Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms

In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on n...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 14; no. 14; p. 8745
Main Authors Lee, Ook, Joo, Hanseon, Choi, Hayoung, Cheon, Minjong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.07.2022
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su14148745

Cover

Abstract In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on non-sustainable ones. Nevertheless, a deficiency in research exists about analyzing ESG through artificial intelligence algorithms due to adversity in collecting ESG-related datasets. Therefore, this paper suggests integrated AI approaches to the ESG datasets with the five different experiments. We also focus on analyzing the governance and social datasets through NLP algorithms and propose a straightforward method for predicting a specific firm’s ESG rankings. Results were evaluated through accuracy score, RMSE, and MAE, and every experiment conducted relevant scores that achieved our aim. From the results, it could be concluded that this paper successfully analyzes ESG data with various algorithms. Unlike previous related research, this paper also emphasizes the importance of the adversarial attacks on the ESG datasets and suggests methods to detect them effectively. Furthermore, this paper proposes a simple way to predict ESG rankings, which would be helpful for small businesses. Even though it is our limitation that we only use restricted datasets, our research proposes the possibility of applying the AI algorithms to the ESG datasets in an integrated approach.
AbstractList In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG indexes as an essential factor for their investments, and some research yielded that the return on sustainable funds is more significant than on non-sustainable ones. Nevertheless, a deficiency in research exists about analyzing ESG through artificial intelligence algorithms due to adversity in collecting ESG-related datasets. Therefore, this paper suggests integrated AI approaches to the ESG datasets with the five different experiments. We also focus on analyzing the governance and social datasets through NLP algorithms and propose a straightforward method for predicting a specific firm’s ESG rankings. Results were evaluated through accuracy score, RMSE, and MAE, and every experiment conducted relevant scores that achieved our aim. From the results, it could be concluded that this paper successfully analyzes ESG data with various algorithms. Unlike previous related research, this paper also emphasizes the importance of the adversarial attacks on the ESG datasets and suggests methods to detect them effectively. Furthermore, this paper proposes a simple way to predict ESG rankings, which would be helpful for small businesses. Even though it is our limitation that we only use restricted datasets, our research proposes the possibility of applying the AI algorithms to the ESG datasets in an integrated approach.
Author Lee, Ook
Joo, Hanseon
Choi, Hayoung
Cheon, Minjong
Author_xml – sequence: 1
  givenname: Ook
  surname: Lee
  fullname: Lee, Ook
– sequence: 2
  givenname: Hanseon
  surname: Joo
  fullname: Joo, Hanseon
– sequence: 3
  givenname: Hayoung
  surname: Choi
  fullname: Choi, Hayoung
– sequence: 4
  givenname: Minjong
  surname: Cheon
  fullname: Cheon, Minjong
BookMark eNptkE1LAzEQhoNUsNZe_AUBb8JqsvnY3WNpay1UFNTzMs1m25RtsiapUH-9WypUxLnMMPO8LzNziXrWWY3QNSV3jBXkPuwopzzPuDhD_ZRkNKFEkN6v-gINQ9iQLhijBZV9tH7xrnXB2BUGi-c26pWHqCs8alvvQK1xdHhkodl_HZjp6wxPIAL-NICfurGxGi80eHt0qPBE6_bUGTUr501cb8MVOq-hCXr4kwfo_WH6Nn5MFs-z-Xi0SBSTNCYyzZXIq6qu-LISmeRFDTmp64xnVBYUNEAGOk8hLYQkIi-U1HTJdQYV00IpNkA3R99u_Y-dDrHcuJ3vDghlKgtOcsEo7yhypJR3IXhdl8pEiMbZ6ME0JSXl4aXl6aWd5PaPpPVmC37_H_wNyL94lg
CitedBy_id crossref_primary_10_3390_su152416860
crossref_primary_10_3390_su152416681
crossref_primary_10_3390_su15010309
crossref_primary_10_36818_1562_0905_2023_3_9
crossref_primary_10_1108_JFRA_10_2023_0621
crossref_primary_10_1002_sd_3306
crossref_primary_10_3390_economies12090247
crossref_primary_10_1016_j_jbusres_2024_114742
crossref_primary_10_2478_amns_2024_3451
crossref_primary_10_3390_su142113942
crossref_primary_10_1016_j_seps_2024_102078
crossref_primary_10_1142_S0219877024400054
crossref_primary_10_1016_j_dim_2024_100084
crossref_primary_10_1016_j_bar_2024_101457
crossref_primary_10_3390_jrfm16030159
crossref_primary_10_1080_14765284_2024_2428240
crossref_primary_10_3390_jrfm16080378
crossref_primary_10_1155_2022_3999868
crossref_primary_10_1016_j_jclepro_2024_144572
crossref_primary_10_3390_ijfs12020038
crossref_primary_10_1134_S1064562423701673
crossref_primary_10_1016_j_eswa_2023_119726
crossref_primary_10_1186_s40854_023_00604_0
crossref_primary_10_1007_s10462_024_10708_3
crossref_primary_10_32628_CSEIT251112378
crossref_primary_10_1016_j_bar_2025_101563
crossref_primary_10_3389_fevo_2023_1247644
crossref_primary_10_31893_multirev_2025234
Cites_doi 10.2139/ssrn.3593885
10.1145/342009.335388
10.1111/j.1467-8683.2007.00580.x
10.3390/su14084515
10.3390/su12145725
10.1080/13504851.2020.1830932
10.2139/ssrn.3438533
10.1007/978-3-030-86967-0_12
10.1109/ICCECE54139.2022.9712837
10.1109/IHTC53077.2021.9698939
10.1016/j.cpa.2021.102309
10.1007/978-981-16-2990-7_2
10.1145/3383455.3422529
10.24251/HICSS.2020.666
10.1007/s10203-021-00364-5
10.1038/s41430-022-01075-9
10.1080/19361610.2020.1815491
10.1016/j.agwat.2019.105758
10.11114/aef.v8i2.5097
10.3390/bdcc5010001
10.1016/j.frl.2021.102108
10.2139/ssrn.4010256
10.1109/TNNLS.2016.2582924
10.1016/j.techfore.2020.120341
10.1049/cp:19991218
10.1063/5.0071474
10.1007/978-981-16-2990-7_4
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su14148745
DatabaseName CrossRef
University Readers
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10_3390_su14148745
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-628c58ddfd4bd57649fa80ff7471691aeaa7ae82a29560589c6e1b4e7ad3e5cc3
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Mon Jun 30 07:32:37 EDT 2025
Tue Jul 01 02:44:05 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-628c58ddfd4bd57649fa80ff7471691aeaa7ae82a29560589c6e1b4e7ad3e5cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2694085314?pq-origsite=%requestingapplication%&accountid=15518
PQID 2694085314
PQPubID 2032327
ParticipantIDs proquest_journals_2694085314
crossref_citationtrail_10_3390_su14148745
crossref_primary_10_3390_su14148745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-18
  day: 18
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Greff (ref_13) 2017; 28
Levantesi (ref_19) 2021; 19
Fan (ref_36) 2019; 225
Adams (ref_5) 2022; 82
Levantesi (ref_20) 2021; 44
ref_35
ref_12
ref_34
ref_33
ref_10
ref_32
ref_31
ref_30
Kiernan (ref_11) 2007; 15
ref_18
ref_39
ref_38
ref_15
ref_37
Ferriani (ref_6) 2020; 28
Margot (ref_17) 2021; 8
Krishnamoorthy (ref_7) 2021; 9
ref_25
Nirino (ref_4) 2021; 162
ref_24
ref_22
ref_21
ref_40
ref_1
ref_3
Alghofaili (ref_23) 2020; 15
ref_2
Yoo (ref_14) 2022; 44
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
Sharma (ref_16) 2022; 2021
Joo (ref_41) 2022; 21
References_xml – ident: ref_28
– ident: ref_27
  doi: 10.2139/ssrn.3593885
– ident: ref_30
– volume: 21
  start-page: 1
  year: 2022
  ident: ref_41
  article-title: Efficient network traffic classification and visualizing abnormal part via Hybrid Deep Learning Approach: Xception + bidirectional gru
  publication-title: Glob. J. Comput. Sci. Technol.
– ident: ref_32
– ident: ref_34
– ident: ref_37
  doi: 10.1145/342009.335388
– volume: 15
  start-page: 478
  year: 2007
  ident: ref_11
  article-title: Universal owners and ESG: Leaving money on the table?
  publication-title: Corp. Gov. Int. Rev.
  doi: 10.1111/j.1467-8683.2007.00580.x
– ident: ref_1
  doi: 10.3390/su14084515
– ident: ref_40
– ident: ref_15
  doi: 10.3390/su12145725
– volume: 2021
  start-page: 2013151
  year: 2022
  ident: ref_16
  article-title: The pertinence of incorporating ESG ratings to make investment decisions: A quantitative analysis using machine learning
  publication-title: J. Sustain. Financ. Investig.
– volume: 28
  start-page: 1537
  year: 2020
  ident: ref_6
  article-title: ESG risks in times of COVID-19
  publication-title: Appl. Econ. Lett.
  doi: 10.1080/13504851.2020.1830932
– ident: ref_12
  doi: 10.2139/ssrn.3438533
– ident: ref_26
  doi: 10.1007/978-3-030-86967-0_12
– volume: 9
  start-page: 189
  year: 2021
  ident: ref_7
  article-title: Environmental, social, and governance (ESG) investing: Doing good to do well
  publication-title: Open J. Soc. Sci.
– ident: ref_21
  doi: 10.1109/ICCECE54139.2022.9712837
– ident: ref_18
  doi: 10.1109/IHTC53077.2021.9698939
– ident: ref_35
– volume: 82
  start-page: 102309
  year: 2022
  ident: ref_5
  article-title: Connecting the COVID-19 pandemic, environmental, social and governance (ESG) investing and calls for ‘harmonisation’ of sustainability reporting
  publication-title: Crit. Perspect. Account.
  doi: 10.1016/j.cpa.2021.102309
– ident: ref_10
  doi: 10.1007/978-981-16-2990-7_2
– volume: 19
  start-page: 347
  year: 2021
  ident: ref_19
  article-title: ESG score prediction through Random Forest algorithm
  publication-title: Comput. Manag. Sci.
– ident: ref_8
– ident: ref_25
– ident: ref_31
– ident: ref_22
  doi: 10.1145/3383455.3422529
– ident: ref_33
– ident: ref_24
  doi: 10.24251/HICSS.2020.666
– volume: 44
  start-page: 1087
  year: 2021
  ident: ref_20
  article-title: Fundamental ratios as predictors of ESG scores: A machine learning approach
  publication-title: Decis. Econ. Financ.
  doi: 10.1007/s10203-021-00364-5
– ident: ref_3
  doi: 10.1038/s41430-022-01075-9
– volume: 15
  start-page: 498
  year: 2020
  ident: ref_23
  article-title: A financial fraud detection model based on LSTM Deep Learning Technique
  publication-title: J. Appl. Secur. Res.
  doi: 10.1080/19361610.2020.1815491
– volume: 225
  start-page: 105758
  year: 2019
  ident: ref_36
  article-title: Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_17
  article-title: ESG Investments: Filtering Versus Machine Learning Approaches
  publication-title: Appl. Econ. Financ.
  doi: 10.11114/aef.v8i2.5097
– ident: ref_38
  doi: 10.3390/bdcc5010001
– volume: 44
  start-page: 102108
  year: 2022
  ident: ref_14
  article-title: Disclosure or action: Evaluating ESG behavior towards financial performance
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2021.102108
– ident: ref_2
  doi: 10.2139/ssrn.4010256
– volume: 28
  start-page: 2222
  year: 2017
  ident: ref_13
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 162
  start-page: 120341
  year: 2021
  ident: ref_4
  article-title: Corporate controversies and company’s financial performance: Exploring the moderating role of ESG practices
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2020.120341
– ident: ref_39
  doi: 10.1049/cp:19991218
– ident: ref_29
  doi: 10.1063/5.0071474
– ident: ref_9
  doi: 10.1007/978-981-16-2990-7_4
SSID ssj0000331916
Score 2.513911
Snippet In the COVID-19 era, people face situations that they have never experienced before, which alerted the importance of the ESG. Investors also consider ESG...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 8745
SubjectTerms Accuracy
Algorithms
Balance sheets
Classification
Climate change
Coronaviruses
COVID-19
Data science
Datasets
Deep learning
Experiments
Investments
Machine learning
Medical research
Neural networks
Research methodology
Sentiment analysis
Stock exchanges
Sustainability
Text categorization
Variables
Title Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms
URI https://www.proquest.com/docview/2694085314
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED71McCCoFBRKJUlWBgikth5DQgV2lKQqBBQqVvk2A5FKm2hgYFfjy91WpAQS4bk5OHOvlf8fQdwklDPptwOLcaSwGJUcn3mGLU8wQM3UYGI0pztc-D3h-x25I1KMCiwMHitsvCJuaOWM4E98jNEXOr0gDrsYv5m4dQo_LtajNDgZrSCPM8pxspQ1S7ZsytQvewO7h9WXReb6i3n-EueUqrrfW1vh-mSIEA808_I9Nsx59Gmtw1bJk0k7aVdd6CkpjXYKFDEixrUu2uEmhY0R3SxC-N7nHuAHQDCp-SmYIOQpG3Yw0k2IzkVyRfKdB-vSYdnnHy-cHKX36xUxJCu4gqSdJSar9-0J89aK9n4dbEHw1736apvmXEKlqC-k1m-GwovlDKVLJG6zGBRykM7TbEs9SOHK84DrkKXu1gzeWEkfOUkTAVcUuUJQetQmc6mah-IFIxpT6AQ_cRYqkImnTTh-hEpHd6iBpwWqoyF4RrHkReTWNccqPZ4rfYGHK9k50uGjT-lmoVFYnPKFvF6Txz8__kQNl2ELSAhZtiESvb-oY50MpElLbNDWlC-HjnfZCfMLQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWBBUEC8sQQMDBFJ7LyGChVaaHlUiIfEFhzbASRoCwkg-HH8NnypQ0FCbCwZkpOH8_le8fcdwEZCPZtyO7QYSwKLUcn1mWPU8gQP3EQFIkoLts-O37pkh1fe1Qh8lFgYvFZZ-sTCUcuewB75NiIudXpAHbbTf7RwahT-XS1HaHAzWkHWCooxA-w4Um-vuoTLau2G3u9N191vXuy1LDNlwBLUd3LLd0PhhVKmkiVSZ98sSnlopylWa37kcMV5wFXochdLCS-MhK-chKmAS6o8IahedxTGGDZQKjC22-ycnn11eWyqTdzxB7yolEa2ti-H6RIkQPzU90j4MxAU0W1_CiZNWkrqAzuahhHVrcJ4iVrOqjDXHCLitKBxCdkM3J7inAXsOBDeJe2SfUKSumErJ3mPFNQn7yjTPD8gDZ5z8nLHyUlxk1MRQ_KKK0jSUKo_fFO_v9G7kN8-ZLNw-S-KnYNKt9dV80CkYEx7HoVoK8ZSFTLppAnXj0jpcBotwFapylgYbnMcsXEf6xoH1R4P1b4A61-y_QGjx69Sy-WOxOZUZ_HQBhf__rwG462Lk-P4uN05WoIJFyETSMYZLkMlf3pWKzqRyZNVYy0Erv_bQD8B8jwJSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRoJeUGmpGgiwUsuBgxXbu34dKhRIQtKWKAIq9eaud9cNUkhC7YLgJ_ZXMeOskyIhbr34YI_2MDs7j_V83wAcZTxwuXRjR4gscgTXEs-c4E6gZORnJlJJXrF9jsPhuTi5CC4acFtjYaitsvaJlaPWC0V35B1CXGJ6wD3RyW1bxKQ3eLv87tAEKfrTWo_TkHbMgj6u6MYsyOPU_PqJ5VxxPOrh3r_2_UH_y_uhYycOOIqHXumEfqyCWOtci0xjJi6SXMZunlPlFiaeNFJG0sS-9KmsCOJEhcbLhImk5iZQiuO6D6AZYdTHQrD5rj-efFrf-Lgczd0LVxypnCcu2ponsByJCEt1Nyr-HRSqSDfYgcc2RWXdlU09gYaZ78KjGsFc7MJ-f4OOQ0HrHoo9mE5o5gLdPjA5Z6OaiUKzrmUuZ-WCVTQov0mm__kD68lSsh9fJftYdXUaZglfaQXNesYsN2-6syvchXL6rXgK5_ei2H3Ymi_m5gCYVkKgFzKEvBIiN7HQXp5JfCQGQ2vSgje1KlNlec5p3MYsxXqH1J5u1N6Cw7XscsXu8U-pdr0jqT3hRbqxx2f___wKHqKhpmej8elz2PYJPUG8nHEbtsrrG_MCc5oye2mNhcHlfdvnHwhQDYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposing+an+Integrated+Approach+to+Analyzing+ESG+Data+via+Machine+Learning+and+Deep+Learning+Algorithms&rft.jtitle=Sustainability&rft.au=Lee%2C+Ook&rft.au=Joo%2C+Hanseon&rft.au=Choi%2C+Hayoung&rft.au=Cheon%2C+Minjong&rft.date=2022-07-18&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=14&rft.issue=14&rft.spage=8745&rft_id=info:doi/10.3390%2Fsu14148745&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su14148745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon