Research on Thickness Error Optimization Method of Rolling System Based on Improved Sparrow Search Algorithm–Bidirectional Long Short-Term Memory Network–Attention
With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rollin...
Saved in:
| Published in | Actuators Vol. 13; no. 10; p. 426 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-0825 2076-0825 |
| DOI | 10.3390/act13100426 |
Cover
| Abstract | With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rolling force prediction method based on SSA–Bilstm–Attention, which reduces the thickness error of the rolling system by predicting the high-precision rolling force. Firstly, a mechanical model is established, and the parameters involved are analyzed to extract suitable parameters as inputs to the network to reduce the feature loss of the network inputs. Secondly, an improved sparrow search algorithm is used to search for the hyperparameters of the network to obtain better training results. Finally, the attention mechanism is introduced to increase the network’s training accuracy. A stochastic small-batch gradient descent method is used to improve the training speed of the network. In addition, this paper establishes a web-based host computer, which provides an effective data source for the experimental analysis. The experimental results show that the optimized model has a mean square error of 1.22%, which is more accurate than other models, and has good generalization ability. The experiments confirm the method’s effectiveness in improving the thickness accuracy of the rolling system and provide a new optimization scheme for the industry. |
|---|---|
| AbstractList | With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rolling force prediction method based on SSA–Bilstm–Attention, which reduces the thickness error of the rolling system by predicting the high-precision rolling force. Firstly, a mechanical model is established, and the parameters involved are analyzed to extract suitable parameters as inputs to the network to reduce the feature loss of the network inputs. Secondly, an improved sparrow search algorithm is used to search for the hyperparameters of the network to obtain better training results. Finally, the attention mechanism is introduced to increase the network’s training accuracy. A stochastic small-batch gradient descent method is used to improve the training speed of the network. In addition, this paper establishes a web-based host computer, which provides an effective data source for the experimental analysis. The experimental results show that the optimized model has a mean square error of 1.22%, which is more accurate than other models, and has good generalization ability. The experiments confirm the method’s effectiveness in improving the thickness accuracy of the rolling system and provide a new optimization scheme for the industry. |
| Audience | Academic |
| Author | Ji, Jiafei Li, Xinchen Wu, Qingyun Xing, Bowen |
| Author_xml | – sequence: 1 givenname: Qingyun surname: Wu fullname: Wu, Qingyun – sequence: 2 givenname: Xinchen surname: Li fullname: Li, Xinchen – sequence: 3 givenname: Jiafei surname: Ji fullname: Ji, Jiafei – sequence: 4 givenname: Bowen surname: Xing fullname: Xing, Bowen |
| BookMark | eNp9ks9u1DAQxiNUJErpiRewxBFS_C-JfdxWBVZaqNRdztHEdna9TeJge1ktJ96Bh-C9eBIcglBP2AePxt_382jGz7OzwQ0my14SfMWYxG9BRcIIxpyWT7Jziqsyx4IWZ4_iZ9llCHucliRMYHae_bw3wYBXO-QGtNlZ9TCYENCt986juzHa3n6DaNPlRxN3TiPXonvXdXbYovUpRNOjawhGT_ZlP3r3NcXrEZL_iNYzedFtnbdx1__6_uPaauuNmojQoZWbMDvnY74xvk9v9M6f0CcTj84_JPkiRjNM4hfZ0xa6YC7_nhfZ53e3m5sP-eru_fJmscoVK0nMuaZMVRobijWlTApaFbLADcYNNawiqlINlURoKnAjAIC0kratlqTShvOWXWTLmasd7OvR2x78qXZg6z8J57c1-GhVZ2pWlDL1sKmowrxRTFZN2fCSYc2FIkAT683MOgwjnI7Qdf-ABNfTzOpHM0vyV7M8dfHLwYRY793BpzaFmhGKuSxEMamuZtUWUg12aF30oNLWprcq_YjWpvxCEM5KJrhIhtezQXkXgjftf4v4DdnTuWI |
| Cites_doi | 10.3390/math12111755 10.1016/j.xcrp.2024.102101 10.3390/en17133158 10.3390/en15238919 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/act13100426 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2076-0825 |
| ExternalDocumentID | oai_doaj_org_article_3569803b72c04bc397b6b4630d48c1a2 10.3390/act13100426 A814363848 10_3390_act13100426 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-4d23c7d0e20d22398275950b00b2e371c7cb2918d280b8aaa1f92ffd917de44f3 |
| IEDL.DBID | BENPR |
| ISSN | 2076-0825 |
| IngestDate | Fri Oct 03 12:37:53 EDT 2025 Sun Sep 07 10:47:13 EDT 2025 Fri Jul 25 12:08:44 EDT 2025 Mon Oct 20 16:58:56 EDT 2025 Thu Oct 16 04:34:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-4d23c7d0e20d22398275950b00b2e371c7cb2918d280b8aaa1f92ffd917de44f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3120495856?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3120495856 |
| PQPubID | 2032444 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3569803b72c04bc397b6b4630d48c1a2 unpaywall_primary_10_3390_act13100426 proquest_journals_3120495856 gale_infotracacademiconefile_A814363848 crossref_primary_10_3390_act13100426 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Actuators |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lv (ref_1) 2004; 3 Wang (ref_6) 1999; 20 Nguyen (ref_11) 2024; 5 Mao (ref_12) 2024; 32 Mao (ref_15) 2024; 7 Zhang (ref_8) 2006; 24 Liu (ref_2) 2016; 18 Zhang (ref_5) 2005; 17 Ding (ref_7) 2024; 23 ref_13 ref_10 Ma (ref_16) 2024; 45 ref_21 ref_20 Zhai (ref_9) 2024; 51 Chen (ref_3) 2013; 34 ref_18 Zhang (ref_14) 2005; 12 Cao (ref_22) 2024; 8 Wang (ref_4) 2006; 27 Liu (ref_17) 2024; 41 Ma (ref_19) 2024; 40 |
| References_xml | – volume: 34 start-page: 1128 year: 2013 ident: ref_3 article-title: Adaptation of cold rolling force model parameters based on objective function publication-title: J. Northeast. Univ. (Nat. Sci. Ed.) – volume: 7 start-page: 1 year: 2024 ident: ref_15 article-title: Rolling bearing fault diagnosis based on MSSA-VMD and CNN-BiLSTM publication-title: J. Chongqing Gongshang Univ. (Nat. Sci. Ed.) – volume: 41 start-page: 58 year: 2024 ident: ref_17 article-title: Remaining life prediction of complex equipment with CNN-BiLSTM based on attention mechanism publication-title: Mech. Des. – volume: 27 start-page: 771 year: 2006 ident: ref_4 article-title: Self-learning of gauge control model for plate rolling publication-title: J. Northeast. Univ. (Nat. Sci.) – volume: 40 start-page: 1 year: 2024 ident: ref_19 article-title: Optimisation of CNN-LSTM-SEnet prediction model for wind turbine fault early warning with SSA publication-title: Electr. Power Sci. Eng. – ident: ref_20 doi: 10.3390/math12111755 – volume: 3 start-page: 65 year: 2004 ident: ref_1 article-title: Research on automatic control system of cold continuous rolling thickness publication-title: Xi’an Univ. Archit. Technol. – ident: ref_10 – volume: 51 start-page: 1081 year: 2024 ident: ref_9 article-title: Teleconsultation demand prediction based on LSTM and attention mechanism publication-title: Comput. Sci. – volume: 18 start-page: 96 year: 2016 ident: ref_2 article-title: Matlab-based BP neural network rolling force predictionmodel and application publication-title: J. Chongqing Inst. Sci. Technol. (Nat. Sci. Ed.) – volume: 5 start-page: 102101 year: 2024 ident: ref_11 article-title: Learnable features for predicting properties of metal-organic frameworks with deep neural networks publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2024.102101 – volume: 45 start-page: 429 year: 2024 ident: ref_16 article-title: Ultrashort-term wind power prediction based on adaptive quadratic decomposition with CNN-BiLSTM publication-title: J. Sol. Energy – ident: ref_18 doi: 10.3390/en17133158 – volume: 20 start-page: 97 year: 1999 ident: ref_6 article-title: Neural network and mathematical model for rolling force prediction publication-title: J. Northeast. Univ. – ident: ref_13 doi: 10.3390/en15238919 – volume: 23 start-page: 41 year: 2024 ident: ref_7 article-title: Recommendation fusion model based on LSTM with deep matrix decomposition publication-title: Softw. Guide – volume: 32 start-page: 69 year: 2024 ident: ref_12 article-title: Design of intelligent analysis algorithm for power engineering data based on improved BiLSTM publication-title: Electron. Des. Eng. – volume: 12 start-page: 58 year: 2005 ident: ref_14 article-title: Comprehensive application of BP neural network and mathematical model in the forecasting of plate convexity of medium-thickness plates publication-title: J. Plast. Eng. – ident: ref_21 – volume: 8 start-page: 142 year: 2024 ident: ref_22 article-title: Research on air quality prediction based on SSA-LSTM model publication-title: Mod. Inf. Technol. – volume: 24 start-page: 88 year: 2006 ident: ref_8 article-title: Research on thickness control of high-precision medium-thickness plate rolling publication-title: J. Shaanxi Univ. Sci. Technol. – volume: 17 start-page: 43 year: 2005 ident: ref_5 article-title: Learning algorithm of rolling force for medium-thick plate based on fuzzy theory publication-title: J. Iron Steel Res. |
| SSID | ssj0000913803 |
| Score | 2.272215 |
| Snippet | With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 426 |
| SubjectTerms | Accuracy Algorithms attention mechanism Bilstm Effectiveness Error analysis Error reduction Fourier transforms Hot rolling improved sparrow algorithm Methods Neural networks Optimization Parameters Predictions rolling force prediction rolling model Search algorithms Thickness Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYllzSH0l-6aRp0SOnJRH-2peNuSQilSQ_dQG5CP3Z36a69uA4lt7xDHiLvlSfpSPIGQ6G99GaMZI89o_lmxMwnhI6kMdzVRZ0J6kUmlCeZBJjNlOXGAj7mLvZWnV8UZ5fi81V-NTrqK9SEJXrg9OOOeV4oSbgtmSPCOoBPW1hRcOKFdNRE70ukGiVT0QcrymFWasjjkNcfG9fTsJktAo3CCIIiU_-f_ngP7V43G3Pzy6xWI8A5fY6eDZEiniYJX6AnVfMS7Y34A1-h-23dHG4bPF8s3Y_guPBJ17Ud_grOYD10WeLzeFA0bms8sHDjRFWOZ4BiPkxPuwtw_W0TeRlxKkTG09X3tlv2i_XD7d1smRAwbh_iL214zALi92wO_h3esW67G3yRCsth-LTvUzHla3R5ejL_dJYNJy9kjhe0z4Rn3JWeVIx4FhgCWZmrnMAStaziJXWls0xR6ZkkFtRtaK1YXXvI_XwlRM3foJ2mbaq3CFc54KEtSx6I74nx0vOqchCWUOEh9BATdLRVht4kgg0NiUnQmR7pbIJmQVGPQwIrdrwBtqIHW9H_spUJ-hjUrMPa7TvjzNCCAJIGFiw9lRA9gkMScoIOtpagh0X9U3MKn6AgvwJpPjxax9-k3v8fUr9DTxlEUqmC8ADt9N119R4iod4eRqP_DcazB-o priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6V9AA98I8ItGgliji5rHfXf0eHtqoQDUgkUjlZ-2OTqIkdGUeonHgHHoL36pN01mtXoUjALbLWzsQ7O983m5lvAfZjKbkuwsITvhGeSAz1YoRZL1FcKsTHQLe9Vafj8GQq3p0FZ1vwsu-F2fj_nmM6_kbqxrd70Agkt2A7DJBwD2B7Ov6YfrbHxmEW7tkkx3Xe3bzjN6xpJfn_DLw7cHtdruTFN7lYbCDL8T047G1yBSXnB-tGHejvN-Qa_2H0fbjbMUuSOld4AFt5-RB2NvQGH8Gvvs6OVCWZzOb63AY6clTXVU0-YPBYdl2Z5LQ9WJpUBelUu4mTNicjRD1jb3e7Efj506rVcSSucJmkiy9VPW9my8sfP0dzh5jtdiN5X9nHzJDvexPEA_yOZVVfkLErRMfhadO44svHMD0-mrw98bqTGjzNQ7_xhGFcR4bmjBpmFQVZFCQBxSWtWM4jX0dascSPDYupQveQfpGwojCYK5pciII_gUFZlflTIHmA-KmiiFuhfCpNbHiea6QxvjBIVcQQ9vs5zVZOkCPDRMa-92zjvQ9hZOf7eohV0W4v4Dxl3aLMeBAmMeUqYpoKpZGaqVCJkFMjYu1LNoTX1lsyu9abWmrZtSygpVY1K0tjZJsYwEQ8hN3eobIuCHzNuI8_IcF8DK15de1kf7P62X-Oew53GJIrV1S4C4OmXud7SI4a9aJbHFdHwg2A priority: 102 providerName: Unpaywall |
| Title | Research on Thickness Error Optimization Method of Rolling System Based on Improved Sparrow Search Algorithm–Bidirectional Long Short-Term Memory Network–Attention |
| URI | https://www.proquest.com/docview/3120495856 https://doi.org/10.3390/act13100426 https://doaj.org/article/3569803b72c04bc397b6b4630d48c1a2 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2076-0825 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-0825 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-0825 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: ADMLS dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-0825 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-0825 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-0825 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913803 issn: 2076-0825 databaseCode: 8FG dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQF6QDxVQ4n2UMTJqr27fh0QciChQo2paCKVk7UPu6lI7GBcod74D_wI_he_hFk_QiSk3mzLL3lmZ74Zz3wDcBwKwVTu5zZ3Nbd5pB07RDdrR5IJif7RU01v1SzxTxf846V3uQdJ3wtjyip7m9gYal0qkyM_YS5FMIvg1n-7-WabqVHm72o_QkN0oxX0m4ZibB-G1DBjDWA4niTnn7dZF8OCGTbjkikG8LaJj9qmPYax_4lQtWsS3txQLey4qYbN_3-bfQD3boqNuP0hVqsdpzR9CA86NEniVvyPYC8rHsPBDsfgE_jd19aRsiDz5bX6aowbmVRVWZFPaDDWXScmmTXDpEmZk46pm7R05mSMnk6by9sMBG5fbBruRtIWK5N4dYWfql6u__z8Nb5uvWSTYiRnpbnNEjG-PUcfgM9Yl9UtSdriczw9ruu24PIpLKaT-btTu5vOYCvmu7XNNWUq0E5GHU0NiyANvMhzcBlLmrHAVYGSNHJDTUNHokoIN49onmuMD3XGec6ewaAoi-wQSOahz5RBwAw5viN0qFmWKYQuLtcIT7gFx70w0k1LwpFi8GJklu7IzIKxEdT2FMOc3Rwoq6u0W4gp8_wINUAGVDlcKoRj0pfcZ47moXIFteC1EXNq1nddCSW6NgV8U8OUlcYhIkw0Wjy04KjXhLRb-N_Tf2pqwautdtz11s_vvs0LuE8RR7X1g0cwqKub7CXioFqOYD-cfhjBMH4_O7sYdao-arIKuLdIzuMvfwEpMw3- |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QPyqgQJ7aMXJqr27_jtUKIFUKU0CglTqzeyfm4rEDq6rKjfegYfgLXgYnoRZ_4RISL31Zln22tbMznwznvkGYD8Sgqk0SB3uae7wWLtOhG7WiSUTEv2jr6reqtE4GJzxD-f--Qb8bnthbFllaxMrQ61zZXPkh8yjCGYR3AZvF98dOzXK_l1tR2iIZrSCPqooxprGjlOzvMEQ7uro5D3K-4DS4_7k3cBppgw4igVe6XBNmQq1a6irqWXDo6Ef-y6qo6SGhZ4KlaSxF2kauRI_TXhpTNNUY5yjDecpw3XvwRZnPMbgb6vXH3_6vMryWNbNqBrPTN0QQ3eMx-omQcZi91Co0rMJdm6pHdbcYjU94H8fsQPb19lCLG_EbLbmBI8fwoMGvZJurW6PYMNkj2FnjdPwCfxqa_lInpHJ9FJ9s8aU9IsiL8hHNFDzpvOTjKrh1SRPScMMTmr6dNJDz6rt7XXGA4-_LCquSFIXR5Pu7AJFU07nf3787F3WXrlKaZJhbpeZYkzhTNDn4DPmebEk47rYHS_vlmVd4PkUzu5ETs9gM8szswvE-OijZRgyS8bvCh1pZoxCqORxjXCId2C_FUayqEk_EgyWrMySNZl1oGcFtbrEMnVXJ_LiImk2fsL8IEYNkCFVLpcK4Z8MJA-Yq3mkPEE78MaKObH2pCyEEk1bBL6pZeZKuhEiWjSSPOrAXqsJSWNorpJ_26IDByvtuO2tn9--zGvYHkxGw2R4Mj59AfcpYri6dnEPNsvi2rxEDFbKV42iE_h613vrL6EVRR8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgE9IH6FS4E9tOJkxd5d_x0QSmhDS9uARCr1ZvbHbqomdnBdVbnxDjwE78Dj8CTMeu0QCam33izLXtv6ZufPM98AbMdCMJWHuct9zV2eaM-N0cy6iWRCon0MVNNbdTwK90_4p9PgdA1-d70wpqyy04mNotalMjnyHvMpOrPo3Ia9vC2L-LI7fD__7poJUuZPazdOw4rIYba4xvDt8t3BLmK9Q-lwb_xh320nDLiKhX7tck2ZirSXUU9Tw4RHoyAJPBRFSTMW-SpSkiZ-rGnsSfws4ecJzXONMY7OOM8ZrnsH7kaGxd10qQ8_LvM7hm8zbgYzUy_CoB0jMdseyFji9YSqfZNa54bUYcUgNnMD_rcOG3D_qpiLxbWYTlfM3_ARPGz9VtK3gvYY1rLiCWyssBk-hV9dFR8pCzKenKsLo0bJXlWVFfmMqmnW9nyS42ZsNSlz0nKCE0ucTgZoU7W53eY68PjrvGGJJLYsmvSnZwhEPZn9-fFzcG7tcZPMJEelWWaC0YQ7RmuDz5iV1YKMbJk7Xt6va1va-QxObgWl57BelEX2AkgWoHWWEQKG0uQJHWuWZQqdJJ9rdIS4A9sdGOnc0n2kGCYZzNIVzBwYGKCWlxiO7uZEWZ2l7ZZPWRAmKAEyosrjUqHjJ0PJQ-ZpHitfUAfeGphTo0nqSijRNkTgmxpOrrQfoy-L6pHHDmx1kpC2KuYy_bchHNhZSsdNb7158zJv4B7uqPToYHT4Eh5QdN5s0eIWrNfVVfYKna9avm6knMC3295WfwHCckK5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6V9AA98I8ItGgliji5rHfXf0eHtqoQDUgkUjlZ-2OTqIkdGUeonHgHHoL36pN01mtXoUjALbLWzsQ7O983m5lvAfZjKbkuwsITvhGeSAz1YoRZL1FcKsTHQLe9Vafj8GQq3p0FZ1vwsu-F2fj_nmM6_kbqxrd70Agkt2A7DJBwD2B7Ov6YfrbHxmEW7tkkx3Xe3bzjN6xpJfn_DLw7cHtdruTFN7lYbCDL8T047G1yBSXnB-tGHejvN-Qa_2H0fbjbMUuSOld4AFt5-RB2NvQGH8Gvvs6OVCWZzOb63AY6clTXVU0-YPBYdl2Z5LQ9WJpUBelUu4mTNicjRD1jb3e7Efj506rVcSSucJmkiy9VPW9my8sfP0dzh5jtdiN5X9nHzJDvexPEA_yOZVVfkLErRMfhadO44svHMD0-mrw98bqTGjzNQ7_xhGFcR4bmjBpmFQVZFCQBxSWtWM4jX0dascSPDYupQveQfpGwojCYK5pciII_gUFZlflTIHmA-KmiiFuhfCpNbHiea6QxvjBIVcQQ9vs5zVZOkCPDRMa-92zjvQ9hZOf7eohV0W4v4Dxl3aLMeBAmMeUqYpoKpZGaqVCJkFMjYu1LNoTX1lsyu9abWmrZtSygpVY1K0tjZJsYwEQ8hN3eobIuCHzNuI8_IcF8DK15de1kf7P62X-Oew53GJIrV1S4C4OmXud7SI4a9aJbHFdHwg2A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Thickness+Error+Optimization+Method+of+Rolling+System+Based+on+Improved+Sparrow+Search+Algorithm%E2%80%93Bidirectional+Long+Short-Term+Memory+Network%E2%80%93Attention&rft.jtitle=Actuators&rft.au=Wu%2C+Qingyun&rft.au=Li%2C+Xinchen&rft.au=Ji%2C+Jiafei&rft.au=Xing%2C+Bowen&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=13&rft.issue=10&rft_id=info:doi/10.3390%2Fact13100426&rft.externalDocID=A814363848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon |