Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models
Solar gasification is a thermochemical process that relies on concentrated solar radiation to heat steam and biomass to produce syngas. This study uses Machine Learning to model solar gasification using steam as an oxidizer, incorporating both thermodynamic simulations and predictive algorithms, dev...
Saved in:
| Published in | Energies (Basel) Vol. 18; no. 16; p. 4409 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en18164409 |
Cover
| Abstract | Solar gasification is a thermochemical process that relies on concentrated solar radiation to heat steam and biomass to produce syngas. This study uses Machine Learning to model solar gasification using steam as an oxidizer, incorporating both thermodynamic simulations and predictive algorithms, developed using Python (version 3.11.13) scripting, to understand the relationship between the input and output variables. Three models—Artificial Neural Networks, Support Vector Machines, and Random Forests—were trained using datasets including biomass composition, solar irradiance (considering a solar furnace), and steam-to-biomass ratios in a downdraft or fluidized bed gasifier. Among the models, Random Forests provided the highest accuracy (average R2 = 0.942, Mean Absolute Error = 0.086, and Root Mean Square Error = 0.951) and were used for feature importance analysis. Results indicate that radiative heat transfer and steam-to-biomass ratio are the parameters that result in the largest increase in the syngas heating value and decrease in the tar contents. In terms of composition, the hydrogen contents have a direct relationship with the H2 and tar formed, while the carbon content affects the carbon conversion efficiency. This work highlights the of feature importance analysis to improve the design and operation of solar-driven gasification systems. |
|---|---|
| AbstractList | Solar gasification is a thermochemical process that relies on concentrated solar radiation to heat steam and biomass to produce syngas. This study uses Machine Learning to model solar gasification using steam as an oxidizer, incorporating both thermodynamic simulations and predictive algorithms, developed using Python (version 3.11.13) scripting, to understand the relationship between the input and output variables. Three models—Artificial Neural Networks, Support Vector Machines, and Random Forests—were trained using datasets including biomass composition, solar irradiance (considering a solar furnace), and steam-to-biomass ratios in a downdraft or fluidized bed gasifier. Among the models, Random Forests provided the highest accuracy (average R2 = 0.942, Mean Absolute Error = 0.086, and Root Mean Square Error = 0.951) and were used for feature importance analysis. Results indicate that radiative heat transfer and steam-to-biomass ratio are the parameters that result in the largest increase in the syngas heating value and decrease in the tar contents. In terms of composition, the hydrogen contents have a direct relationship with the H2 and tar formed, while the carbon content affects the carbon conversion efficiency. This work highlights the of feature importance analysis to improve the design and operation of solar-driven gasification systems. Solar gasification is a thermochemical process that relies on concentrated solar radiation to heat steam and biomass to produce syngas. This study uses Machine Learning to model solar gasification using steam as an oxidizer, incorporating both thermodynamic simulations and predictive algorithms, developed using Python (version 3.11.13) scripting, to understand the relationship between the input and output variables. Three models—Artificial Neural Networks, Support Vector Machines, and Random Forests—were trained using datasets including biomass composition, solar irradiance (considering a solar furnace), and steam-to-biomass ratios in a downdraft or fluidized bed gasifier. Among the models, Random Forests provided the highest accuracy (average R[sup.2] = 0.942, Mean Absolute Error = 0.086, and Root Mean Square Error = 0.951) and were used for feature importance analysis. Results indicate that radiative heat transfer and steam-to-biomass ratio are the parameters that result in the largest increase in the syngas heating value and decrease in the tar contents. In terms of composition, the hydrogen contents have a direct relationship with the H[sub.2] and tar formed, while the carbon content affects the carbon conversion efficiency. This work highlights the of feature importance analysis to improve the design and operation of solar-driven gasification systems. |
| Audience | Academic |
| Author | Buentello-Montoya, David Antonio Maytorena-Soria, Victor Manuel |
| Author_xml | – sequence: 1 givenname: David Antonio surname: Buentello-Montoya fullname: Buentello-Montoya, David Antonio – sequence: 2 givenname: Victor Manuel orcidid: 0000-0001-9181-6790 surname: Maytorena-Soria fullname: Maytorena-Soria, Victor Manuel |
| BookMark | eNp9kUtrWzEQhUVJIambTX6BoLsUJ5o797l0Qx4Ghy6SQndirIcrcy050nWC_33k3NB0Vc1Cw-Gbw3DmCzvywRvGzkBcIHbi0nhooS5L0X1iJ9B19RREg0f_9MfsNKW1yA8REPGE_b4xNOyi4fPNNsSBvDJ85qnfJ5d4sPwh9BT5LSVnnaLBBX9Qf7iwoZT4syN-T-qP84YvDEXv_IrfB2369JV9ttQnc_r-T9ivm-vHq7vp4uft_Gq2mCqsYZhWiFQubYtLskSEtmk0KVupAnVJekkVWAUEHeqGSIga61apWtdGVwDa4ITNR18daC230W0o7mUgJ9-EEFeS4uBUbyQglFha1AJs2TY1FQqpMgDLrjAH6wn7Pnrt_Jb2L9T3fw1ByEPG8iPjTH8b6W0MTzuTBrkOu5izSxKLTEBbVFWmLkZqRXkF520YIqlc2mycyge0LuuztsJGYNeVeeB8HFAxpBSN_d8Or5Gmmfg |
| Cites_doi | 10.1016/j.enconman.2024.118137 10.1016/j.pecs.2003.10.004 10.1016/S0961-9534(00)00038-6 10.1016/j.apenergy.2009.09.035 10.1021/ie990488g 10.1016/S0961-9534(03)00037-0 10.1007/s13399-023-03876-9 10.1016/j.ces.2003.08.018 10.1016/j.energy.2018.09.131 10.1016/j.nxsust.2024.100038 10.1016/j.cej.2018.10.111 10.3390/en16186524 10.1016/j.biortech.2019.121495 10.1016/j.apenergy.2019.114176 10.1016/j.apenergy.2020.115415 10.1016/S0360-1285(99)00005-2 10.1016/j.fuel.2022.125969 10.1016/j.biortech.2011.12.124 10.1016/j.rser.2021.111484 10.1016/j.psep.2024.02.008 10.1016/j.renene.2014.07.021 10.1016/j.egyai.2025.100498 10.1016/0360-1285(95)00012-7 10.1016/j.energy.2022.124953 10.1016/j.enconman.2023.117702 10.1115/1.4000356 10.3390/en16196819 10.1016/j.ijhydene.2019.02.064 10.2172/251288 10.1002/aic.15666 10.1016/0016-2361(96)00136-6 10.1016/j.energy.2017.04.132 10.1016/j.ijhydene.2023.08.043 10.1016/j.fuel.2005.10.010 10.1016/j.heliyon.2024.e35464 10.1016/j.energy.2025.136036 10.1016/j.biortech.2022.128062 10.1016/j.fuproc.2008.02.001 10.1016/j.rser.2010.07.030 10.1016/j.chemosphere.2021.133245 10.1016/j.fuel.2015.05.051 10.1145/2939672.2939785 10.1016/j.engappai.2022.104773 10.1016/j.energy.2015.08.027 10.1016/j.fuel.2023.130713 10.1016/j.biortech.2025.132844 10.1016/j.cej.2023.144503 10.1039/b110045a 10.1016/j.energy.2025.134891 10.33945/SAMI/AJCA.2020.4.11 10.1016/j.fuproc.2007.06.011 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/en18164409 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_131434f3d01f4876a2c3a5e11b92e006 10.3390/en18164409 A853703994 10_3390_en18164409 |
| GeographicLocations | Mexico |
| GeographicLocations_xml | – name: Mexico |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-533a4bf83bafaaa3f77dacf5c23d4adba51fc1a193d7aa006368cc6d6ed511de3 |
| IEDL.DBID | BENPR |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:08:42 EDT 2025 Mon Oct 27 03:41:48 EDT 2025 Thu Aug 28 04:02:34 EDT 2025 Mon Oct 20 16:50:54 EDT 2025 Thu Oct 16 04:30:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-533a4bf83bafaaa3f77dacf5c23d4adba51fc1a193d7aa006368cc6d6ed511de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9181-6790 |
| OpenAccessLink | https://www.proquest.com/docview/3244018255?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3244018255 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_131434f3d01f4876a2c3a5e11b92e006 unpaywall_primary_10_3390_en18164409 proquest_journals_3244018255 gale_infotracacademiconefile_A853703994 crossref_primary_10_3390_en18164409 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Freda (ref_3) 2022; 261 Aydin (ref_39) 2017; 130 Maytorena (ref_7) 2024; 10 ref_57 (ref_1) 2025; 319 ref_55 ref_54 ref_19 Laghari (ref_25) 2024; 4 ref_17 ref_16 Samani (ref_32) 2024; 362 Zhang (ref_56) 2020; 259 Tasneem (ref_21) 2024; 52 Fang (ref_18) 2024; 302 Zedtwitz (ref_10) 2003; 58 ref_24 Werther (ref_46) 2000; 26 Lapuerta (ref_48) 2008; 89 ref_23 Barman (ref_35) 2012; 107 Bruno (ref_26) 2010; 14 Fang (ref_5) 2021; 150 Li (ref_13) 2023; 332 Levenspiel (ref_58) 1999; 38 Liu (ref_14) 2025; 325 Jess (ref_28) 1996; 75 Fiore (ref_31) 2020; 276 Tuomi (ref_34) 2015; 158 Ouedraogo (ref_6) 2025; 27 Theis (ref_45) 2006; 85 Scurlock (ref_42) 2000; 19 Abidin (ref_59) 2024; 14 Demirbas (ref_47) 2004; 30 ref_33 Umeki (ref_52) 2010; 87 Mutlu (ref_15) 2018; 165 Choi (ref_38) 2015; 91 Tahir (ref_22) 2023; 296 Liu (ref_27) 2024; 184 Lichty (ref_9) 2010; 132 Sajjadnejad (ref_30) 2020; 3 Bates (ref_37) 2017; 63 Bellan (ref_12) 2019; 360 Bryers (ref_41) 1996; 22 Ling (ref_4) 2022; 290 Manenti (ref_8) 2015; 74 Zhang (ref_51) 2019; 44 Rabeti (ref_2) 2023; 56 ref_43 Jayah (ref_36) 2003; 25 Mahdavi (ref_20) 2025; 20 ref_40 Frenklach (ref_29) 2002; 4 Pachouly (ref_53) 2022; 111 Buhre (ref_44) 2007; 88 ref_49 Jeon (ref_11) 2023; 471 |
| References_xml | – volume: 302 start-page: 118137 year: 2024 ident: ref_18 article-title: Machine learning-based multi-objective optimization of concentrated solar thermal gasification of biomass incorporating life cycle assessment and techno-economic analysis publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118137 – ident: ref_55 – volume: 30 start-page: 219 year: 2004 ident: ref_47 article-title: Combustion characteristics of different biomass fuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2003.10.004 – volume: 19 start-page: 229 year: 2000 ident: ref_42 article-title: Bamboo: An overlooked biomass resource? publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(00)00038-6 – volume: 87 start-page: 791 year: 2010 ident: ref_52 article-title: High temperature steam-only gasification of woody biomass publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.09.035 – volume: 38 start-page: 4140 year: 1999 ident: ref_58 article-title: Chemical Reaction Engineering publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990488g – volume: 25 start-page: 459 year: 2003 ident: ref_36 article-title: Computer simulation of a downdraft wood gasifier for tea drying publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(03)00037-0 – volume: 14 start-page: 15187 year: 2024 ident: ref_59 article-title: Recent progress on catalyst development in biomass tar steam reforming: Toluene as a biomass tar model compound publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-023-03876-9 – volume: 58 start-page: 5111 year: 2003 ident: ref_10 article-title: Kinetic investigation on steam gasification of charcoal under direct high-flux irradiation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.08.018 – volume: 165 start-page: 895 year: 2018 ident: ref_15 article-title: An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification publication-title: Energy doi: 10.1016/j.energy.2018.09.131 – volume: 4 start-page: 100038 year: 2024 ident: ref_25 article-title: Catalytic gasification of municipal solid waste using eggshell-derived CaO catalyst: An investigation of optimum H2 production, production distribution, and tar compounds publication-title: Next Sustain. doi: 10.1016/j.nxsust.2024.100038 – volume: 360 start-page: 1287 year: 2019 ident: ref_12 article-title: Thermal performance of a 30 kW fluidized bed reactor for solar gasification: A CFD-DEM study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.111 – ident: ref_17 doi: 10.3390/en16186524 – ident: ref_33 doi: 10.1016/j.biortech.2019.121495 – volume: 259 start-page: 114176 year: 2020 ident: ref_56 article-title: Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114176 – volume: 56 start-page: 103030 year: 2023 ident: ref_2 article-title: Techno-economic and environmental assessment of a novel polygeneration system based on integration of biomass air-steam gasification and solar parabolic trough collector publication-title: Sustain. Energy Technol. Assess. – volume: 276 start-page: 115415 year: 2020 ident: ref_31 article-title: Internal combustion engines powered by syngas: A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115415 – volume: 26 start-page: 1 year: 2000 ident: ref_46 article-title: Combustion of agricultural residues publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(99)00005-2 – volume: 332 start-page: 125969 year: 2023 ident: ref_13 article-title: Machine learning-based metaheuristic optimization of an integrated biomass gasification cycle for fuel and cooling production publication-title: Fuel doi: 10.1016/j.fuel.2022.125969 – volume: 107 start-page: 505 year: 2012 ident: ref_35 article-title: Gasification of biomass in a fixed bed downdraft gasifier—A realistic model including tar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.12.124 – volume: 150 start-page: 111484 year: 2021 ident: ref_5 article-title: Concentrated solar thermochemical gasification of biomass: Principles, applications, and development publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111484 – volume: 184 start-page: 300 year: 2024 ident: ref_27 article-title: Numerical simulation of solar-driven biomass gasification by using ceramic foam publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2024.02.008 – volume: 74 start-page: 671 year: 2015 ident: ref_8 article-title: Biomass gasification using low-temperature solar-driven steam supply publication-title: Renew. Energy doi: 10.1016/j.renene.2014.07.021 – volume: 20 start-page: 100498 year: 2025 ident: ref_20 article-title: Review of machine learning techniques for energy sharing and biomass waste gasification pathways in integrating solar greenhouses into smart energy systems publication-title: Energy AI doi: 10.1016/j.egyai.2025.100498 – volume: 22 start-page: 29 year: 1996 ident: ref_41 article-title: Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(95)00012-7 – volume: 261 start-page: 124953 year: 2022 ident: ref_3 article-title: Thermodynamic improvement of solar driven gasification compared to conventional one publication-title: Energy doi: 10.1016/j.energy.2022.124953 – volume: 296 start-page: 117702 year: 2023 ident: ref_22 article-title: Integrated process for simulation of gasification and chemical looping hydrogen production using Artificial Neural Network and machine learning validation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117702 – volume: 132 start-page: 011012 year: 2010 ident: ref_9 article-title: Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4000356 – ident: ref_49 doi: 10.3390/en16196819 – volume: 44 start-page: 14290 year: 2019 ident: ref_51 article-title: Exergy analysis of hydrogen production from steam gasification of biomass: A review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.064 – ident: ref_40 doi: 10.2172/251288 – volume: 63 start-page: 1543 year: 2017 ident: ref_37 article-title: Steam-Air Blown Bubbling Fluidized Bed Biomass Gasification (BFBBG): Multi-Scale Models and Experimental Validation publication-title: AIChE J. doi: 10.1002/aic.15666 – volume: 75 start-page: 1441 year: 1996 ident: ref_28 article-title: Mechanisms and Kinetics of Thermal Reactions of Aromatics From Pyrolysis of Solid Fuels publication-title: Fuel doi: 10.1016/0016-2361(96)00136-6 – volume: 130 start-page: 86 year: 2017 ident: ref_39 article-title: Development of a semi-empirical equilibrium model for downdraft gasification systems publication-title: Energy doi: 10.1016/j.energy.2017.04.132 – volume: 52 start-page: 718 year: 2024 ident: ref_21 article-title: Development of machine learning-based models for describing processes in a continuous solar-driven biomass gasifier publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.043 – volume: 85 start-page: 1125 year: 2006 ident: ref_45 article-title: Fouling tendency of ash resulting from burning mixtures of biofuels. Part 1: Deposition rates publication-title: Fuel doi: 10.1016/j.fuel.2005.10.010 – volume: 10 start-page: e35464 year: 2024 ident: ref_7 article-title: Worldwide developments and challenges for solar pyrolysis publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e35464 – volume: 325 start-page: 136036 year: 2025 ident: ref_14 article-title: Optimization and analysis of solar-driven biomass gasification using a CFD-ANN-GA framework publication-title: Energy doi: 10.1016/j.energy.2025.136036 – ident: ref_23 doi: 10.1016/j.biortech.2022.128062 – volume: 89 start-page: 828 year: 2008 ident: ref_48 article-title: Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2008.02.001 – volume: 14 start-page: 2841 year: 2010 ident: ref_26 article-title: Review and analysis of biomass gasification models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.07.030 – volume: 290 start-page: 133245 year: 2022 ident: ref_4 article-title: Recent advances of hybrid solar—Biomass thermo-chemical conversion systems publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.133245 – volume: 158 start-page: 293 year: 2015 ident: ref_34 article-title: Effect of pressure on tar decomposition activity of different bed materials in biomass gasification conditions publication-title: Fuel doi: 10.1016/j.fuel.2015.05.051 – ident: ref_50 – ident: ref_54 – volume: 27 start-page: 101059 year: 2025 ident: ref_6 article-title: Advancing small-scale biomass gasification (10–200 kW) for energy access: Syngas purification, system modeling and the role of artificial intelligence-A review publication-title: Energy Convers. Manag. X – ident: ref_24 doi: 10.1145/2939672.2939785 – volume: 111 start-page: 104773 year: 2022 ident: ref_53 article-title: A systematic literature review on software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104773 – volume: 91 start-page: 160 year: 2015 ident: ref_38 article-title: Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal publication-title: Energy doi: 10.1016/j.energy.2015.08.027 – volume: 362 start-page: 130713 year: 2024 ident: ref_32 article-title: Experimental and simulation studies of oxygen-blown, steam-injected, entrained flow gasification of lignin publication-title: Fuel doi: 10.1016/j.fuel.2023.130713 – ident: ref_16 doi: 10.1016/j.biortech.2025.132844 – ident: ref_19 – ident: ref_43 – volume: 471 start-page: 144503 year: 2023 ident: ref_11 article-title: Recent advances and future prospects of thermochemical biofuel conversion processes with machine learning publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144503 – volume: 4 start-page: 2028 year: 2002 ident: ref_29 article-title: Reaction mechanism of soot formation in flames publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b110045a – ident: ref_57 – volume: 319 start-page: 134891 year: 2025 ident: ref_1 article-title: Valorization of waste biomass via an integrated gasification system for the co-production of dimethyl ether and urea publication-title: Energy doi: 10.1016/j.energy.2025.134891 – volume: 3 start-page: 493 year: 2020 ident: ref_30 article-title: Utilization of Sustainable Energies for Purification of Water publication-title: Adv. J. Chem. Sect. A doi: 10.33945/SAMI/AJCA.2020.4.11 – volume: 88 start-page: 1071 year: 2007 ident: ref_44 article-title: Characterising ash of biomass and waste publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2007.06.011 |
| SSID | ssj0000331333 |
| Score | 2.397857 |
| Snippet | Solar gasification is a thermochemical process that relies on concentrated solar radiation to heat steam and biomass to produce syngas. This study uses Machine... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 4409 |
| SubjectTerms | Algorithms Alternative energy sources Analysis Artificial intelligence Biomass biomass energy Carbon dioxide Efficiency feature importance analysis Hydrocarbons Hydrogen Machine learning Neural networks Oxidation Product quality Python Radiation Raw materials Simulation Simulation methods Software solar biofuels Solar energy Support vector machines Synthesis gas Temperature Thermodynamics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEC3Ei3oQV2w3AgqeGied9HZUcQW9qDC3UJ1FhLFHZlH8eyvpHm0Q9OI19KGo16l6DyqvAA65NJXDQsQ9VxaxFNrFhRRINz53pTZ5moX3Fbd32dWjvOmn_c6qLz8T1tgDN4k75oI6unTC9Lgjcp1hogWmlvOqTGxrtt0ryo6YCjVYCBJfovEjFaTrj21NvYyav5887HSgYNT_sxwvwcK0fsWPdxwMOv3mYgWWW6LITpoAV2HO1muw1LEPXIe-52_TkWXXL4FFE35sZjLCho7de9nKLnHsx4ECAv709NmPBI3Z2zOy2zBKaVnrsvrE_Gq0wXgDHi_OH86u4nZTQqxFxicxcTaUlStEhQ4Rhctzg9qlOhFGoqkw5U5zJLJmckRPS7JC68xk1hDhMlZswnw9rO0WMC0T0tc9k2KeyVyXhSECkJuCC8o8Sh7BwSx76rUxxFAkJHyO1XeOIzj1if36wptYhwOCVrXQqr-gjeDIw6L8VZuMUGP7YoAC9aZV6oSoBhWsspQR7M6QU-0dHCuiiiQeSQGnERx-oflL0Nv_EfQOLCZ-RXCYEdyF-cloaveIt0yq_fCLfgK1Iui1 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEB6096D34G8xesqCBz7l0s1uNsmT9MTzFO4QtFCfwmR_HMWaljY90b_e2e32rAoi-Bp2kwkzs_N9yey3AIdcmtZhJdKhq6tUCu3SSgqkjC9drU1ZqLC_4uxcnY7lu0kx2dnF79sqiYpPwyIdOmRplsh4lXGVSSIj2cK4l5fxWxLVPkLEHjVfhz1VEBofwN74_P3oU_iZHGdvVEkFsfvMdlTRlL_PL3UoyPX_uSjvw411t8BvX3E226k6J7cBt_Zumk0-H6379kh__03K8X9e6A7cipCUjTYxdBeu2e4e7O8IFd6HiUeK66Vlb78EvE6RwrZyJmzu2AdPkNkbXPnGo-Brf_V46puPVuxyiuwsNG1aFvVcL5g_hG22egDjk9cfX52m8UyGVAvF-5TQIcrWVaJFh4jClaVB7QqdCyPRtFhwpzkSLDQlogdAqtJaGWUNQTtjxUMYdPPOPgKmZU5MfmgKLJUsdV0ZghqlqbjAXKPkCTzfeqhZbKQ3GqIs3o_NTz8mcOyddzXCy2WHC_PlRROzr-GCYKF0wgy5I4am6AECC8t5W-eWjEzghXd945O6X6LGuDeBDPXyWM2IQA0tjXUtEzjYRkcTs33VECglmkpcu0jg8Cpi_mL0438b9gRu5v644dBveACDfrm2TwkD9e2zGOY_AEk6_40 priority: 102 providerName: Unpaywall |
| Title | Feature Importance Analysis of Solar Gasification of Biomass via Machine Learning Models |
| URI | https://www.proquest.com/docview/3244018255 https://www.mdpi.com/1996-1073/18/16/4409/pdf?version=1755592425 https://doaj.org/article/131434f3d01f4876a2c3a5e11b92e006 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB4S59DmUPokSlOz0EBPIl7t6nUoxS6x00JMaGtwT2K0qw0BV3b9SOm_78xacgyFXHRYhLTs7Mx8nzT7DcC51LZ0mKmw5_Is1Mq4MNMKyeNTlxubxok_X3E9Tq4m-us0nh7AuD0Lw2WVbUz0gdrODX8jv6DET1SA-Ez8afE75K5R_He1baGBTWsF-9FLjB3CUcTKWB04GlyOb77tvrr0lCJSprY6pYr4_kVVU44jUMAViXuZyQv4_x-mj-HJpl7g3z84m-3loeFzeNYASNHfWvwFHFT1SzjekxV8BVPGdZtlJb788uia7Cpa8RExd-I701kxwhWXCXnL8OjgjkuFVuL-DsW1L7GsRKO-eiu4Zdps9Romw8sfn6_CpoNCaFQi1yFhOdSly1SJDhGVS1OLxsUmUlajLTGWzkgkEGdTRIYrSWZMYpPKEhCzlXoDnXpeVycgjI6Id_dsjGmiU5NnlgyS2kwqjAxqGcD7dvWKxVYooyCCwWtcPKxxAANe2N0dLG7tB-bL26LxlUIqAnHaKduTjvhUQi9QGFdSlnlU0SQD-MBmKdgF10s02JwkoImymFXRJwhCgSzPdQBnreWKxjdXxcNOCuB8Z81HJn36-FPewtOImwL7qsAz6KyXm-odIZV12YXDbDjqNpuw6_k-XUdTSWOT8U3_5z9FPOxY |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QDyFocBKFHGymvWuX4cKNdCS0CZC0Eq5bcf7qCoFJ8QJVf8cv41Zx04jIfXWq2WtVzOzM9-3ngfAHpemcJiJsOPyLJRCuzCTAunEpy7XJo2Tur5iMEx65_LbKB5twN-2FsanVbY-sXbUZqL9Hfk-BX6iAsRn4k_T36GfGuX_rrYjNLAZrWAO6hZjTWHHib25JgpXHfS_kL4_RNHx0dnnXthMGQi1SPg8JLyDsnCZKNAhonBpalC7WEfCSDQFxtxpjgR0TIroQ3qSaZ2YxBoCK8YKWvcBbEkhcyJ_W92j4fcfq1uejhBEAsWyL6oQeWfflhRTCYT4DMi1SFgPDPg_LOzA9qKc4s01jsdrce_4MTxqACs7XFrYE9iw5VPYWWtj-AxGHkcuZpb1f9VonuyItc1O2MSxn54-s69Y-bSk2hL80-6VT02q2J8rZIM6pdOyptvrJfMj2sbVczi_F1m-gM1yUtqXwLSMiOd3TIxpIlOdZ4YMIDUZFxhplDyA96301HTZmEMRofEyVrcyDqDrBbt6wzfTrh9MZpeqOZuKCwKN0gnT4Y74W0IfEBhbzos8srTJAD56tSh_5Ocz1NhULtBGffMsdUiQhxxnnssAdlvNqcYXVOrWcgPYW2nzjk2_unuVd7DdOxucqtP-8OQ1PIz8QOI6I3EXNuezhX1DKGlevG1MkcHFfVv_P1FPJ78 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ7CUGAlijhZsb3r1wGhlpI2lFZIUCm37XgfVaWQhDih6l_j1zHj2GkkpN56taz1amZ25pv1zDcAO7GylcdChpEvi1BJ48NCSaQTn_vS2DzNmv6K45Ps8FR9HabDDfjb9cJwWWXnExtHbSeG78h7FPgpFaB8Ju35tizi-37_0_R3yBOk-E9rN05jaSJH7uqS0rf642CfdP0-Sfpffn4-DNsJA6GRWTwPCeugqnwhK_SIKH2eWzQ-NYm0Cm2FaexNjARybI7I4TwrjMls5iwBFeskrXsH7ubM4s5d6v2D1f1OJCWlf3LJiCplGfXcmKIpwQ-ufVyLgc2ogP8DwhbcX4yneHWJo9FaxOs_goctVBW7S9t6DBtu_AS21ggMn8KQEeRi5sTgV4PjyYJER3MiJl784MRZHGDNBUmNDfDTvQsuSqrFnwsUx00xpxMtz-u54OFso_oZnN6KJJ_D5ngydi9AGJVQhh_ZFPNM5aYsLKk-t0UsMTGo4gDeddLT0yUlh6ZUhmWsr2UcwB4LdvUG02g3Dyazc92eSh1LgovKSxvFnjK3jD4gMXVxXJWJo00G8IHVovmwz2dosO1ZoI0ybZbeJbBDLrMsVQDbneZ06wVqfW2zAeystHnDpl_evMpbuEc2r78NTo5ewYOEJxE3pYjbsDmfLdxrgkfz6k1jhwLObtvw_wFKgyVZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9NAEB6096D34G8xesqCBz7l0s1uNsmT9MTzFO4QtFCfwmR_HMWaljY90b_e2e32rAoi-Bp2kwkzs_N9yey3AIdcmtZhJdKhq6tUCu3SSgqkjC9drU1ZqLC_4uxcnY7lu0kx2dnF79sqiYpPwyIdOmRplsh4lXGVSSIj2cK4l5fxWxLVPkLEHjVfhz1VEBofwN74_P3oU_iZHGdvVEkFsfvMdlTRlL_PL3UoyPX_uSjvw411t8BvX3E226k6J7cBt_Zumk0-H6379kh__03K8X9e6A7cipCUjTYxdBeu2e4e7O8IFd6HiUeK66Vlb78EvE6RwrZyJmzu2AdPkNkbXPnGo-Brf_V46puPVuxyiuwsNG1aFvVcL5g_hG22egDjk9cfX52m8UyGVAvF-5TQIcrWVaJFh4jClaVB7QqdCyPRtFhwpzkSLDQlogdAqtJaGWUNQTtjxUMYdPPOPgKmZU5MfmgKLJUsdV0ZghqlqbjAXKPkCTzfeqhZbKQ3GqIs3o_NTz8mcOyddzXCy2WHC_PlRROzr-GCYKF0wgy5I4am6AECC8t5W-eWjEzghXd945O6X6LGuDeBDPXyWM2IQA0tjXUtEzjYRkcTs33VECglmkpcu0jg8Cpi_mL0438b9gRu5v644dBveACDfrm2TwkD9e2zGOY_AEk6_40 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Importance+Analysis+of+Solar+Gasification+of+Biomass+via+Machine+Learning+Models&rft.jtitle=Energies+%28Basel%29&rft.au=Buentello-Montoya%2C+David+Antonio&rft.au=Maytorena-Soria%2C+Victor+Manuel&rft.date=2025-08-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=16&rft.spage=4409&rft_id=info:doi/10.3390%2Fen18164409&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en18164409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |