Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms

The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 16; p. 2492
Main Authors Kareem, Akeem Bayo, Hur, Jang-Wook
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11162492

Cover

Abstract The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working conditions. This study presents a fault diagnostics framework integrated with long-term frequency for a switched-mode power supply aluminium electrolytic capacitor (SMPS-AEC). Long-term frequency condition monitoring (CM) was achieved using the advanced HIOKI LCR meter at 8 MHz. The data acquired during the experimental study can help to achieve the needed paradigm from various measured characteristics of the SMPS/power converter component to detect anomalies between the capacitors selected for analysis. The CM procedure in this study was bound by the electrical parameters—capacitance (Cs), equivalent series resistance (ESR), dissipation factor (DF), and impedance (Z)—-acting as degradation techniques during physical and chemical changes of the capacitors. Furthermore, the proposed methodology was carried out using statistical feature extraction and filter-based correlation for feature selection, followed by training, testing and validation using the selected supervised learning algorithms. The resulting assessment revealed that with increased data capacity, an improved performance was achieved across the chosen algorithms out of which the k-nearest neighbors (KNN) had the best average accuracy (98.40%) and lowest computational cost (0.31 s) across all the electrical parameters. Further assessment was carried out using the fault visualization aided by principal component analysis (PCA) to validate and decide on the best electrical parameters for the CM technique.
AbstractList The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands, electrolytic capacitors and switching devices are the two most common parts of the power supply that age (deteriorate) under normal and diverse working conditions. This study presents a fault diagnostics framework integrated with long-term frequency for a switched-mode power supply aluminium electrolytic capacitor (SMPS-AEC). Long-term frequency condition monitoring (CM) was achieved using the advanced HIOKI LCR meter at 8 MHz. The data acquired during the experimental study can help to achieve the needed paradigm from various measured characteristics of the SMPS/power converter component to detect anomalies between the capacitors selected for analysis. The CM procedure in this study was bound by the electrical parameters—capacitance (Cs), equivalent series resistance (ESR), dissipation factor (DF), and impedance (Z)—-acting as degradation techniques during physical and chemical changes of the capacitors. Furthermore, the proposed methodology was carried out using statistical feature extraction and filter-based correlation for feature selection, followed by training, testing and validation using the selected supervised learning algorithms. The resulting assessment revealed that with increased data capacity, an improved performance was achieved across the chosen algorithms out of which the k-nearest neighbors (KNN) had the best average accuracy (98.40%) and lowest computational cost (0.31 s) across all the electrical parameters. Further assessment was carried out using the fault visualization aided by principal component analysis (PCA) to validate and decide on the best electrical parameters for the CM technique.
Audience Academic
Author Hur, Jang-Wook
Kareem, Akeem Bayo
Author_xml – sequence: 1
  givenname: Akeem Bayo
  orcidid: 0000-0003-3382-0382
  surname: Kareem
  fullname: Kareem, Akeem Bayo
– sequence: 2
  givenname: Jang-Wook
  surname: Hur
  fullname: Hur, Jang-Wook
BookMark eNqNkUtLAzEQx4MoqLWfwEvA89a8tt0cSx8qVBRaz8s0m62p26QmWYvf3tR6EBF05jDDML8_8zhHx9ZZjdAlJT3OJbnWjVbRO2tUoJT2mZDsCJ0xMpCZZJIdf8tPUTeENUkmKS84OUOwcDvwVcBjiJCNvXnTFk-hbSIeG1hZF2LSxVMPG71z_gXXzuP5_eM8G05G-CkYu8Lzdqv9mwm6wjMN3u5rw2blvInPm3CBTmpogu5-xQ5aTCeL0W02e7i5Gw1nmeJ9GrNcykqKqmZc1QxkrgZcaM5JIYulVqKgRC1pzispBakU1UQU1bIgRABIkbbpIHGQbe0W3nfQNOXWmw3495KScn-o8pdDJezqgG29e211iOXatd6mQUs2IH2aUyZF6uodulbQ6NLY2kUPKnmlN0ald9Qm1YcDkfcJp5-APADKuxC8rktlIkTjbAJN88dI_Af7n0U-AFVOoc4
CitedBy_id crossref_primary_10_3390_s23021009
crossref_primary_10_3390_electronics13050926
crossref_primary_10_1007_s10845_024_02542_9
crossref_primary_10_1016_j_est_2023_109037
crossref_primary_10_1016_j_mtcomm_2024_110400
crossref_primary_10_1109_ACCESS_2023_3266865
crossref_primary_10_1109_TPEL_2024_3510749
crossref_primary_10_1109_TPEL_2023_3320878
crossref_primary_10_3390_electronics14020308
crossref_primary_10_3390_s23020948
crossref_primary_10_3390_en16166096
Cites_doi 10.1109/SoutheastCon44009.2020.9249667
10.1109/ICEPT47577.2019.245184
10.3390/s22052012
10.1038/s41598-021-87165-3
10.1007/s12206-020-2208-7
10.1007/s12206-021-0709-7
10.3390/wevj13050091
10.3390/en15020507
10.3390/polym13050766
10.1007/s40009-021-01043-0
10.3390/mi13030463
10.1109/ECTIDAMTNCON53731.2022.9720417
10.3390/sym14051063
10.1109/APEC43599.2022.9773721
10.3390/s20195480
10.1109/TPEL.2020.3024914
10.1109/TC.2016.2519914
10.3390/su14063597
10.1109/ITOEC53115.2022.9734331
10.1016/j.measurement.2021.110506
10.1109/JESTPE.2022.3183837
10.3390/electronics10192323
10.3390/electronics11091444
10.1016/j.rser.2021.111897
10.3390/electronics10040439
10.3390/electronics9101571
10.3390/electronics11010133
10.1109/ICPECA53709.2022.9718959
10.1109/TIA.2016.2591906
10.3390/e24040511
10.3390/pr10010055
10.3390/app12105026
10.3390/electronics9111893
10.3390/electronics11040562
10.3390/en14051227
10.1109/ACCESS.2020.3025909
10.3390/app12104891
10.1109/TPEL.2022.3159828
10.1111/coin.12500
10.3390/electronics10202487
10.3390/s22103869
10.3390/en11113030
10.3390/en14154690
10.3390/pr10061091
10.3390/app10217413
10.3390/electronics11121898
10.3390/electronics11020280
10.1109/SGRE53517.2022.9774169
10.3390/en10050611
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics11162492
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics11162492
A745603194
10_3390_electronics11162492
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-599d94df23cf2a95c734e330898bec4810cb153d9940dc1e048db8004aa94913
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Sun Oct 26 03:28:18 EDT 2025
Mon Jul 14 07:22:56 EDT 2025
Mon Oct 20 17:28:55 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Thu Oct 16 04:33:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-599d94df23cf2a95c734e330898bec4810cb153d9940dc1e048db8004aa94913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3382-0382
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/11/16/2492/pdf?version=1660217989
PQID 2706151294
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics11162492
proquest_journals_2706151294
gale_infotracacademiconefile_A745603194
crossref_citationtrail_10_3390_electronics11162492
crossref_primary_10_3390_electronics11162492
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hu (ref_27) 2022; 37
Ambusaidi (ref_36) 2016; 65
Soliman (ref_18) 2016; 52
ref_14
ref_13
ref_12
ref_11
ref_10
ref_19
ref_17
ref_16
ref_15
ref_24
ref_23
ref_21
ref_20
ref_29
ref_28
ref_26
Shifat (ref_50) 2020; 34
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
ref_39
ref_37
Sandaram (ref_38) 2022; 188
Thirumoorthy (ref_40) 2022; 45
Ahmadreza (ref_25) 2022; 154
Shifat (ref_49) 2021; 35
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
Akpudo (ref_48) 2020; 8
ref_41
ref_1
ref_3
ref_2
Zhao (ref_22) 2021; 36
ref_9
ref_8
ref_5
ref_4
Peyghami (ref_6) 2021; 11
ref_7
References_xml – ident: ref_42
  doi: 10.1109/SoutheastCon44009.2020.9249667
– ident: ref_14
  doi: 10.1109/ICEPT47577.2019.245184
– ident: ref_44
  doi: 10.3390/s22052012
– volume: 11
  start-page: 7557
  year: 2021
  ident: ref_6
  article-title: Intelligent long–term performance analysis in power electronics systems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87165-3
– volume: 34
  start-page: 3981
  year: 2020
  ident: ref_50
  article-title: EEMD assisted supervised learning for the fault diagnosis of BLDC motor using vibration signal
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-020-2208-7
– volume: 35
  start-page: 3355
  year: 2021
  ident: ref_49
  article-title: Reliability improvement in the presence of weak fault features using non-Gaussian IMF selection and AdaBoost technique
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-021-0709-7
– ident: ref_17
  doi: 10.3390/wevj13050091
– ident: ref_28
  doi: 10.3390/en15020507
– ident: ref_33
  doi: 10.3390/polym13050766
– volume: 45
  start-page: 51
  year: 2022
  ident: ref_40
  article-title: Feature Selection for Text Classification Using Machine Learning Approaches
  publication-title: Natl. Acad. Sci. Lett.
  doi: 10.1007/s40009-021-01043-0
– ident: ref_8
  doi: 10.3390/mi13030463
– ident: ref_30
  doi: 10.1109/ECTIDAMTNCON53731.2022.9720417
– ident: ref_9
  doi: 10.3390/sym14051063
– ident: ref_19
  doi: 10.1109/APEC43599.2022.9773721
– ident: ref_4
  doi: 10.3390/s20195480
– ident: ref_41
– volume: 36
  start-page: 4633
  year: 2021
  ident: ref_22
  article-title: An Overview of Artificial Intelligence Applications for Power Electronics
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3024914
– volume: 65
  start-page: 2986
  year: 2016
  ident: ref_36
  article-title: Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2016.2519914
– ident: ref_5
  doi: 10.3390/su14063597
– ident: ref_26
  doi: 10.1109/ITOEC53115.2022.9734331
– volume: 188
  start-page: 110506
  year: 2022
  ident: ref_38
  article-title: Bearing fault diagnosis and prognosis using data fusion based feature extraction and feature selection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110506
– ident: ref_21
  doi: 10.1109/JESTPE.2022.3183837
– ident: ref_46
  doi: 10.3390/electronics10192323
– ident: ref_12
  doi: 10.3390/electronics11091444
– volume: 154
  start-page: 111897
  year: 2022
  ident: ref_25
  article-title: Review of AI applications in harmonic analysis in power systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111897
– ident: ref_47
  doi: 10.3390/electronics10040439
– ident: ref_1
  doi: 10.3390/electronics9101571
– ident: ref_15
  doi: 10.3390/electronics11010133
– ident: ref_29
  doi: 10.1109/ICPECA53709.2022.9718959
– volume: 52
  start-page: 4976
  year: 2016
  ident: ref_18
  article-title: A Review of the Condition Monitoring of Capacitors in Power Electronic Converters
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2016.2591906
– ident: ref_39
  doi: 10.3390/e24040511
– ident: ref_2
  doi: 10.3390/pr10010055
– ident: ref_10
  doi: 10.3390/app12105026
– ident: ref_32
  doi: 10.3390/electronics9111893
– ident: ref_7
  doi: 10.3390/electronics11040562
– ident: ref_3
  doi: 10.3390/en14051227
– volume: 8
  start-page: 175020
  year: 2020
  ident: ref_48
  article-title: A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025909
– ident: ref_20
  doi: 10.3390/app12104891
– volume: 37
  start-page: 9907
  year: 2022
  ident: ref_27
  article-title: Overview of Power Converter Control in Microgrids—Challenges, Advances, and Future Trends
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2022.3159828
– ident: ref_37
  doi: 10.1111/coin.12500
– ident: ref_11
  doi: 10.3390/electronics10202487
– ident: ref_31
  doi: 10.3390/s22103869
– ident: ref_34
  doi: 10.3390/en11113030
– ident: ref_23
  doi: 10.3390/en14154690
– ident: ref_13
  doi: 10.3390/pr10061091
– ident: ref_45
  doi: 10.3390/app10217413
– ident: ref_35
  doi: 10.3390/electronics11121898
– ident: ref_16
  doi: 10.3390/electronics11020280
– ident: ref_24
  doi: 10.1109/SGRE53517.2022.9774169
– ident: ref_43
  doi: 10.3390/en10050611
SSID ssj0000913830
Score 2.3302996
Snippet The service life of aluminium electrolytic capacitors is becoming a critical design factor in power supplies. Despite rising power density demands,...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2492
SubjectTerms Algorithms
Aluminum
Anomalies
Artificial intelligence
Breakdowns
Capacitors
Circuits
Condition monitoring
Data acquisition
Data collection
Design
Design and construction
Design factors
Dissipation factor
Electric fault location
Electrolytes
Electrolytic capacitors
Electronics
Failure
Fault diagnosis
Feature extraction
Machine learning
Methods
Optimization techniques
Parameter estimation
Parameters
Power converters
Power supply
Power supply (Electronics)
Principal components analysis
Resistance factors
Service life
Supervised learning
Switched mode power supplies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BeQAe0MYPraxMfpjEyyya2E3shwmV_hCaRIVoJ_EWne0EHkLpSCq0_36-NCkwTWjviRPd-T6f7bvvA_gaZbFAYvkMZBxzqVFylamAZxFGOrDaqYh6h68m0eVP-eO2d7sBk6YXhsoqG0ysgNo9WjojPwvjavENtTxf_OKkGkW3q42EBtbSCu57RTG2CVshMWO1YOtiNLm-WZ-6EAumEt0V_ZDw-_2zF7WZwod9RAR6b5aov4F6F7aX8wX-fsY8f7USjT_AXp1Csv7K5x9hI53vw-4rYsEDwFlVDVuwIZbIh08EaWyMy7xkw1VtHbEzs3FTmcV86sqmV9dT3h8NWFVGwKbLBeFIkTpWk7DesX5-521S3j8UhzAbj2aDS16LKXAroqDkPa2dli4Lhc1C1D0bC5kK0VVaeTdKFXSt8ejntJZdZ4PUR7YzPpuUiFp6qx1Ba_44Tz8Bk1lEwuTSWYfSCDRZz9B9qjKoXGpMG8LGfImticZJ7yJP_IaDbJ78w-Zt-LZ-abHi2Xj_8VPyS0JR6Me2WDcT-D8kPqukH_vEkBq0ZBs6jeuSOjyL5GUytYGv3fk_Hz5-f7jPsBNSf0RVIdiBVvm0TE981lKaL_VU_AMDdO6u
  priority: 102
  providerName: ProQuest
Title Towards Data-Driven Fault Diagnostics Framework for SMPS-AEC Using Supervised Learning Algorithms
URI https://www.proquest.com/docview/2706151294
https://www.mdpi.com/2079-9292/11/16/2492/pdf?version=1660217989
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9i7QF24BvRMSofkLjgtU4cxz6hsDZMiFYV7aRxivyRjImsq5oEBH89dj5GmRACccohtuPoff2cvPd7AC9YFvrSsXwSGoaYCkkxzzjBGZNMEC0MZ652eDZnJ6f03VlwtlPF79Iq7VH8onbS3jgU2MZvb0TIiLCRY7cbbUz2-kv7LYkw5jC14GIP-iywaLwH_dP5Ivroesp1sxuyId-e7kc_e8sU1siZW_CXgHTTLe_D7Wq9kd--yjzfiTvxPZDdjpt0k89HVamO9PcbZI7_80r34W4LSlHUaNEDuJWuH8L-DlXhI5CrOr-2QBNZSjzZOieJYlnlJZo02XqO7xnFXa4XsmAYLWeLJY6mx6hOTEDLauM8U5Ea1NK6nqMoP7_aXpSfLovHsIqnq-MT3LZnwNpnpMSBEEZQk3m-zjwpAh36NPX9MRfcKgblZKyV9adGCDo2mqTWVxhl8SmVUlBB_CfQW1-t06eAaMZcq3NqtJFU-VJlgXJ_aLmS3KRKDcDrRJTolrrcddDIE3uEcXJNfiPXAby6nrRpmDv-PPylk33i7NqurWVbnmB36Biykii0UNOVfNEBHHbqkbQGXyReWGNDz93G1yrzNw8--Mfxz-CO50ow6iTEQ-iV2yp9boFRqYawx-O3Q-hHk9n7pb2-mc4XH4atRfwAEUQORA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOVelDpIV2D6166YrYu7F3DwilJFEoJEJNKnFb7cOmBzek2BHix_W_dcdZB1oh1At3e23PzM7DO_N9AB-SPGUaUT4jnqaUS82pyEVE80QnMrLSiQRnh0fjZPidfz3vnK_B72YWBtsqG59YO2p3afEf-X6c1sE3lvxw_osiaxSerjYUGjpQK7iDGmIsDHacZDfXvoQrD457Xt8f43jQnx4NaWAZoJYlUUU7UjrJXR4zm8dadmzKeOarfCGF_z4uorY13i04KXnb2SjzJu-MT7O41pLLiPlln8AGZ1z62m_jS3989m31kwdBNwVrL9GOGJPt_Vtym9J7mQTx-v6KiP_GhS3YXMzm-uZaF8WdwDd4Ds9Cxkq6SxPbhrVs9gK27uAYvgQ9rZtvS9LTlaa9K_SgZKAXRUV6y1Y-BIMmg6YRjPhMmUxGZxPa7R-RumuBTBZzdFtl5kjAfL0g3eLCq6D68bN8BdPHkOprWJ9dzrIdIDxPkAedO-s0N0ybvGPw-FYYLVxmTAviRnzKBlxzpNcolK9vUObqHpm34PPqpvkS1uPhyz-hXhRuer-21WF2wb8hwmepburzUJwH4y3YbVSngjco1a3ttoCu1Pk_D37z8HLvYXM4HZ2q0-PxyVt4GuNoRt2cuAvr1dUi2_MJU2XeBbMkoB55I_wBPEYp_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVwqPpCLNDWh6Jeau0m9ib2oapWhBTKQ0i7lbhZfiRwCMtCskL8NP5dPXkstKpQL9wTO5kZz4ztb74B-BzlMdPI8hnwOKZcak5FLgKaRzqSgZVORFg7fHQc7f3iP0-Hp0tw19XCIKyy84m1o3aXFs_I-2FcB99Q8n7ewiJOkvT77IpiBym8ae3aaTQmcpDd3vjtW_ltP_G63g7DdHeys0fbDgPUsiio6FBKJ7nLQ2bzUMuhjRnP_A5fSOH_jYtgYI13CU5KPnA2yLy5O-NTLK615DJgfthn8DxGEncsUk9_LI53kG5TsEHDc8SYHPTv29qU3r9EyNT3Ryz8OyKswsv5dKZvb3RRPAh56Wt41eaqZNQY1xtYyqZvYfUBg-E70JMadluSRFeaJtfoO0mq50VFkgbEhzTQJO0gYMTnyGR8dDKmo90dUuMVyHg-Q4dVZo60bK9nZFSceYFX5xfle5g8hUzXYHl6Oc3WgfA8wg7o3FmnuWHa5EODF7fCaOEyY3oQduJTtmU0x8YahfI7G5S5-ofMe_B18dKsIfR4_PEvqBeFy92PbXVbteC_EImz1Cj2GShWgvEebHWqU60fKNW91faALtT5PxNvPD7cJ3jhzV8d7h8fbMJKiDUZNSpxC5ar63n2wWdKlflY2yQB9cRr4Dcg5yeX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lLfY0iIfkLjgZp04jn1CUberCqlVpd1K5RT5kZSKsF1tEhD8ejx5lG2FEIhzbMfRjMef42--AXgjiiTSqPLJeJJQrjSnspCMFkILxaxyUmDu8MmpOD7nHy7ii40sfqRV-qP4VRukw0miqN-_w4CxgIkA1e2ClSvef-3_JTEhEFMrqe7Dlog9Gh_B1vnpWfoRa8oNvTuxocif7oNftWUqv8gFDnhrQ7oblrfhQbNc6e_fdFlu7DuzR6CHGXd0k88HTW0O7I87Yo7_80mPYacHpSTtvOgJ3MuXT2F7Q6rwGehFy6-tyFTXmk7XGCTJTDdlTaYdWw_1nsls4HoRD4bJ_ORsTtOjQ9ISE8i8WWFkqnJHelnXS5KWl9frq_rTl-o5LGZHi8Nj2pdnoDYSrKaxUk5xV4SRLUKtYptEPI-iiVTSOwaXbGKNj6dOKT5xluU-Vjjj8SnXWnHFohcwWl4v85dAeCGw1Dl31mluIm2K2OANrTRautyYMYSDiTLbS5djBY0y80cYtGv2G7uO4d1Np1Wn3PHn5m_R9hmuaz-21X16gp8hKmRlaeKhJqZ88THsDe6R9Qu-ysKkxYYhPqY3LvM3L979x_av4GGIKRgtCXEPRvW6yfc9MKrN6973fwIN3Qow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Data-Driven+Fault+Diagnostics+Framework+for+SMPS-AEC+Using+Supervised+Learning+Algorithms&rft.jtitle=Electronics+%28Basel%29&rft.au=Kareem%2C+Akeem+Bayo&rft.au=Hur%2C+Jang-Wook&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=16&rft_id=info:doi/10.3390%2Felectronics11162492&rft.externalDocID=A745603194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon