Research on Thickness Error Optimization Method of Rolling System Based on Improved Sparrow Search Algorithm–Bidirectional Long Short-Term Memory Network–Attention

With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rollin...

Full description

Saved in:
Bibliographic Details
Published inActuators Vol. 13; no. 10; p. 426
Main Authors Wu, Qingyun, Li, Xinchen, Ji, Jiafei, Xing, Bowen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text
ISSN2076-0825
2076-0825
DOI10.3390/act13100426

Cover

Abstract With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rolling force prediction method based on SSA–Bilstm–Attention, which reduces the thickness error of the rolling system by predicting the high-precision rolling force. Firstly, a mechanical model is established, and the parameters involved are analyzed to extract suitable parameters as inputs to the network to reduce the feature loss of the network inputs. Secondly, an improved sparrow search algorithm is used to search for the hyperparameters of the network to obtain better training results. Finally, the attention mechanism is introduced to increase the network’s training accuracy. A stochastic small-batch gradient descent method is used to improve the training speed of the network. In addition, this paper establishes a web-based host computer, which provides an effective data source for the experimental analysis. The experimental results show that the optimized model has a mean square error of 1.22%, which is more accurate than other models, and has good generalization ability. The experiments confirm the method’s effectiveness in improving the thickness accuracy of the rolling system and provide a new optimization scheme for the industry.
AbstractList With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters difficulties in meeting current demands for accuracy. To reduce the thickness error of the rolling system, we propose a high-precision rolling force prediction method based on SSA–Bilstm–Attention, which reduces the thickness error of the rolling system by predicting the high-precision rolling force. Firstly, a mechanical model is established, and the parameters involved are analyzed to extract suitable parameters as inputs to the network to reduce the feature loss of the network inputs. Secondly, an improved sparrow search algorithm is used to search for the hyperparameters of the network to obtain better training results. Finally, the attention mechanism is introduced to increase the network’s training accuracy. A stochastic small-batch gradient descent method is used to improve the training speed of the network. In addition, this paper establishes a web-based host computer, which provides an effective data source for the experimental analysis. The experimental results show that the optimized model has a mean square error of 1.22%, which is more accurate than other models, and has good generalization ability. The experiments confirm the method’s effectiveness in improving the thickness accuracy of the rolling system and provide a new optimization scheme for the industry.
Audience Academic
Author Ji, Jiafei
Li, Xinchen
Wu, Qingyun
Xing, Bowen
Author_xml – sequence: 1
  givenname: Qingyun
  surname: Wu
  fullname: Wu, Qingyun
– sequence: 2
  givenname: Xinchen
  surname: Li
  fullname: Li, Xinchen
– sequence: 3
  givenname: Jiafei
  surname: Ji
  fullname: Ji, Jiafei
– sequence: 4
  givenname: Bowen
  surname: Xing
  fullname: Xing, Bowen
BookMark eNp9ks9u1DAQxiNUJErpiRewxBFS_C-JfdxWBVZaqNRdztHEdna9TeJge1ktJ96Bh-C9eBIcglBP2AePxt_382jGz7OzwQ0my14SfMWYxG9BRcIIxpyWT7Jziqsyx4IWZ4_iZ9llCHucliRMYHae_bw3wYBXO-QGtNlZ9TCYENCt986juzHa3n6DaNPlRxN3TiPXonvXdXbYovUpRNOjawhGT_ZlP3r3NcXrEZL_iNYzedFtnbdx1__6_uPaauuNmojQoZWbMDvnY74xvk9v9M6f0CcTj84_JPkiRjNM4hfZ0xa6YC7_nhfZ53e3m5sP-eru_fJmscoVK0nMuaZMVRobijWlTApaFbLADcYNNawiqlINlURoKnAjAIC0kratlqTShvOWXWTLmasd7OvR2x78qXZg6z8J57c1-GhVZ2pWlDL1sKmowrxRTFZN2fCSYc2FIkAT683MOgwjnI7Qdf-ABNfTzOpHM0vyV7M8dfHLwYRY793BpzaFmhGKuSxEMamuZtUWUg12aF30oNLWprcq_YjWpvxCEM5KJrhIhtezQXkXgjftf4v4DdnTuWI
Cites_doi 10.3390/math12111755
10.1016/j.xcrp.2024.102101
10.3390/en17133158
10.3390/en15238919
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/act13100426
DatabaseName CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-0825
ExternalDocumentID oai_doaj_org_article_3569803b72c04bc397b6b4630d48c1a2
10.3390/act13100426
A814363848
10_3390_act13100426
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ABUWG
ACIWK
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
3V.
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c361t-4d23c7d0e20d22398275950b00b2e371c7cb2918d280b8aaa1f92ffd917de44f3
IEDL.DBID BENPR
ISSN 2076-0825
IngestDate Fri Oct 03 12:37:53 EDT 2025
Sun Sep 07 10:47:13 EDT 2025
Fri Jul 25 12:08:44 EDT 2025
Mon Oct 20 16:58:56 EDT 2025
Thu Oct 16 04:34:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-4d23c7d0e20d22398275950b00b2e371c7cb2918d280b8aaa1f92ffd917de44f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3120495856?pq-origsite=%requestingapplication%&accountid=15518
PQID 3120495856
PQPubID 2032444
ParticipantIDs doaj_primary_oai_doaj_org_article_3569803b72c04bc397b6b4630d48c1a2
unpaywall_primary_10_3390_act13100426
proquest_journals_3120495856
gale_infotracacademiconefile_A814363848
crossref_primary_10_3390_act13100426
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Actuators
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lv (ref_1) 2004; 3
Wang (ref_6) 1999; 20
Nguyen (ref_11) 2024; 5
Mao (ref_12) 2024; 32
Mao (ref_15) 2024; 7
Zhang (ref_8) 2006; 24
Liu (ref_2) 2016; 18
Zhang (ref_5) 2005; 17
Ding (ref_7) 2024; 23
ref_13
ref_10
Ma (ref_16) 2024; 45
ref_21
ref_20
Zhai (ref_9) 2024; 51
Chen (ref_3) 2013; 34
ref_18
Zhang (ref_14) 2005; 12
Cao (ref_22) 2024; 8
Wang (ref_4) 2006; 27
Liu (ref_17) 2024; 41
Ma (ref_19) 2024; 40
References_xml – volume: 34
  start-page: 1128
  year: 2013
  ident: ref_3
  article-title: Adaptation of cold rolling force model parameters based on objective function
  publication-title: J. Northeast. Univ. (Nat. Sci. Ed.)
– volume: 7
  start-page: 1
  year: 2024
  ident: ref_15
  article-title: Rolling bearing fault diagnosis based on MSSA-VMD and CNN-BiLSTM
  publication-title: J. Chongqing Gongshang Univ. (Nat. Sci. Ed.)
– volume: 41
  start-page: 58
  year: 2024
  ident: ref_17
  article-title: Remaining life prediction of complex equipment with CNN-BiLSTM based on attention mechanism
  publication-title: Mech. Des.
– volume: 27
  start-page: 771
  year: 2006
  ident: ref_4
  article-title: Self-learning of gauge control model for plate rolling
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– volume: 40
  start-page: 1
  year: 2024
  ident: ref_19
  article-title: Optimisation of CNN-LSTM-SEnet prediction model for wind turbine fault early warning with SSA
  publication-title: Electr. Power Sci. Eng.
– ident: ref_20
  doi: 10.3390/math12111755
– volume: 3
  start-page: 65
  year: 2004
  ident: ref_1
  article-title: Research on automatic control system of cold continuous rolling thickness
  publication-title: Xi’an Univ. Archit. Technol.
– ident: ref_10
– volume: 51
  start-page: 1081
  year: 2024
  ident: ref_9
  article-title: Teleconsultation demand prediction based on LSTM and attention mechanism
  publication-title: Comput. Sci.
– volume: 18
  start-page: 96
  year: 2016
  ident: ref_2
  article-title: Matlab-based BP neural network rolling force predictionmodel and application
  publication-title: J. Chongqing Inst. Sci. Technol. (Nat. Sci. Ed.)
– volume: 5
  start-page: 102101
  year: 2024
  ident: ref_11
  article-title: Learnable features for predicting properties of metal-organic frameworks with deep neural networks
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2024.102101
– volume: 45
  start-page: 429
  year: 2024
  ident: ref_16
  article-title: Ultrashort-term wind power prediction based on adaptive quadratic decomposition with CNN-BiLSTM
  publication-title: J. Sol. Energy
– ident: ref_18
  doi: 10.3390/en17133158
– volume: 20
  start-page: 97
  year: 1999
  ident: ref_6
  article-title: Neural network and mathematical model for rolling force prediction
  publication-title: J. Northeast. Univ.
– ident: ref_13
  doi: 10.3390/en15238919
– volume: 23
  start-page: 41
  year: 2024
  ident: ref_7
  article-title: Recommendation fusion model based on LSTM with deep matrix decomposition
  publication-title: Softw. Guide
– volume: 32
  start-page: 69
  year: 2024
  ident: ref_12
  article-title: Design of intelligent analysis algorithm for power engineering data based on improved BiLSTM
  publication-title: Electron. Des. Eng.
– volume: 12
  start-page: 58
  year: 2005
  ident: ref_14
  article-title: Comprehensive application of BP neural network and mathematical model in the forecasting of plate convexity of medium-thickness plates
  publication-title: J. Plast. Eng.
– ident: ref_21
– volume: 8
  start-page: 142
  year: 2024
  ident: ref_22
  article-title: Research on air quality prediction based on SSA-LSTM model
  publication-title: Mod. Inf. Technol.
– volume: 24
  start-page: 88
  year: 2006
  ident: ref_8
  article-title: Research on thickness control of high-precision medium-thickness plate rolling
  publication-title: J. Shaanxi Univ. Sci. Technol.
– volume: 17
  start-page: 43
  year: 2005
  ident: ref_5
  article-title: Learning algorithm of rolling force for medium-thick plate based on fuzzy theory
  publication-title: J. Iron Steel Res.
SSID ssj0000913803
Score 2.272215
Snippet With the development of technology, the working processes of rolling equipment have become more and more complex, and the traditional rolling model encounters...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 426
SubjectTerms Accuracy
Algorithms
attention mechanism
Bilstm
Effectiveness
Error analysis
Error reduction
Fourier transforms
Hot rolling
improved sparrow algorithm
Methods
Neural networks
Optimization
Parameters
Predictions
rolling force prediction
rolling model
Search algorithms
Thickness
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYllzSH0l-6aRp0SOnJRH-2peNuSQilSQ_dQG5CP3Z36a69uA4lt7xDHiLvlSfpSPIGQ6G99GaMZI89o_lmxMwnhI6kMdzVRZ0J6kUmlCeZBJjNlOXGAj7mLvZWnV8UZ5fi81V-NTrqK9SEJXrg9OOOeV4oSbgtmSPCOoBPW1hRcOKFdNRE70ukGiVT0QcrymFWasjjkNcfG9fTsJktAo3CCIIiU_-f_ngP7V43G3Pzy6xWI8A5fY6eDZEiniYJX6AnVfMS7Y34A1-h-23dHG4bPF8s3Y_guPBJ17Ud_grOYD10WeLzeFA0bms8sHDjRFWOZ4BiPkxPuwtw_W0TeRlxKkTG09X3tlv2i_XD7d1smRAwbh_iL214zALi92wO_h3esW67G3yRCsth-LTvUzHla3R5ejL_dJYNJy9kjhe0z4Rn3JWeVIx4FhgCWZmrnMAStaziJXWls0xR6ZkkFtRtaK1YXXvI_XwlRM3foJ2mbaq3CFc54KEtSx6I74nx0vOqchCWUOEh9BATdLRVht4kgg0NiUnQmR7pbIJmQVGPQwIrdrwBtqIHW9H_spUJ-hjUrMPa7TvjzNCCAJIGFiw9lRA9gkMScoIOtpagh0X9U3MKn6AgvwJpPjxax9-k3v8fUr9DTxlEUqmC8ADt9N119R4iod4eRqP_DcazB-o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6V9AA98I8ItGgliji5rHfXf0eHtqoQDUgkUjlZ-2OTqIkdGUeonHgHHoL36pN01mtXoUjALbLWzsQ7O983m5lvAfZjKbkuwsITvhGeSAz1YoRZL1FcKsTHQLe9Vafj8GQq3p0FZ1vwsu-F2fj_nmM6_kbqxrd70Agkt2A7DJBwD2B7Ov6YfrbHxmEW7tkkx3Xe3bzjN6xpJfn_DLw7cHtdruTFN7lYbCDL8T047G1yBSXnB-tGHejvN-Qa_2H0fbjbMUuSOld4AFt5-RB2NvQGH8Gvvs6OVCWZzOb63AY6clTXVU0-YPBYdl2Z5LQ9WJpUBelUu4mTNicjRD1jb3e7Efj506rVcSSucJmkiy9VPW9my8sfP0dzh5jtdiN5X9nHzJDvexPEA_yOZVVfkLErRMfhadO44svHMD0-mrw98bqTGjzNQ7_xhGFcR4bmjBpmFQVZFCQBxSWtWM4jX0dascSPDYupQveQfpGwojCYK5pciII_gUFZlflTIHmA-KmiiFuhfCpNbHiea6QxvjBIVcQQ9vs5zVZOkCPDRMa-92zjvQ9hZOf7eohV0W4v4Dxl3aLMeBAmMeUqYpoKpZGaqVCJkFMjYu1LNoTX1lsyu9abWmrZtSygpVY1K0tjZJsYwEQ8hN3eobIuCHzNuI8_IcF8DK15de1kf7P62X-Oew53GJIrV1S4C4OmXud7SI4a9aJbHFdHwg2A
  priority: 102
  providerName: Unpaywall
Title Research on Thickness Error Optimization Method of Rolling System Based on Improved Sparrow Search Algorithm–Bidirectional Long Short-Term Memory Network–Attention
URI https://www.proquest.com/docview/3120495856
https://doi.org/10.3390/act13100426
https://doaj.org/article/3569803b72c04bc397b6b4630d48c1a2
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: ADMLS
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-0825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913803
  issn: 2076-0825
  databaseCode: 8FG
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yQF6QDxVQ4n2UMTJqr27fh0QciChQo2paCKVk7UPu6lI7GBcod74D_wI_he_hFk_QiSk3mzLL3lmZ74Zz3wDcBwKwVTu5zZ3Nbd5pB07RDdrR5IJif7RU01v1SzxTxf846V3uQdJ3wtjyip7m9gYal0qkyM_YS5FMIvg1n-7-WabqVHm72o_QkN0oxX0m4ZibB-G1DBjDWA4niTnn7dZF8OCGTbjkikG8LaJj9qmPYax_4lQtWsS3txQLey4qYbN_3-bfQD3boqNuP0hVqsdpzR9CA86NEniVvyPYC8rHsPBDsfgE_jd19aRsiDz5bX6aowbmVRVWZFPaDDWXScmmTXDpEmZk46pm7R05mSMnk6by9sMBG5fbBruRtIWK5N4dYWfql6u__z8Nb5uvWSTYiRnpbnNEjG-PUcfgM9Yl9UtSdriczw9ruu24PIpLKaT-btTu5vOYCvmu7XNNWUq0E5GHU0NiyANvMhzcBlLmrHAVYGSNHJDTUNHokoIN49onmuMD3XGec6ewaAoi-wQSOahz5RBwAw5viN0qFmWKYQuLtcIT7gFx70w0k1LwpFi8GJklu7IzIKxEdT2FMOc3Rwoq6u0W4gp8_wINUAGVDlcKoRj0pfcZ47moXIFteC1EXNq1nddCSW6NgV8U8OUlcYhIkw0Wjy04KjXhLRb-N_Tf2pqwautdtz11s_vvs0LuE8RR7X1g0cwqKub7CXioFqOYD-cfhjBMH4_O7sYdao-arIKuLdIzuMvfwEpMw3-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QPyqgQJ7aMXJqr27_jtUKIFUKU0CglTqzeyfm4rEDq6rKjfegYfgLXgYnoRZ_4RISL31Zln22tbMznwznvkGYD8Sgqk0SB3uae7wWLtOhG7WiSUTEv2jr6reqtE4GJzxD-f--Qb8bnthbFllaxMrQ61zZXPkh8yjCGYR3AZvF98dOzXK_l1tR2iIZrSCPqooxprGjlOzvMEQ7uro5D3K-4DS4_7k3cBppgw4igVe6XBNmQq1a6irqWXDo6Ef-y6qo6SGhZ4KlaSxF2kauRI_TXhpTNNUY5yjDecpw3XvwRZnPMbgb6vXH3_6vMryWNbNqBrPTN0QQ3eMx-omQcZi91Co0rMJdm6pHdbcYjU94H8fsQPb19lCLG_EbLbmBI8fwoMGvZJurW6PYMNkj2FnjdPwCfxqa_lInpHJ9FJ9s8aU9IsiL8hHNFDzpvOTjKrh1SRPScMMTmr6dNJDz6rt7XXGA4-_LCquSFIXR5Pu7AJFU07nf3787F3WXrlKaZJhbpeZYkzhTNDn4DPmebEk47rYHS_vlmVd4PkUzu5ETs9gM8szswvE-OijZRgyS8bvCh1pZoxCqORxjXCId2C_FUayqEk_EgyWrMySNZl1oGcFtbrEMnVXJ_LiImk2fsL8IEYNkCFVLpcK4Z8MJA-Yq3mkPEE78MaKObH2pCyEEk1bBL6pZeZKuhEiWjSSPOrAXqsJSWNorpJ_26IDByvtuO2tn9--zGvYHkxGw2R4Mj59AfcpYri6dnEPNsvi2rxEDFbKV42iE_h613vrL6EVRR8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgE9IH6FS4E9tOJkxd5d_x0QSmhDS9uARCr1ZvbHbqomdnBdVbnxDjwE78Dj8CTMeu0QCam33izLXtv6ZufPM98AbMdCMJWHuct9zV2eaM-N0cy6iWRCon0MVNNbdTwK90_4p9PgdA1-d70wpqyy04mNotalMjnyHvMpOrPo3Ia9vC2L-LI7fD__7poJUuZPazdOw4rIYba4xvDt8t3BLmK9Q-lwb_xh320nDLiKhX7tck2ZirSXUU9Tw4RHoyAJPBRFSTMW-SpSkiZ-rGnsSfws4ecJzXONMY7OOM8ZrnsH7kaGxd10qQ8_LvM7hm8zbgYzUy_CoB0jMdseyFji9YSqfZNa54bUYcUgNnMD_rcOG3D_qpiLxbWYTlfM3_ARPGz9VtK3gvYY1rLiCWyssBk-hV9dFR8pCzKenKsLo0bJXlWVFfmMqmnW9nyS42ZsNSlz0nKCE0ucTgZoU7W53eY68PjrvGGJJLYsmvSnZwhEPZn9-fFzcG7tcZPMJEelWWaC0YQ7RmuDz5iV1YKMbJk7Xt6va1va-QxObgWl57BelEX2AkgWoHWWEQKG0uQJHWuWZQqdJJ9rdIS4A9sdGOnc0n2kGCYZzNIVzBwYGKCWlxiO7uZEWZ2l7ZZPWRAmKAEyosrjUqHjJ0PJQ-ZpHitfUAfeGphTo0nqSijRNkTgmxpOrrQfoy-L6pHHDmx1kpC2KuYy_bchHNhZSsdNb7158zJv4B7uqPToYHT4Eh5QdN5s0eIWrNfVVfYKna9avm6knMC3295WfwHCckK5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6V9AA98I8ItGgliji5rHfXf0eHtqoQDUgkUjlZ-2OTqIkdGUeonHgHHoL36pN01mtXoUjALbLWzsQ7O983m5lvAfZjKbkuwsITvhGeSAz1YoRZL1FcKsTHQLe9Vafj8GQq3p0FZ1vwsu-F2fj_nmM6_kbqxrd70Agkt2A7DJBwD2B7Ov6YfrbHxmEW7tkkx3Xe3bzjN6xpJfn_DLw7cHtdruTFN7lYbCDL8T047G1yBSXnB-tGHejvN-Qa_2H0fbjbMUuSOld4AFt5-RB2NvQGH8Gvvs6OVCWZzOb63AY6clTXVU0-YPBYdl2Z5LQ9WJpUBelUu4mTNicjRD1jb3e7Efj506rVcSSucJmkiy9VPW9my8sfP0dzh5jtdiN5X9nHzJDvexPEA_yOZVVfkLErRMfhadO44svHMD0-mrw98bqTGjzNQ7_xhGFcR4bmjBpmFQVZFCQBxSWtWM4jX0dascSPDYupQveQfpGwojCYK5pciII_gUFZlflTIHmA-KmiiFuhfCpNbHiea6QxvjBIVcQQ9vs5zVZOkCPDRMa-92zjvQ9hZOf7eohV0W4v4Dxl3aLMeBAmMeUqYpoKpZGaqVCJkFMjYu1LNoTX1lsyu9abWmrZtSygpVY1K0tjZJsYwEQ8hN3eobIuCHzNuI8_IcF8DK15de1kf7P62X-Oew53GJIrV1S4C4OmXud7SI4a9aJbHFdHwg2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Thickness+Error+Optimization+Method+of+Rolling+System+Based+on+Improved+Sparrow+Search+Algorithm%E2%80%93Bidirectional+Long+Short-Term+Memory+Network%E2%80%93Attention&rft.jtitle=Actuators&rft.au=Wu%2C+Qingyun&rft.au=Li%2C+Xinchen&rft.au=Ji%2C+Jiafei&rft.au=Xing%2C+Bowen&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2076-0825&rft.eissn=2076-0825&rft.volume=13&rft.issue=10&rft_id=info:doi/10.3390%2Fact13100426&rft.externalDocID=A814363848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0825&client=summon