Anomaly Detection for GOOSE Spoofing Attacks in Digital Substations Using Deep Learning Models: A DNN and LSTM Approach

Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Ori...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 129709 - 129720
Main Authors Fernando, Trinal, Ramachandran, Gowri, Vilathgamuwa, Mahinda, Jayalath, Dhammika
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2025.3591695

Cover

Abstract Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Oriented Substation Event (GOOSE) messages are subject to spoofing attacks. These attacks can disrupt substation operations such that incorrect control actions are taken by operators, equipment gets damaged and large scale blackouts can occur. One of the contributions of this research is the proposal of a novel approach of detecting GOOSE spoofing attacks in digital substations using deep learning models, such as Deep Neural Networks (DNN) and Long Short Term Memory (LSTM) networks. To achieve this, the proposed models are trained on a multi-modal dataset consisting of GOOSE message attributes and physical electrical system measurements, and achieve the ability to accurately detect anomalies. Furthermore, we present an autoencoder based anomaly detection system in order to augment the deep learning models in discovering the subtle changes in system behavior. Extensive experiments show the effectiveness of the models in obtaining high detection accuracy on both training and test datasets. This result demonstrates that the integrated deep learning technique, capable of handling dynamic attack patterns, real time data, provides a robust and scalable cyber security solution to digital substations. The proposed methodology is contributing significantly to the field of anomaly detection in critical infrastructure, and acts as foundations for future research on real time threat mitigation strategies.
AbstractList Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Oriented Substation Event (GOOSE) messages are subject to spoofing attacks. These attacks can disrupt substation operations such that incorrect control actions are taken by operators, equipment gets damaged and large scale blackouts can occur. One of the contributions of this research is the proposal of a novel approach of detecting GOOSE spoofing attacks in digital substations using deep learning models, such as Deep Neural Networks (DNN) and Long Short Term Memory (LSTM) networks. To achieve this, the proposed models are trained on a multi-modal dataset consisting of GOOSE message attributes and physical electrical system measurements, and achieve the ability to accurately detect anomalies. Furthermore, we present an autoencoder based anomaly detection system in order to augment the deep learning models in discovering the subtle changes in system behavior. Extensive experiments show the effectiveness of the models in obtaining high detection accuracy on both training and test datasets. This result demonstrates that the integrated deep learning technique, capable of handling dynamic attack patterns, real time data, provides a robust and scalable cyber security solution to digital substations. The proposed methodology is contributing significantly to the field of anomaly detection in critical infrastructure, and acts as foundations for future research on real time threat mitigation strategies.
Author Fernando, Trinal
Vilathgamuwa, Mahinda
Jayalath, Dhammika
Ramachandran, Gowri
Author_xml – sequence: 1
  givenname: Trinal
  orcidid: 0009-0008-1067-9009
  surname: Fernando
  fullname: Fernando, Trinal
  email: trinal.amarosige@hdr.qut.edu.au
  organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia
– sequence: 2
  givenname: Gowri
  orcidid: 0000-0001-5944-1335
  surname: Ramachandran
  fullname: Ramachandran, Gowri
  organization: School of Information Systems, Queensland University of Technology, Brisbane, QLD, Australia
– sequence: 3
  givenname: Mahinda
  orcidid: 0000-0003-0895-8443
  surname: Vilathgamuwa
  fullname: Vilathgamuwa, Mahinda
  organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia
– sequence: 4
  givenname: Dhammika
  orcidid: 0000-0001-6130-0275
  surname: Jayalath
  fullname: Jayalath, Dhammika
  organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia
BookMark eNplkV9v0zAUxS00JMbYJ4AHSzy32LHjOrxFbRmTuvUh27N141yXlMwOdqqp356ETIDgvtw_OucnXZ235MIHj4S852zJOSs-lev1tqqWGcvypcgLror8FbnMxr4QuVAXf81vyHVKRzaWnmSrS_Jc-vAE3ZlucEA7tMFTFyK92e-rLa36EFzrD7QcBrDfE2093bSHdoCOVqc6DTAZEn1Mk2iD2NMdQvTTdhca7NJnWtLN_T0F39Bd9XBHy76PAey3d-S1gy7h9Uu_Io9ftg_rr4vd_uZ2Xe4WVig-LGRR1DpT6BRCwUGprNbcrTQWGeaAKKYLc42WecEaRAV2JR3jurbAbSbEFbmduU2Ao-lj-wTxbAK05tchxIOBOLS2QyNAcdC1UiLPpZMNMOGU0lJB7WpesJElZ9bJ93B-hq77DeTMTFkYsBZTMlMW5iWL0fZxto2f_zhhGswxnKIfvzYik2qVjTI5qsSssjGkFNH9x55z_pf9YXa1iPjHwZnWnEvxE8S4owc
CODEN IAECCG
Cites_doi 10.1109/TPWRS.2019.2943304
10.1109/PTC.2015.7232339
10.1016/j.iot.2023.100760
10.1109/ACCESS.2020.2980937
10.1109/TSG.2013.2294473
10.3390/en17153745
10.1016/j.ijepes.2020.106008
10.1109/JSEN.2022.3179557
10.1109/TIFS.2018.2854745
10.1007/978-3-319-48057-2_9
10.12928/telkomnika.v19i3.16428
10.1109/TSG.2020.3040361
10.1016/j.measurement.2025.117313
10.1109/SmartGridComm47815.2020.9303015
10.1002/navi.65
10.1109/ICIT58465.2023.10143147
10.1109/ISGT-Europe47291.2020.9248840
10.1109/NAPS52732.2021.9654767
10.1088/1755-1315/632/4/042089
10.1007/s10207-023-00720-z
10.1109/ACCESS.2024.3361039
10.1109/PESGM51994.2024.10688802
10.3390/sym13050826
10.5204/thesis.eprints.239496
10.3390/en17236098
10.1016/j.comnet.2020.107679
10.1109/NAPS58826.2023.10318551
10.1007/978-3-030-13057-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2025.3591695
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore (NTUSG)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 129720
ExternalDocumentID oai_doaj_org_article_3a61a8b663554f4da03f66846abfb190
10.1109/access.2025.3591695
10_1109_ACCESS_2025_3591695
11088114
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c361t-499b826ef6ea91a662b81f78e92e5aee3662b0fd84590dee6ac74f018bca1c233
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:53 EDT 2025
Sun Sep 07 10:54:55 EDT 2025
Wed Oct 08 03:32:50 EDT 2025
Wed Oct 01 05:42:17 EDT 2025
Wed Aug 27 01:45:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-499b826ef6ea91a662b81f78e92e5aee3662b0fd84590dee6ac74f018bca1c233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0895-8443
0000-0001-6130-0275
0009-0008-1067-9009
0000-0001-5944-1335
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3591695
PQID 3246729164
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_11088114
doaj_primary_oai_doaj_org_article_3a61a8b663554f4da03f66846abfb190
proquest_journals_3246729164
crossref_primary_10_1109_ACCESS_2025_3591695
unpaywall_primary_10_1109_access_2025_3591695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref31
ref30
ref11
ref10
ref1
ref17
ref16
ref19
ref18
Mamoun Alazab (ref15) 2019
ref24
Faquir (ref2) 2021
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
Manzoor (ref23) 2025
ref6
ref5
Zaboli (ref29) 2024
References_xml – ident: ref9
  doi: 10.1109/TPWRS.2019.2943304
– ident: ref11
  doi: 10.1109/PTC.2015.7232339
– ident: ref4
  doi: 10.1016/j.iot.2023.100760
– year: 2024
  ident: ref29
  article-title: A novel generative AI-based framework for anomaly detection in multicast messages in smart grid communications
  publication-title: arXiv:2406.05472
– ident: ref16
  doi: 10.1109/ACCESS.2020.2980937
– ident: ref19
  doi: 10.1109/TSG.2013.2294473
– ident: ref22
  doi: 10.3390/en17153745
– start-page: 24
  year: 2021
  ident: ref2
  article-title: Cybersecurity in smart grids, challenges and solutions
  publication-title: AIMS Electron. Electr. Eng.
– ident: ref3
  doi: 10.1016/j.ijepes.2020.106008
– ident: ref25
  doi: 10.1109/JSEN.2022.3179557
– ident: ref8
  doi: 10.1109/TIFS.2018.2854745
– ident: ref17
  doi: 10.1007/978-3-319-48057-2_9
– ident: ref13
  doi: 10.12928/telkomnika.v19i3.16428
– ident: ref14
  doi: 10.1109/TSG.2020.3040361
– ident: ref21
  doi: 10.1016/j.measurement.2025.117313
– ident: ref24
  doi: 10.1109/SmartGridComm47815.2020.9303015
– ident: ref5
  doi: 10.1002/navi.65
– ident: ref20
  doi: 10.1109/ICIT58465.2023.10143147
– ident: ref6
  doi: 10.1109/ISGT-Europe47291.2020.9248840
– ident: ref18
  doi: 10.1109/NAPS52732.2021.9654767
– ident: ref1
  doi: 10.1088/1755-1315/632/4/042089
– ident: ref12
  doi: 10.1007/s10207-023-00720-z
– ident: ref7
  doi: 10.1109/ACCESS.2024.3361039
– ident: ref28
  doi: 10.1109/PESGM51994.2024.10688802
– ident: ref27
  doi: 10.3390/sym13050826
– ident: ref30
  doi: 10.5204/thesis.eprints.239496
– year: 2025
  ident: ref23
  article-title: Detecting zero-day attacks in digital substations via in-context learning
  publication-title: arXiv:2501.16453
– ident: ref31
  doi: 10.3390/en17236098
– ident: ref10
  doi: 10.1016/j.comnet.2020.107679
– ident: ref26
  doi: 10.1109/NAPS58826.2023.10318551
– volume-title: Deep Learning Applications for Cyber Security
  year: 2019
  ident: ref15
  doi: 10.1007/978-3-030-13057-2
SSID ssj0000816957
Score 2.3369899
Snippet Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 129709
SubjectTerms Adaptation models
Analytical models
Anomalies
Anomaly detection
Artificial neural networks
autoencoders
Critical infrastructure
Cybersecurity
Datasets
Deep learning
digital substations
DNN
Feature extraction
GOOSE protocol
Long short term memory
LSTM
Machine learning
Messages
Object oriented modeling
Protocols
Real time
Real-time systems
Spoofing
Spoofing attacks
Substations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF-BQ0ZaKtLSaQ49NiTexE_eW7kJRVZbDgsTNsuPxCmkbVt0gxN8zTgzsqodeenUSx_GbzMyLnTeMfS4lNt4VPFXIiaBYJdOqECoV0jrhy4Yy7LCiez6VZ1fFz2txvVbqK-wJG-SBh4k7zo3kprJDYPSFM1nu6fpCGustRbPgfbNKrZGp3gdXXCpRRpkhnqnjejymJyJCOBJfc6HC4Y1Q1Cv2xxIrG9nmzl27NA_3ZrFYCzyn--xVzBihHkb6mm1h-4btrekIvmX3ROJ_m8UDTLDrt1a1QLko_Li4mJ3AbHlLBtTOoe668EM93LQwuZmHYiEQ3MawFr-CfvMA9YBLiKKrcwiV0harb1DDZDoF0zr4Nbs8hzoKkR-wq9OTy_FZGisqpE0ueZcSvbHEJ9BLNIobKUe24r6sUI1QGMQ8tGTeBbgyhyhNUxY-45VtDG9Gef6Obbe3LR4ysC54C2Vd4bLCEctsGuKG1ghbokcnEvblaXL1chDO0D3hyJQesNABCx2xSNj3AMDzqUH1um8gW9DRFvS_bCFhBwG-l_tx8qFE-BJ29ISnjq_oSlMmKYlZEF1MWPqM8V9jNX3dyo2xvv8fY_3AdkOfw9ecI7bd_bnDj5TfdPZTb8qPYbvzVA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore (NTUSG)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgF-DA5xAZA_nAkXRxEzsxt9BuTIh1h27SbpE_nquJklZrqmn89fg5bllBSNwix4rtvGf7_ez3fo-QD6UA42zBUgnMAxQtRVoVXKZcaMtdabyFjTe6ZxNxell8veJXMVg9xMIAQHA-gwE-hrt8uzBrPCo7Qpf1imHa6odlJfpgre2BCmaQkLyMzEIsk0f1aOQH4THgkA9yLvH1zu4TSPpjVpUdA_PRul2qu1s1n9_ba06ekcmml72LyffButMD8_MPAsf_HsZz8jRanbTu1eQFeQDtS_LkHhfhK3Jbt4sfan5Hx9AF96yWenuWfjk_nx7T6XLhlbCd0brrMCifXrd0fD3DhCMUl57-Pn9FgwOC_wIsaSRunVHMtjZffaI1HU8mVLWWfptenNE6kpnvk8uT44vRaRqzMqQmF6xLPUTSHpOAE6AkU0IMdcVcWYEcAlcAOZZkzqLIMwsglCkLl7FKG8XMMM9fk7120cIbQrXFFUdqW9issB6pGuPxpVZcl-DA8oR83EirWfbkG00ALZlseuE2KNwmCjchn1Gi26rInB0K_N9v4kRsciWYqnRvaLnCqix3Xh8LobTT3jpKyD5K7Hd7UVgJOdwoSBOn-arx1qjw6MRDzoSkW6X5q68q5L7c6evBP5p5Sx5jtf6Q55DsdTdreOfNnk6_D-r-Cw0c_ZU
  priority: 102
  providerName: IEEE
Title Anomaly Detection for GOOSE Spoofing Attacks in Digital Substations Using Deep Learning Models: A DNN and LSTM Approach
URI https://ieeexplore.ieee.org/document/11088114
https://www.proquest.com/docview/3246729164
https://doi.org/10.1109/access.2025.3591695
https://doaj.org/article/3a61a8b663554f4da03f66846abfb190
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAO_BwiY1Q-cCQlbmIn5hbajQmxDqmrNE6WHdvVRHGrNdU0_nqeHW-0ICG4Ws4vv2f7-_L8vofQm5KZxuqCpNwQICiKs7QqKE8pU5rasgGE7SO6pxN2Mis-XdCLqLPtc2G24_ck4-9kKBsIPG5IBzkFLMPpfbTHKADvHtqbTb7UX335OGhP8xCIfPWXK3f2niDRH2uq7MDLBxu3kjfXcrHY2mmOH3cp3OsgUOgPmHwbbFo1aH78Jt_4jx_xBD2KiBPXnYs8RfeMe4YebukQPkfXtVt-l4sbPDZtOJrlMGBZ_PHsbHqEp6slOKCb47ptfUI-vnR4fDn3xUawX3a6WP4ah8MHcAezwlG0dY59pbXF-j2u8XgywdJp_Hl6forrKGS-j2bHR-ejkzRWZEibnJE2BXqkgI8Yy4zkRDI2VBWxZWX40FBpTO5bMqu9uTNtDJNNWdiMVKqRpBnm-QvUc0tnXiKstF9tuNKFzgoNLLVpgFsqSVVprNE0QW9vbSVWnfCGCIQl46IejcA7hR9PEcczQR-8Pe-6etXs0AB2EHESilwyIivVgSxbaJnlFnyxYFJZBcgoQfveG349j8AaDIQxQYe37iHiFF8LQKIMmAnQzQSldy7zx7t2tt9514P_7H-Ieu3VxrwG9NOqfvhr0A-Jiv04A34CrxcAEA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfQOAwOfA4tMMAHjqSLG9tJuIV2o0CbHdpJu1n-eKkmSlrRVNP467Edt6wgJG6R82E779l-P_u930PoXcZB14aSuABiAYoqeJxTVsSMK8PqTFsL253oTio-uqRfrthVCFb3sTAA4J3PoOcu_Vm-WeqN2yo7dS7rOXFpq-8zSinrwrV2Wyouh0TBssAtRJLitBwMbDcsCuyzXsoKd3tv_fE0_SGvyp6JebhpVvL2Ri4Wd1ab88eo2razczL51tu0qqd__kHh-N8deYIeBbsTl52iPEX3oHmGHt5hI3yObspm-V0ubvEQWu-g1WBr0eJPFxfTMzxdLa0aNnNctq0Ly8fXDR5ez13KEewmn-5Ef429C4L9AqxwoG6dY5dvbbH-gEs8rCosG4PH09kEl4HO_Ahdnp_NBqM45GWIdcpJG1uQpCwqgZqDLIjkvK9yUmc5FH1gEiB1JUltnNATA8ClzmidkFxpSXQ_TV-gg2bZwDHCyrg5p1CGmoQai1W1tghTSaYyqMGwCL3fSkusOvoN4WFLUohOuMIJVwThRuijk-juUced7Qvs3xdhKIpUciJz1ZlaNTUySWurkZRLVStrH0XoyEnsd31BWBE62SqICAN9Law9yi0-saAzQvFOaf5qq_TZL_fa-vIf1bxFh6PZZCzGn6uvr9AD90q35XOCDtofG3htjaBWvfGq_wt06wDx
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAOMGBogTH5wJGUuImdmFto90OIdUhdpXGy_LOaKG5FU03jr-dz4m0tSAiulpM4_p7t92T7fQi9LZnVzhQk5ZaAQFGcpVVBeUqZMtSVGhh22NE9G7PTafHpkl5Gn-1wF2Zz_55k_L1s0waCjhvQfk6By3D6EO0wCsS7h3am4y_115A-DsrTvN2IfP2XJ7fWntaiP-ZU2aKXj9Z-KW-u5Xy-sdIcP-2ucK9ag8JwwORbf92ovv75m33jP_7ELnoSGSeuO4g8Qw-sf44eb_gQvkDXtV98l_MbPLJNezTLY-Cy-OT8fHKEJ8sFANDPcN004UI-vvJ4dDULyUZwmHa6vfwVbg8fwBvsEkfT1hkOmdbmqw-4xqPxGEtv8OfJxRmuo5H5HpoeH10MT9OYkSHVOSNNCvJIgR6xjlnJiWRsoCriysrygaXS2jyUZM6EcGfGWiZ1WbiMVEpLogd5_hL1_MLbfYSVCbMNV6YwWWFApWoN2lJJqkrrrKEJencbK7HsjDdEK1gyLurhENApQn-K2J8J-hjieVc1uGa3BRAHEQehyCUjslIdyXKFkVnuAIsFk8opYEYJ2gtouP8egTkYBGOCDm7hIeIQXwlgogyUCcjNBKV3kPmjrV3st9r66j_rH6Be82Nt3wD7adRhRP0vv7n-Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+for+GOOSE+Spoofing+Attacks+in+Digital+Substations+Using+Deep+Learning+Models%3A+A+DNN+and+LSTM+Approach&rft.jtitle=IEEE+access&rft.au=Fernando%2C+Trinal&rft.au=Ramachandran%2C+Gowri&rft.au=Vilathgamuwa%2C+Mahinda&rft.au=Jayalath%2C+Dhammika&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=129709&rft.epage=129720&rft_id=info:doi/10.1109%2FACCESS.2025.3591695&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3591695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon