/342009.335388 – volume: 15 start-page: 478 year: 2007 ident: ref_11 article-title: Universal owners and ESG: Leaving money on the table? publication-title: Corp. Gov. Int. Rev. doi: 10.1111/j.1467-8683.2007.00580.x – ident: ref_1 doi: 10.3390/su14084515 – ident: ref_40 – ident: ref_15 doi: 10.3390/su12145725 – volume: 2021 start-page: 2013151 year: 2022 ident: ref_16 article-title: The pertinence of incorporating ESG ratings to make investment decisions: A quantitative analysis using machine learning publication-title: J. Sustain. Financ. Investig. – volume: 28 start-page: 1537 year: 2020 ident: ref_6 article-title: ESG risks in times of COVID-19 publication-title: Appl. Econ. Lett. doi: 10.1080/13504851.2020.1830932 – ident: ref_12 doi: 10.2139/ssrn.3438533 – ident: ref_26 doi: 10.1007/978-3-030-86967-0_12 – volume: 9 start-page: 189 year: 2021 ident: ref_7 article-title: Environmental, social, and governance (ESG) investing: Doing good to do well publication-title: Open J. Soc. Sci. – ident: ref_21 doi: 10.1109/ICCECE54139.2022.9712837 – ident: ref_18 doi: 10.1109/IHTC53077.2021.9698939 – ident: ref_35 – volume: 82 start-page: 102309 year: 2022 ident: ref_5 article-title: Connecting the COVID-19 pandemic, environmental, social and governance (ESG) investing and calls for ‘harmonisation’ of sustainability reporting publication-title: Crit. Perspect. Account. doi: 10.1016/j.cpa.2021.102309 – ident: ref_10 doi: 10.1007/978-981-16-2990-7_2 – volume: 19 start-page: 347 year: 2021 ident: ref_19 article-title: ESG score prediction through Random Forest algorithm publication-title: Comput. Manag. Sci. – ident: ref_8 – ident: ref_25 – ident: ref_31 – ident: ref_22 doi: 10.1145/3383455.3422529 – ident: ref_33 – ident: ref_24 doi: 10.24251/HICSS.2020.666 – volume: 44 start-page: 1087 year: 2021 ident: ref_20 article-title: Fundamental ratios as predictors of ESG scores: A machine learning approach publication-title: Decis. Econ. Financ. doi: 10.1007/s10203-021-00364-5 – ident: ref_3 doi: 10.1038/s41430-022-01075-9 – volume: 15 start-page: 498 year: 2020 ident: ref_23 article-title: A financial fraud detection model based on LSTM Deep Learning Technique publication-title: J. Appl. Secur. Res. doi: 10.1080/19361610.2020.1815491 – volume: 225 start-page: 105758 year: 2019 ident: ref_36 article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105758 – volume: 8 start-page: 1 year: 2021 ident: ref_17 article-title: ESG Investments: Filtering Versus Machine Learning Approaches publication-title: Appl. Econ. Financ. doi: 10.11114/aef.v8i2.5097 – ident: ref_38 doi: 10.3390/bdcc5010001 – volume: 44 start-page: 102108 year: 2022 ident: ref_14 article-title: Disclosure or action: Evaluating ESG behavior towards financial performance publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2021.102108 – ident: ref_2 doi: 10.2139/ssrn.4010256 – volume: 28 start-page: 2222 year: 2017 ident: ref_13 article-title: LSTM: A search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 162 start-page: 120341 year: 2021 ident: ref_4 article-title: Corporate controversies and company’s financial performance: Exploring the moderating role of ESG practices publication-title: Technol. Forecast. Soc. Chang. doi: 10.1016/j.techfore.2020.120341 – ident: ref_39 doi: 10.1049/cp:19991218 – ident: ref_29 doi: 10.1063/5.0071474 – ident: ref_9 doi: 10.1007/978-981-16-2990-7_4 |
SSID | ssj0000331916 |
Score | 2.513911 |
Snippet | In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 8745 |
SubjectTerms | Accuracy Algorithms Balance sheets Classification Climate change Coronaviruses COVID-19 Data science Datasets Deep learning Experiments Investments Machine learning Medical research Neural networks Research methodology Sentiment analysis Stock exchanges Sustainability Text categorization Variables |
Title | Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms |
URI | https://www.proquest.com/docview/2694085314 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED71McCCoFBRKJUlWBgikth5DQgV2lKQqBBQqVvk2A5FKm2hgYFfjy91WpAQS4bk5OHOvlf8fQdwklDPptwOLcaSwGJUcn3mGLU8wQM3UYGI0pztc-D3h-x25I1KMCiwMHitsvCJuaOWM4E98jNEXOr0gDrsYv5m4dQo_LtajNDgZrSCPM8pxspQ1S7ZsytQvewO7h9WXReb6i3n-EueUqrrfW1vh-mSIEA808_I9Nsx59Gmtw1bJk0k7aVdd6CkpjXYKFDEixrUu2uEmhY0R3SxC-N7nHuAHQDCp-SmYIOQpG3Yw0k2IzkVyRfKdB-vSYdnnHy-cHKX36xUxJCu4gqSdJSar9-0J89aK9n4dbEHw1736apvmXEKlqC-k1m-GwovlDKVLJG6zGBRykM7TbEs9SOHK84DrkKXu1gzeWEkfOUkTAVcUuUJQetQmc6mah-IFIxpT6AQ_cRYqkImnTTh-hEpHd6iBpwWqoyF4RrHkReTWNccqPZ4rfYGHK9k50uGjT-lmoVFYnPKFvF6Txz8__kQNl2ELSAhZtiESvb-oY50MpElLbNDWlC-HjnfZCfMLQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWBBUEC8sQQMDBFJ7LyGChVaaHlUiIfEFhzbASRoCwkg-HH8NnypQ0FCbCwZkpOH8_le8fcdwEZCPZtyO7QYSwKLUcn1mWPU8gQP3EQFIkoLts-O37pkh1fe1Qh8lFgYvFZZ-sTCUcuewB75NiIudXpAHbbTf7RwahT-XS1HaHAzWkHWCooxA-w4Um-vuoTLau2G3u9N191vXuy1LDNlwBLUd3LLd0PhhVKmkiVSZ98sSnlopylWa37kcMV5wFXochdLCS-MhK-chKmAS6o8IahedxTGGDZQKjC22-ycnn11eWyqTdzxB7yolEa2ti-H6RIkQPzU90j4MxAU0W1_CiZNWkrqAzuahhHVrcJ4iVrOqjDXHCLitKBxCdkM3J7inAXsOBDeJe2SfUKSumErJ3mPFNQn7yjTPD8gDZ5z8nLHyUlxk1MRQ_KKK0jSUKo_fFO_v9G7kN8-ZLNw-S-KnYNKt9dV80CkYEx7HoVoK8ZSFTLppAnXj0jpcBotwFapylgYbnMcsXEf6xoH1R4P1b4A61-y_QGjx69Sy-WOxOZUZ_HQBhf__rwG462Lk-P4uN05WoIJFyETSMYZLkMlf3pWKzqRyZNVYy0Erv_bQD8B8jwJSA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRoJeUGmpGgiwUsuBgxXbu34dKhRIQtKWKAIq9eaud9cNUkhC7YLgJ_ZXMeOskyIhbr34YI_2MDs7j_V83wAcZTxwuXRjR4gscgTXEs-c4E6gZORnJlJJXrF9jsPhuTi5CC4acFtjYaitsvaJlaPWC0V35B1CXGJ6wD3RyW1bxKQ3eLv87tAEKfrTWo_TkHbMgj6u6MYsyOPU_PqJ5VxxPOrh3r_2_UH_y_uhYycOOIqHXumEfqyCWOtci0xjJi6SXMZunlPlFiaeNFJG0sS-9KmsCOJEhcbLhImk5iZQiuO6D6AZYdTHQrD5rj-efFrf-Lgczd0LVxypnCcu2ponsByJCEt1Nyr-HRSqSDfYgcc2RWXdlU09gYaZ78KjGsFc7MJ-f4OOQ0HrHoo9mE5o5gLdPjA5Z6OaiUKzrmUuZ-WCVTQov0mm__kD68lSsh9fJftYdXUaZglfaQXNesYsN2-6syvchXL6rXgK5_ei2H3Ymi_m5gCYVkKgFzKEvBIiN7HQXp5JfCQGQ2vSgje1KlNlec5p3MYsxXqH1J5u1N6Cw7XscsXu8U-pdr0jqT3hRbqxx2f___wKHqKhpmej8elz2PYJPUG8nHEbtsrrG_MCc5oye2mNhcHlfdvnHwhQDYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposing+an+Integrated+Approach+to+Analyzing+ESG+Data+via+Machine+Learning+and+Deep+Learning+Algorithms&rft.jtitle=Sustainability&rft.au=Lee%2C+Ook&rft.au=Joo%2C+Hanseon&rft.au=Choi%2C+Hayoung&rft.au=Cheon%2C+Minjong&rft.date=2022-07-18&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=14&rft.issue=14&rft.spage=8745&rft_id=info:doi/10.3390%2Fsu14148745&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su14148745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |