Anomaly Detection for GOOSE Spoofing Attacks in Digital Substations Using Deep Learning Models: A DNN and LSTM Approach
Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Ori...
Saved in:
| Published in | IEEE access Vol. 13; pp. 129709 - 129720 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2025.3591695 |
Cover
| Abstract | Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Oriented Substation Event (GOOSE) messages are subject to spoofing attacks. These attacks can disrupt substation operations such that incorrect control actions are taken by operators, equipment gets damaged and large scale blackouts can occur. One of the contributions of this research is the proposal of a novel approach of detecting GOOSE spoofing attacks in digital substations using deep learning models, such as Deep Neural Networks (DNN) and Long Short Term Memory (LSTM) networks. To achieve this, the proposed models are trained on a multi-modal dataset consisting of GOOSE message attributes and physical electrical system measurements, and achieve the ability to accurately detect anomalies. Furthermore, we present an autoencoder based anomaly detection system in order to augment the deep learning models in discovering the subtle changes in system behavior. Extensive experiments show the effectiveness of the models in obtaining high detection accuracy on both training and test datasets. This result demonstrates that the integrated deep learning technique, capable of handling dynamic attack patterns, real time data, provides a robust and scalable cyber security solution to digital substations. The proposed methodology is contributing significantly to the field of anomaly detection in critical infrastructure, and acts as foundations for future research on real time threat mitigation strategies. |
|---|---|
| AbstractList | Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While this advancement has brought new cybersecurity challenges, in particular, for security of communication protocols such as Generic Object-Oriented Substation Event (GOOSE) messages are subject to spoofing attacks. These attacks can disrupt substation operations such that incorrect control actions are taken by operators, equipment gets damaged and large scale blackouts can occur. One of the contributions of this research is the proposal of a novel approach of detecting GOOSE spoofing attacks in digital substations using deep learning models, such as Deep Neural Networks (DNN) and Long Short Term Memory (LSTM) networks. To achieve this, the proposed models are trained on a multi-modal dataset consisting of GOOSE message attributes and physical electrical system measurements, and achieve the ability to accurately detect anomalies. Furthermore, we present an autoencoder based anomaly detection system in order to augment the deep learning models in discovering the subtle changes in system behavior. Extensive experiments show the effectiveness of the models in obtaining high detection accuracy on both training and test datasets. This result demonstrates that the integrated deep learning technique, capable of handling dynamic attack patterns, real time data, provides a robust and scalable cyber security solution to digital substations. The proposed methodology is contributing significantly to the field of anomaly detection in critical infrastructure, and acts as foundations for future research on real time threat mitigation strategies. |
| Author | Fernando, Trinal Vilathgamuwa, Mahinda Jayalath, Dhammika Ramachandran, Gowri |
| Author_xml | – sequence: 1 givenname: Trinal orcidid: 0009-0008-1067-9009 surname: Fernando fullname: Fernando, Trinal email: trinal.amarosige@hdr.qut.edu.au organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia – sequence: 2 givenname: Gowri orcidid: 0000-0001-5944-1335 surname: Ramachandran fullname: Ramachandran, Gowri organization: School of Information Systems, Queensland University of Technology, Brisbane, QLD, Australia – sequence: 3 givenname: Mahinda orcidid: 0000-0003-0895-8443 surname: Vilathgamuwa fullname: Vilathgamuwa, Mahinda organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia – sequence: 4 givenname: Dhammika orcidid: 0000-0001-6130-0275 surname: Jayalath fullname: Jayalath, Dhammika organization: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, QLD, Australia |
| BookMark | eNplkV9v0zAUxS00JMbYJ4AHSzy32LHjOrxFbRmTuvUh27N141yXlMwOdqqp356ETIDgvtw_OucnXZ235MIHj4S852zJOSs-lev1tqqWGcvypcgLror8FbnMxr4QuVAXf81vyHVKRzaWnmSrS_Jc-vAE3ZlucEA7tMFTFyK92e-rLa36EFzrD7QcBrDfE2093bSHdoCOVqc6DTAZEn1Mk2iD2NMdQvTTdhca7NJnWtLN_T0F39Bd9XBHy76PAey3d-S1gy7h9Uu_Io9ftg_rr4vd_uZ2Xe4WVig-LGRR1DpT6BRCwUGprNbcrTQWGeaAKKYLc42WecEaRAV2JR3jurbAbSbEFbmduU2Ao-lj-wTxbAK05tchxIOBOLS2QyNAcdC1UiLPpZMNMOGU0lJB7WpesJElZ9bJ93B-hq77DeTMTFkYsBZTMlMW5iWL0fZxto2f_zhhGswxnKIfvzYik2qVjTI5qsSssjGkFNH9x55z_pf9YXa1iPjHwZnWnEvxE8S4owc |
| CODEN | IAECCG |
| Cites_doi | 10.1109/TPWRS.2019.2943304 10.1109/PTC.2015.7232339 10.1016/j.iot.2023.100760 10.1109/ACCESS.2020.2980937 10.1109/TSG.2013.2294473 10.3390/en17153745 10.1016/j.ijepes.2020.106008 10.1109/JSEN.2022.3179557 10.1109/TIFS.2018.2854745 10.1007/978-3-319-48057-2_9 10.12928/telkomnika.v19i3.16428 10.1109/TSG.2020.3040361 10.1016/j.measurement.2025.117313 10.1109/SmartGridComm47815.2020.9303015 10.1002/navi.65 10.1109/ICIT58465.2023.10143147 10.1109/ISGT-Europe47291.2020.9248840 10.1109/NAPS52732.2021.9654767 10.1088/1755-1315/632/4/042089 10.1007/s10207-023-00720-z 10.1109/ACCESS.2024.3361039 10.1109/PESGM51994.2024.10688802 10.3390/sym13050826 10.5204/thesis.eprints.239496 10.3390/en17236098 10.1016/j.comnet.2020.107679 10.1109/NAPS58826.2023.10318551 10.1007/978-3-030-13057-2 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2025.3591695 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore (NTUSG) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore (NTUSG) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 129720 |
| ExternalDocumentID | oai_doaj_org_article_3a61a8b663554f4da03f66846abfb190 10.1109/access.2025.3591695 10_1109_ACCESS_2025_3591695 11088114 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c361t-499b826ef6ea91a662b81f78e92e5aee3662b0fd84590dee6ac74f018bca1c233 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:53 EDT 2025 Sun Sep 07 10:54:55 EDT 2025 Wed Oct 08 03:32:50 EDT 2025 Wed Oct 01 05:42:17 EDT 2025 Wed Aug 27 01:45:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-499b826ef6ea91a662b81f78e92e5aee3662b0fd84590dee6ac74f018bca1c233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0895-8443 0000-0001-6130-0275 0009-0008-1067-9009 0000-0001-5944-1335 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/access.2025.3591695 |
| PQID | 3246729164 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_11088114 doaj_primary_oai_doaj_org_article_3a61a8b663554f4da03f66846abfb190 proquest_journals_3246729164 crossref_primary_10_1109_ACCESS_2025_3591695 unpaywall_primary_10_1109_access_2025_3591695 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref31 ref30 ref11 ref10 ref1 ref17 ref16 ref19 ref18 Mamoun Alazab (ref15) 2019 ref24 Faquir (ref2) 2021 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 Manzoor (ref23) 2025 ref6 ref5 Zaboli (ref29) 2024 |
| References_xml | – ident: ref9 doi: 10.1109/TPWRS.2019.2943304 – ident: ref11 doi: 10.1109/PTC.2015.7232339 – ident: ref4 doi: 10.1016/j.iot.2023.100760 – year: 2024 ident: ref29 article-title: A novel generative AI-based framework for anomaly detection in multicast messages in smart grid communications publication-title: arXiv:2406.05472 – ident: ref16 doi: 10.1109/ACCESS.2020.2980937 – ident: ref19 doi: 10.1109/TSG.2013.2294473 – ident: ref22 doi: 10.3390/en17153745 – start-page: 24 year: 2021 ident: ref2 article-title: Cybersecurity in smart grids, challenges and solutions publication-title: AIMS Electron. Electr. Eng. – ident: ref3 doi: 10.1016/j.ijepes.2020.106008 – ident: ref25 doi: 10.1109/JSEN.2022.3179557 – ident: ref8 doi: 10.1109/TIFS.2018.2854745 – ident: ref17 doi: 10.1007/978-3-319-48057-2_9 – ident: ref13 doi: 10.12928/telkomnika.v19i3.16428 – ident: ref14 doi: 10.1109/TSG.2020.3040361 – ident: ref21 doi: 10.1016/j.measurement.2025.117313 – ident: ref24 doi: 10.1109/SmartGridComm47815.2020.9303015 – ident: ref5 doi: 10.1002/navi.65 – ident: ref20 doi: 10.1109/ICIT58465.2023.10143147 – ident: ref6 doi: 10.1109/ISGT-Europe47291.2020.9248840 – ident: ref18 doi: 10.1109/NAPS52732.2021.9654767 – ident: ref1 doi: 10.1088/1755-1315/632/4/042089 – ident: ref12 doi: 10.1007/s10207-023-00720-z – ident: ref7 doi: 10.1109/ACCESS.2024.3361039 – ident: ref28 doi: 10.1109/PESGM51994.2024.10688802 – ident: ref27 doi: 10.3390/sym13050826 – ident: ref30 doi: 10.5204/thesis.eprints.239496 – year: 2025 ident: ref23 article-title: Detecting zero-day attacks in digital substations via in-context learning publication-title: arXiv:2501.16453 – ident: ref31 doi: 10.3390/en17236098 – ident: ref10 doi: 10.1016/j.comnet.2020.107679 – ident: ref26 doi: 10.1109/NAPS58826.2023.10318551 – volume-title: Deep Learning Applications for Cyber Security year: 2019 ident: ref15 doi: 10.1007/978-3-030-13057-2 |
| SSID | ssj0000816957 |
| Score | 2.3369899 |
| Snippet | Digital substations have significantly increased the accuracy of power grid operations thus advancing high efficiency and reliability in grid operations. While... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 129709 |
| SubjectTerms | Adaptation models Analytical models Anomalies Anomaly detection Artificial neural networks autoencoders Critical infrastructure Cybersecurity Datasets Deep learning digital substations DNN Feature extraction GOOSE protocol Long short term memory LSTM Machine learning Messages Object oriented modeling Protocols Real time Real-time systems Spoofing Spoofing attacks Substations |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF-BQ0ZaKtLSaQ49NiTexE_eW7kJRVZbDgsTNsuPxCmkbVt0gxN8zTgzsqodeenUSx_GbzMyLnTeMfS4lNt4VPFXIiaBYJdOqECoV0jrhy4Yy7LCiez6VZ1fFz2txvVbqK-wJG-SBh4k7zo3kprJDYPSFM1nu6fpCGustRbPgfbNKrZGp3gdXXCpRRpkhnqnjejymJyJCOBJfc6HC4Y1Q1Cv2xxIrG9nmzl27NA_3ZrFYCzyn--xVzBihHkb6mm1h-4btrekIvmX3ROJ_m8UDTLDrt1a1QLko_Li4mJ3AbHlLBtTOoe668EM93LQwuZmHYiEQ3MawFr-CfvMA9YBLiKKrcwiV0harb1DDZDoF0zr4Nbs8hzoKkR-wq9OTy_FZGisqpE0ueZcSvbHEJ9BLNIobKUe24r6sUI1QGMQ8tGTeBbgyhyhNUxY-45VtDG9Gef6Obbe3LR4ysC54C2Vd4bLCEctsGuKG1ghbokcnEvblaXL1chDO0D3hyJQesNABCx2xSNj3AMDzqUH1um8gW9DRFvS_bCFhBwG-l_tx8qFE-BJ29ISnjq_oSlMmKYlZEF1MWPqM8V9jNX3dyo2xvv8fY_3AdkOfw9ecI7bd_bnDj5TfdPZTb8qPYbvzVA priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore (NTUSG) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgF-DA5xAZA_nAkXRxEzsxt9BuTIh1h27SbpE_nquJklZrqmn89fg5bllBSNwix4rtvGf7_ez3fo-QD6UA42zBUgnMAxQtRVoVXKZcaMtdabyFjTe6ZxNxell8veJXMVg9xMIAQHA-gwE-hrt8uzBrPCo7Qpf1imHa6odlJfpgre2BCmaQkLyMzEIsk0f1aOQH4THgkA9yLvH1zu4TSPpjVpUdA_PRul2qu1s1n9_ba06ekcmml72LyffButMD8_MPAsf_HsZz8jRanbTu1eQFeQDtS_LkHhfhK3Jbt4sfan5Hx9AF96yWenuWfjk_nx7T6XLhlbCd0brrMCifXrd0fD3DhCMUl57-Pn9FgwOC_wIsaSRunVHMtjZffaI1HU8mVLWWfptenNE6kpnvk8uT44vRaRqzMqQmF6xLPUTSHpOAE6AkU0IMdcVcWYEcAlcAOZZkzqLIMwsglCkLl7FKG8XMMM9fk7120cIbQrXFFUdqW9issB6pGuPxpVZcl-DA8oR83EirWfbkG00ALZlseuE2KNwmCjchn1Gi26rInB0K_N9v4kRsciWYqnRvaLnCqix3Xh8LobTT3jpKyD5K7Hd7UVgJOdwoSBOn-arx1qjw6MRDzoSkW6X5q68q5L7c6evBP5p5Sx5jtf6Q55DsdTdreOfNnk6_D-r-Cw0c_ZU priority: 102 providerName: IEEE |
| Title | Anomaly Detection for GOOSE Spoofing Attacks in Digital Substations Using Deep Learning Models: A DNN and LSTM Approach |
| URI | https://ieeexplore.ieee.org/document/11088114 https://www.proquest.com/docview/3246729164 https://doi.org/10.1109/access.2025.3591695 https://doaj.org/article/3a61a8b663554f4da03f66846abfb190 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLagOyAO_BwiY1Q-cCQlbmIn5hbajQmxDqmrNE6WHdvVRHGrNdU0_nqeHW-0ICG4Ws4vv2f7-_L8vofQm5KZxuqCpNwQICiKs7QqKE8pU5rasgGE7SO6pxN2Mis-XdCLqLPtc2G24_ck4-9kKBsIPG5IBzkFLMPpfbTHKADvHtqbTb7UX335OGhP8xCIfPWXK3f2niDRH2uq7MDLBxu3kjfXcrHY2mmOH3cp3OsgUOgPmHwbbFo1aH78Jt_4jx_xBD2KiBPXnYs8RfeMe4YebukQPkfXtVt-l4sbPDZtOJrlMGBZ_PHsbHqEp6slOKCb47ptfUI-vnR4fDn3xUawX3a6WP4ah8MHcAezwlG0dY59pbXF-j2u8XgywdJp_Hl6forrKGS-j2bHR-ejkzRWZEibnJE2BXqkgI8Yy4zkRDI2VBWxZWX40FBpTO5bMqu9uTNtDJNNWdiMVKqRpBnm-QvUc0tnXiKstF9tuNKFzgoNLLVpgFsqSVVprNE0QW9vbSVWnfCGCIQl46IejcA7hR9PEcczQR-8Pe-6etXs0AB2EHESilwyIivVgSxbaJnlFnyxYFJZBcgoQfveG349j8AaDIQxQYe37iHiFF8LQKIMmAnQzQSldy7zx7t2tt9514P_7H-Ieu3VxrwG9NOqfvhr0A-Jiv04A34CrxcAEA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfQOAwOfA4tMMAHjqSLG9tJuIV2o0CbHdpJu1n-eKkmSlrRVNP467Edt6wgJG6R82E779l-P_u930PoXcZB14aSuABiAYoqeJxTVsSMK8PqTFsL253oTio-uqRfrthVCFb3sTAA4J3PoOcu_Vm-WeqN2yo7dS7rOXFpq-8zSinrwrV2Wyouh0TBssAtRJLitBwMbDcsCuyzXsoKd3tv_fE0_SGvyp6JebhpVvL2Ri4Wd1ab88eo2razczL51tu0qqd__kHh-N8deYIeBbsTl52iPEX3oHmGHt5hI3yObspm-V0ubvEQWu-g1WBr0eJPFxfTMzxdLa0aNnNctq0Ly8fXDR5ez13KEewmn-5Ef429C4L9AqxwoG6dY5dvbbH-gEs8rCosG4PH09kEl4HO_Ahdnp_NBqM45GWIdcpJG1uQpCwqgZqDLIjkvK9yUmc5FH1gEiB1JUltnNATA8ClzmidkFxpSXQ_TV-gg2bZwDHCyrg5p1CGmoQai1W1tghTSaYyqMGwCL3fSkusOvoN4WFLUohOuMIJVwThRuijk-juUced7Qvs3xdhKIpUciJz1ZlaNTUySWurkZRLVStrH0XoyEnsd31BWBE62SqICAN9Law9yi0-saAzQvFOaf5qq_TZL_fa-vIf1bxFh6PZZCzGn6uvr9AD90q35XOCDtofG3htjaBWvfGq_wt06wDx |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwGLWgOyAOMGBogTH5wJGUuImdmFto90OIdUhdpXGy_LOaKG5FU03jr-dz4m0tSAiulpM4_p7t92T7fQi9LZnVzhQk5ZaAQFGcpVVBeUqZMtSVGhh22NE9G7PTafHpkl5Gn-1wF2Zz_55k_L1s0waCjhvQfk6By3D6EO0wCsS7h3am4y_115A-DsrTvN2IfP2XJ7fWntaiP-ZU2aKXj9Z-KW-u5Xy-sdIcP-2ucK9ag8JwwORbf92ovv75m33jP_7ELnoSGSeuO4g8Qw-sf44eb_gQvkDXtV98l_MbPLJNezTLY-Cy-OT8fHKEJ8sFANDPcN004UI-vvJ4dDULyUZwmHa6vfwVbg8fwBvsEkfT1hkOmdbmqw-4xqPxGEtv8OfJxRmuo5H5HpoeH10MT9OYkSHVOSNNCvJIgR6xjlnJiWRsoCriysrygaXS2jyUZM6EcGfGWiZ1WbiMVEpLogd5_hL1_MLbfYSVCbMNV6YwWWFApWoN2lJJqkrrrKEJencbK7HsjDdEK1gyLurhENApQn-K2J8J-hjieVc1uGa3BRAHEQehyCUjslIdyXKFkVnuAIsFk8opYEYJ2gtouP8egTkYBGOCDm7hIeIQXwlgogyUCcjNBKV3kPmjrV3st9r66j_rH6Be82Nt3wD7adRhRP0vv7n-Cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+for+GOOSE+Spoofing+Attacks+in+Digital+Substations+Using+Deep+Learning+Models%3A+A+DNN+and+LSTM+Approach&rft.jtitle=IEEE+access&rft.au=Fernando%2C+Trinal&rft.au=Ramachandran%2C+Gowri&rft.au=Vilathgamuwa%2C+Mahinda&rft.au=Jayalath%2C+Dhammika&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=129709&rft.epage=129720&rft_id=info:doi/10.1109%2FACCESS.2025.3591695&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3591695 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |