Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms
The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working...
Saved in:
| Published in | Electronics (Basel) Vol. 11; no. 16; p. 2492 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics11162492 |
Cover
| Abstract | The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working conditions. This study presents a fault diagnostics framework integrated with long-term frequency for a switched-mode power supply aluminium electrolytic capacitor (SMPS-AEC). Long-term frequency condition monitoring (CM) was achieved using the advanced HIOKI LCR meter at 8 MHz. The data acquired during the experimental study can help to achieve the needed paradigm from various measured characteristics of the SMPS/power converter component to detect anomalies between the capacitors selected for analysis. The CM procedure in this study was bound by the electrical parameters—capacitance (Cs), equivalent series resistance (ESR), dissipation factor (DF), and impedance (Z)—-acting as degradation techniques during physical and chemical changes of the capacitors. Furthermore, the proposed methodology was carried out using statistical feature extraction and filter-based correlation for feature selection, followed by training, testing and validation using the selected supervised learning algorithms. The resulting assessment revealed that with increased data capacity, an improved performance was achieved across the chosen algorithms out of which the k-nearest neighbors (KNN) had the best average accuracy (98.40%) and lowest computational cost (0.31 s) across all the electrical parameters. Further assessment was carried out using the fault visualization aided by principal component analysis (PCA) to validate and decide on the best electrical parameters for the CM technique. |
|---|---|
| AbstractList | The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working conditions. This study presents a fault diagnostics framework integrated with long-term frequency for a switched-mode power supply aluminium electrolytic capacitor (SMPS-AEC). Long-term frequency condition monitoring (CM) was achieved using the advanced HIOKI LCR meter at 8 MHz. The data acquired during the experimental study can help to achieve the needed paradigm from various measured characteristics of the SMPS/power converter component to detect anomalies between the capacitors selected for analysis. The CM procedure in this study was bound by the electrical parameters—capacitance (Cs), equivalent series resistance (ESR), dissipation factor (DF), and impedance (Z)—-acting as degradation techniques during physical and chemical changes of the capacitors. Furthermore, the proposed methodology was carried out using statistical feature extraction and filter-based correlation for feature selection, followed by training, testing and validation using the selected supervised learning algorithms. The resulting assessment revealed that with increased data capacity, an improved performance was achieved across the chosen algorithms out of which the k-nearest neighbors (KNN) had the best average accuracy (98.40%) and lowest computational cost (0.31 s) across all the electrical parameters. Further assessment was carried out using the fault visualization aided by principal component analysis (PCA) to validate and decide on the best electrical parameters for the CM technique. |
| Audience | Academic |
| Author | Hur, Jang-Wook Kareem, Akeem Bayo |
| Author_xml | – sequence: 1 givenname: Akeem Bayo orcidid: 0000-0003-3382-0382 surname: Kareem fullname: Kareem, Akeem Bayo – sequence: 2 givenname: Jang-Wook surname: Hur fullname: Hur, Jang-Wook |
| BookMark | eNqNkUtLAzEQx4MoqLWfwEvA89a8tt0cSx8qVBRaz8s0m62p26QmWYvf3tR6EBF05jDDML8_8zhHx9ZZjdAlJT3OJbnWjVbRO2tUoJT2mZDsCJ0xMpCZZJIdf8tPUTeENUkmKS84OUOwcDvwVcBjiJCNvXnTFk-hbSIeG1hZF2LSxVMPG71z_gXXzuP5_eM8G05G-CkYu8Lzdqv9mwm6wjMN3u5rw2blvInPm3CBTmpogu5-xQ5aTCeL0W02e7i5Gw1nmeJ9GrNcykqKqmZc1QxkrgZcaM5JIYulVqKgRC1pzispBakU1UQU1bIgRABIkbbpIHGQbe0W3nfQNOXWmw3495KScn-o8pdDJezqgG29e211iOXatd6mQUs2IH2aUyZF6uodulbQ6NLY2kUPKnmlN0ald9Qm1YcDkfcJp5-APADKuxC8rktlIkTjbAJN88dI_Af7n0U-AFVOoc4 |
| CitedBy_id | crossref_primary_10_3390_s23021009 crossref_primary_10_3390_electronics13050926 crossref_primary_10_1007_s10845_024_02542_9 crossref_primary_10_1016_j_est_2023_109037 crossref_primary_10_1016_j_mtcomm_2024_110400 crossref_primary_10_1109_ACCESS_2023_3266865 crossref_primary_10_1109_TPEL_2024_3510749 crossref_primary_10_1109_TPEL_2023_3320878 crossref_primary_10_3390_electronics14020308 crossref_primary_10_3390_s23020948 crossref_primary_10_3390_en16166096 |
| Cites_doi | 10.1109/SoutheastCon44009.2020.9249667 10.1109/ICEPT47577.2019.245184 10.3390/s22052012 10.1038/s41598-021-87165-3 10.1007/s12206-020-2208-7 10.1007/s12206-021-0709-7 10.3390/wevj13050091 10.3390/en15020507 10.3390/polym13050766 10.1007/s40009-021-01043-0 10.3390/mi13030463 10.1109/ECTIDAMTNCON53731.2022.9720417 10.3390/sym14051063 10.1109/APEC43599.2022.9773721 10.3390/s20195480 10.1109/TPEL.2020.3024914 10.1109/TC.2016.2519914 10.3390/su14063597 10.1109/ITOEC53115.2022.9734331 10.1016/j.measurement.2021.110506 10.1109/JESTPE.2022.3183837 10.3390/electronics10192323 10.3390/electronics11091444 10.1016/j.rser.2021.111897 10.3390/electronics10040439 10.3390/electronics9101571 10.3390/electronics11010133 10.1109/ICPECA53709.2022.9718959 10.1109/TIA.2016.2591906 10.3390/e24040511 10.3390/pr10010055 10.3390/app12105026 10.3390/electronics9111893 10.3390/electronics11040562 10.3390/en14051227 10.1109/ACCESS.2020.3025909 10.3390/app12104891 10.1109/TPEL.2022.3159828 10.1111/coin.12500 10.3390/electronics10202487 10.3390/s22103869 10.3390/en11113030 10.3390/en14154690 10.3390/pr10061091 10.3390/app10217413 10.3390/electronics11121898 10.3390/electronics11020280 10.1109/SGRE53517.2022.9774169 10.3390/en10050611 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics11162492 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics11162492 A745603194 10_3390_electronics11162492 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-599d94df23cf2a95c734e330898bec4810cb153d9940dc1e048db8004aa94913 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 03:28:18 EDT 2025 Mon Jul 14 07:22:56 EDT 2025 Mon Oct 20 17:28:55 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Thu Oct 16 04:33:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-599d94df23cf2a95c734e330898bec4810cb153d9940dc1e048db8004aa94913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3382-0382 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/16/2492/pdf?version=1660217989 |
| PQID | 2706151294 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics11162492 proquest_journals_2706151294 gale_infotracacademiconefile_A745603194 crossref_citationtrail_10_3390_electronics11162492 crossref_primary_10_3390_electronics11162492 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hu (ref_27) 2022; 37 Ambusaidi (ref_36) 2016; 65 Soliman (ref_18) 2016; 52 ref_14 ref_13 ref_12 ref_11 ref_10 ref_19 ref_17 ref_16 ref_15 ref_24 ref_23 ref_21 ref_20 ref_29 ref_28 ref_26 Shifat (ref_50) 2020; 34 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 ref_39 ref_37 Sandaram (ref_38) 2022; 188 Thirumoorthy (ref_40) 2022; 45 Ahmadreza (ref_25) 2022; 154 Shifat (ref_49) 2021; 35 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 Akpudo (ref_48) 2020; 8 ref_41 ref_1 ref_3 ref_2 Zhao (ref_22) 2021; 36 ref_9 ref_8 ref_5 ref_4 Peyghami (ref_6) 2021; 11 ref_7 |
| References_xml | – ident: ref_42 doi: 10.1109/SoutheastCon44009.2020.9249667 – ident: ref_14 doi: 10.1109/ICEPT47577.2019.245184 – ident: ref_44 doi: 10.3390/s22052012 – volume: 11 start-page: 7557 year: 2021 ident: ref_6 article-title: Intelligent long–term performance analysis in power electronics systems publication-title: Sci. Rep. doi: 10.1038/s41598-021-87165-3 – volume: 34 start-page: 3981 year: 2020 ident: ref_50 article-title: EEMD assisted supervised learning for the fault diagnosis of BLDC motor using vibration signal publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-2208-7 – volume: 35 start-page: 3355 year: 2021 ident: ref_49 article-title: Reliability improvement in the presence of weak fault features using non-Gaussian IMF selection and AdaBoost technique publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-021-0709-7 – ident: ref_17 doi: 10.3390/wevj13050091 – ident: ref_28 doi: 10.3390/en15020507 – ident: ref_33 doi: 10.3390/polym13050766 – volume: 45 start-page: 51 year: 2022 ident: ref_40 article-title: Feature Selection for Text Classification Using Machine Learning Approaches publication-title: Natl. Acad. Sci. Lett. doi: 10.1007/s40009-021-01043-0 – ident: ref_8 doi: 10.3390/mi13030463 – ident: ref_30 doi: 10.1109/ECTIDAMTNCON53731.2022.9720417 – ident: ref_9 doi: 10.3390/sym14051063 – ident: ref_19 doi: 10.1109/APEC43599.2022.9773721 – ident: ref_4 doi: 10.3390/s20195480 – ident: ref_41 – volume: 36 start-page: 4633 year: 2021 ident: ref_22 article-title: An Overview of Artificial Intelligence Applications for Power Electronics publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.3024914 – volume: 65 start-page: 2986 year: 2016 ident: ref_36 article-title: Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2016.2519914 – ident: ref_5 doi: 10.3390/su14063597 – ident: ref_26 doi: 10.1109/ITOEC53115.2022.9734331 – volume: 188 start-page: 110506 year: 2022 ident: ref_38 article-title: Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection publication-title: Measurement doi: 10.1016/j.measurement.2021.110506 – ident: ref_21 doi: 10.1109/JESTPE.2022.3183837 – ident: ref_46 doi: 10.3390/electronics10192323 – ident: ref_12 doi: 10.3390/electronics11091444 – volume: 154 start-page: 111897 year: 2022 ident: ref_25 article-title: Review of AI applications in harmonic analysis in power systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111897 – ident: ref_47 doi: 10.3390/electronics10040439 – ident: ref_1 doi: 10.3390/electronics9101571 – ident: ref_15 doi: 10.3390/electronics11010133 – ident: ref_29 doi: 10.1109/ICPECA53709.2022.9718959 – volume: 52 start-page: 4976 year: 2016 ident: ref_18 article-title: A Review of the Condition Monitoring of Capacitors in Power Electronic Converters publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2016.2591906 – ident: ref_39 doi: 10.3390/e24040511 – ident: ref_2 doi: 10.3390/pr10010055 – ident: ref_10 doi: 10.3390/app12105026 – ident: ref_32 doi: 10.3390/electronics9111893 – ident: ref_7 doi: 10.3390/electronics11040562 – ident: ref_3 doi: 10.3390/en14051227 – volume: 8 start-page: 175020 year: 2020 ident: ref_48 article-title: A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025909 – ident: ref_20 doi: 10.3390/app12104891 – volume: 37 start-page: 9907 year: 2022 ident: ref_27 article-title: Overview of Power Converter Control in Microgrids—Challenges, Advances, and Future Trends publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2022.3159828 – ident: ref_37 doi: 10.1111/coin.12500 – ident: ref_11 doi: 10.3390/electronics10202487 – ident: ref_31 doi: 10.3390/s22103869 – ident: ref_34 doi: 10.3390/en11113030 – ident: ref_23 doi: 10.3390/en14154690 – ident: ref_13 doi: 10.3390/pr10061091 – ident: ref_45 doi: 10.3390/app10217413 – ident: ref_35 doi: 10.3390/electronics11121898 – ident: ref_16 doi: 10.3390/electronics11020280 – ident: ref_24 doi: 10.1109/SGRE53517.2022.9774169 – ident: ref_43 doi: 10.3390/en10050611 |
| SSID | ssj0000913830 |
| Score | 2.3302996 |
| Snippet | The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands,... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2492 |
| SubjectTerms | Algorithms Aluminum Anomalies Artificial intelligence Breakdowns Capacitors Circuits Condition monitoring Data acquisition Data collection Design Design and construction Design factors Dissipation factor Electric fault location Electrolytes Electrolytic capacitors Electronics Failure Fault diagnosis Feature extraction Machine learning Methods Optimization techniques Parameter estimation Parameters Power converters Power supply Power supply (Electronics) Principal components analysis Resistance factors Service life Supervised learning Switched mode power supplies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BeQAe0MYPraxMfpjEyyya2E3shwmV_hCaRIVoJ_EWne0EHkLpSCq0_36-NCkwTWjviRPd-T6f7bvvA_gaZbFAYvkMZBxzqVFylamAZxFGOrDaqYh6h68m0eVP-eO2d7sBk6YXhsoqG0ysgNo9WjojPwvjavENtTxf_OKkGkW3q42EBtbSCu57RTG2CVshMWO1YOtiNLm-WZ-6EAumEt0V_ZDw-_2zF7WZwod9RAR6b5aov4F6F7aX8wX-fsY8f7USjT_AXp1Csv7K5x9hI53vw-4rYsEDwFlVDVuwIZbIh08EaWyMy7xkw1VtHbEzs3FTmcV86sqmV9dT3h8NWFVGwKbLBeFIkTpWk7DesX5-521S3j8UhzAbj2aDS16LKXAroqDkPa2dli4Lhc1C1D0bC5kK0VVaeTdKFXSt8ejntJZdZ4PUR7YzPpuUiFp6qx1Ba_44Tz8Bk1lEwuTSWYfSCDRZz9B9qjKoXGpMG8LGfImticZJ7yJP_IaDbJ78w-Zt-LZ-abHi2Xj_8VPyS0JR6Me2WDcT-D8kPqukH_vEkBq0ZBs6jeuSOjyL5GUytYGv3fk_Hz5-f7jPsBNSf0RVIdiBVvm0TE981lKaL_VU_AMDdO6u priority: 102 providerName: ProQuest |
| Title | Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms |
| URI | https://www.proquest.com/docview/2706151294 https://www.mdpi.com/2079-9292/11/16/2492/pdf?version=1660217989 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9i7QF24BvRMSofkLjgtU4cxz6hsDZMiFYV7aRxivyRjImsq5oEBH89dj5GmRACccohtuPoff2cvPd7AC9YFvrSsXwSGoaYCkkxzzjBGZNMEC0MZ652eDZnJ6f03VlwtlPF79Iq7VH8onbS3jgU2MZvb0TIiLCRY7cbbUz2-kv7LYkw5jC14GIP-iywaLwH_dP5Ivroesp1sxuyId-e7kc_e8sU1siZW_CXgHTTLe_D7Wq9kd--yjzfiTvxPZDdjpt0k89HVamO9PcbZI7_80r34W4LSlHUaNEDuJWuH8L-DlXhI5CrOr-2QBNZSjzZOieJYlnlJZo02XqO7xnFXa4XsmAYLWeLJY6mx6hOTEDLauM8U5Ea1NK6nqMoP7_aXpSfLovHsIqnq-MT3LZnwNpnpMSBEEZQk3m-zjwpAh36NPX9MRfcKgblZKyV9adGCDo2mqTWVxhl8SmVUlBB_CfQW1-t06eAaMZcq3NqtJFU-VJlgXJ_aLmS3KRKDcDrRJTolrrcddDIE3uEcXJNfiPXAby6nrRpmDv-PPylk33i7NqurWVbnmB36Biykii0UNOVfNEBHHbqkbQGXyReWGNDz93G1yrzNw8--Mfxz-CO50ow6iTEQ-iV2yp9boFRqYawx-O3Q-hHk9n7pb2-mc4XH4atRfwAEUQORA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOVelDpIV2D6166YrYu7F3DwilJFEoJEJNKnFb7cOmBzek2BHix_W_dcdZB1oh1At3e23PzM7DO_N9AB-SPGUaUT4jnqaUS82pyEVE80QnMrLSiQRnh0fjZPidfz3vnK_B72YWBtsqG59YO2p3afEf-X6c1sE3lvxw_osiaxSerjYUGjpQK7iDGmIsDHacZDfXvoQrD457Xt8f43jQnx4NaWAZoJYlUUU7UjrJXR4zm8dadmzKeOarfCGF_z4uorY13i04KXnb2SjzJu-MT7O41pLLiPlln8AGZ1z62m_jS3989m31kwdBNwVrL9GOGJPt_Vtym9J7mQTx-v6KiP_GhS3YXMzm-uZaF8WdwDd4Ds9Cxkq6SxPbhrVs9gK27uAYvgQ9rZtvS9LTlaa9K_SgZKAXRUV6y1Y-BIMmg6YRjPhMmUxGZxPa7R-RumuBTBZzdFtl5kjAfL0g3eLCq6D68bN8BdPHkOprWJ9dzrIdIDxPkAedO-s0N0ybvGPw-FYYLVxmTAviRnzKBlxzpNcolK9vUObqHpm34PPqpvkS1uPhyz-hXhRuer-21WF2wb8hwmepburzUJwH4y3YbVSngjco1a3ttoCu1Pk_D37z8HLvYXM4HZ2q0-PxyVt4GuNoRt2cuAvr1dUi2_MJU2XeBbMkoB55I_wBPEYp_Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVwqPpCLNDWh6Jeau0m9ib2oapWhBTKQ0i7lbhZfiRwCMtCskL8NP5dPXkstKpQL9wTO5kZz4ztb74B-BzlMdPI8hnwOKZcak5FLgKaRzqSgZVORFg7fHQc7f3iP0-Hp0tw19XCIKyy84m1o3aXFs_I-2FcB99Q8n7ewiJOkvT77IpiBym8ae3aaTQmcpDd3vjtW_ltP_G63g7DdHeys0fbDgPUsiio6FBKJ7nLQ2bzUMuhjRnP_A5fSOH_jYtgYI13CU5KPnA2yLy5O-NTLK615DJgfthn8DxGEncsUk9_LI53kG5TsEHDc8SYHPTv29qU3r9EyNT3Ryz8OyKswsv5dKZvb3RRPAh56Wt41eaqZNQY1xtYyqZvYfUBg-E70JMadluSRFeaJtfoO0mq50VFkgbEhzTQJO0gYMTnyGR8dDKmo90dUuMVyHg-Q4dVZo60bK9nZFSceYFX5xfle5g8hUzXYHl6Oc3WgfA8wg7o3FmnuWHa5EODF7fCaOEyY3oQduJTtmU0x8YahfI7G5S5-ofMe_B18dKsIfR4_PEvqBeFy92PbXVbteC_EImz1Cj2GShWgvEebHWqU60fKNW91faALtT5PxNvPD7cJ3jhzV8d7h8fbMJKiDUZNSpxC5ar63n2wWdKlflY2yQB9cRr4Dcg5yeX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lLfY0iIfkLjgZp04jn1CUberCqlVpd1K5RT5kZSKsF1tEhD8ejx5lG2FEIhzbMfRjMef42--AXgjiiTSqPLJeJJQrjSnspCMFkILxaxyUmDu8MmpOD7nHy7ii40sfqRV-qP4VRukw0miqN-_w4CxgIkA1e2ClSvef-3_JTEhEFMrqe7Dlog9Gh_B1vnpWfoRa8oNvTuxocif7oNftWUqv8gFDnhrQ7oblrfhQbNc6e_fdFlu7DuzR6CHGXd0k88HTW0O7I87Yo7_80mPYacHpSTtvOgJ3MuXT2F7Q6rwGehFy6-tyFTXmk7XGCTJTDdlTaYdWw_1nsls4HoRD4bJ_ORsTtOjQ9ISE8i8WWFkqnJHelnXS5KWl9frq_rTl-o5LGZHi8Nj2pdnoDYSrKaxUk5xV4SRLUKtYptEPI-iiVTSOwaXbGKNj6dOKT5xluU-Vjjj8SnXWnHFohcwWl4v85dAeCGw1Dl31mluIm2K2OANrTRautyYMYSDiTLbS5djBY0y80cYtGv2G7uO4d1Np1Wn3PHn5m_R9hmuaz-21X16gp8hKmRlaeKhJqZ88THsDe6R9Qu-ysKkxYYhPqY3LvM3L979x_av4GGIKRgtCXEPRvW6yfc9MKrN6973fwIN3Qow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Data-Driven+Fault+Diagnostics+Framework+for+SMPS-AEC+Using+Supervised+Learning+Algorithms&rft.jtitle=Electronics+%28Basel%29&rft.au=Kareem%2C+Akeem+Bayo&rft.au=Hur%2C+Jang-Wook&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=16&rft_id=info:doi/10.3390%2Felectronics11162492&rft.externalDocID=A745603194 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |