The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review

With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of ef...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 16; p. 5078
Main Authors Mahmoud, Moamin A., Md Nasir, Naziffa Raha, Gurunathan, Mathuri, Raj, Preveena, Mostafa, Salama A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en14165078

Cover

Abstract With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of effective transmission of present-day power assets. The paper aims to survey the present literature concerning predictive maintenance and different types of faults that could be detected within the smart grid. Four databases (Scopus, ScienceDirect, IEEE Xplore, and Web of Science) were searched between 2012 and 2020. Sixty-five (n = 65) were chosen based on specified exclusion and inclusion criteria. Fifty-seven percent (n = 37/65) of the studies analyzed the issues from predictive maintenance perspectives, while about 18% (n = 12/65) focused on factors-related review studies on the smart grid and about 15% (n = 10/65) focused on factors related to the experimental study. The remaining 9% (n = 6/65) concentrated on fields related to the challenges and benefits of the study. The significance of predictive maintenance has been developing over time in connection with Industry 4.0 revolution. The paper’s fundamental commitment is the outline and overview of faults in the smart grid such as fault location and detection. Therefore, advanced methods of applying Artificial Intelligence (AI) techniques can enhance and improve the reliability and resilience of smart grid systems. For future direction, we aim to supply a deep understanding of Smart meters to detect or monitor faults in the smart grid as it is the primary IoT sensor in an AMI.
AbstractList With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of effective transmission of present-day power assets. The paper aims to survey the present literature concerning predictive maintenance and different types of faults that could be detected within the smart grid. Four databases (Scopus, ScienceDirect, IEEE Xplore, and Web of Science) were searched between 2012 and 2020. Sixty-five (n = 65) were chosen based on specified exclusion and inclusion criteria. Fifty-seven percent (n = 37/65) of the studies analyzed the issues from predictive maintenance perspectives, while about 18% (n = 12/65) focused on factors-related review studies on the smart grid and about 15% (n = 10/65) focused on factors related to the experimental study. The remaining 9% (n = 6/65) concentrated on fields related to the challenges and benefits of the study. The significance of predictive maintenance has been developing over time in connection with Industry 4.0 revolution. The paper’s fundamental commitment is the outline and overview of faults in the smart grid such as fault location and detection. Therefore, advanced methods of applying Artificial Intelligence (AI) techniques can enhance and improve the reliability and resilience of smart grid systems. For future direction, we aim to supply a deep understanding of Smart meters to detect or monitor faults in the smart grid as it is the primary IoT sensor in an AMI.
Author Mahmoud, Moamin A.
Mostafa, Salama A.
Gurunathan, Mathuri
Md Nasir, Naziffa Raha
Raj, Preveena
Author_xml – sequence: 1
  givenname: Moamin A.
  orcidid: 0000-0001-8333-5575
  surname: Mahmoud
  fullname: Mahmoud, Moamin A.
– sequence: 2
  givenname: Naziffa Raha
  surname: Md Nasir
  fullname: Md Nasir, Naziffa Raha
– sequence: 3
  givenname: Mathuri
  surname: Gurunathan
  fullname: Gurunathan, Mathuri
– sequence: 4
  givenname: Preveena
  surname: Raj
  fullname: Raj, Preveena
– sequence: 5
  givenname: Salama A.
  orcidid: 0000-0001-5348-502X
  surname: Mostafa
  fullname: Mostafa, Salama A.
BookMark eNp9kc1uUzEQhS1UJErohiewxA4I-O_-sasCLZVaQCSsrbm-c4nDrZ3avo2y60Ow4R14qj4JDkEFIYQ3Y42-czRn5iE5cN4hIY85eyFlw16i44qXBavqe-SQN0055aySB3_8H5CjGFcsPym5lPKQfF8skc7GENAlOk-QkPqeptw8DolaRz9iRAhmSb2jHwJ21iR7jfQCrEvowBncUfNLyPhpsB19bWMKth2TzYp3mDY-fHlFT2Ac0u3Nt0gX2zXG53QGY9xVcN2dbxZcYFr6Lt7efD2m821MeAnJmjzFtcXNI3K_hyHi0a86IZ9O3ixmb6fn70_PZsfnUyNLnqaqMm0DHbYoeNn2iissagNYQc26QkjFjGFtj6ruuSlAlZ2q66ppgFelwFrICTnb-3YeVnodbE631R6s_tnw4bPOca0ZUENbdMhlK5Rkqmj6Wra1YB3nokCEvOcJebb3Gt0athsYhjtDzvTubvr33TL9ZE-vg78aMSa98mNwOawWRVkIwRtRZortKRN8jAF7bWw-Xd5fCmCHfxs__Uvynyl-AAItuXY
CitedBy_id crossref_primary_10_1515_jisys_2022_0221
crossref_primary_10_1016_j_rser_2023_114088
crossref_primary_10_3390_en16052280
crossref_primary_10_1016_j_egyr_2024_08_044
crossref_primary_10_1109_ACCESS_2024_3396402
crossref_primary_10_3390_ma15134645
crossref_primary_10_1007_s11277_024_11233_w
crossref_primary_10_3390_s23031409
crossref_primary_10_1063_5_0147592
crossref_primary_10_1016_j_jup_2024_101769
crossref_primary_10_1109_ACCESS_2024_3524061
crossref_primary_10_3390_en16020820
crossref_primary_10_3390_en16176332
crossref_primary_10_3389_fenrg_2022_1007914
crossref_primary_10_2478_amns_2024_3314
crossref_primary_10_3390_en17246399
crossref_primary_10_3390_s24134313
crossref_primary_10_1080_15325008_2024_2337217
crossref_primary_10_3390_en15228367
crossref_primary_10_3390_su14148801
crossref_primary_10_32604_cmc_2023_028433
crossref_primary_10_3389_fenrg_2022_977665
crossref_primary_10_1016_j_prime_2024_100474
crossref_primary_10_1016_j_jmsy_2022_06_002
crossref_primary_10_1109_TQE_2022_3185505
crossref_primary_10_3390_en18061523
crossref_primary_10_1016_j_energy_2022_125521
crossref_primary_10_1016_j_engappai_2024_108785
crossref_primary_10_2139_ssrn_4185657
crossref_primary_10_3390_en14237997
crossref_primary_10_1109_TII_2023_3348819
Cites_doi 10.1016/j.measurement.2020.108691
10.1016/j.asej.2018.04.006
10.1109/SPEC.2018.8635983
10.1109/ICTAI.2017.00151
10.1109/ACCESS.2020.2991067
10.1109/PESMG.2013.6672862
10.1109/TSG.2014.2365855
10.1016/j.ijepes.2018.12.019
10.1109/SEST.2018.8495846
10.4236/sgre.2019.104007
10.1109/PTC.2019.8810663
10.1016/j.promfg.2019.05.085
10.1016/j.ijepes.2014.10.010
10.1109/JESTPE.2019.2956042
10.1109/SCEECS.2018.8546879
10.3390/s21041470
10.1016/j.ijepes.2014.12.038
10.1109/CIEC.2014.6959189
10.1109/SGC.2015.7857419
10.1109/SMC.2019.8913912
10.3390/su12198211
10.1109/EI247390.2019.9061936
10.1109/TSG.2017.2709546
10.1109/ISGT.2015.7131914
10.1109/TSG.2017.2776310
10.1016/j.ijepes.2019.01.039
10.9790/1676-0814250
10.1016/j.cosrev.2020.100318
10.1109/ICPEDC47771.2019.9036484
10.1016/j.procs.2018.04.123
10.1097/MEG.0b013e3282f198a0
10.1109/TSG.2016.2642988
10.1109/TPWRD.2014.2302137
10.1016/j.ijepes.2020.106189
10.1109/TSG.2016.2576282
10.1109/SEST.2019.8849151
10.3390/en12244667
10.1016/j.cosrev.2020.100341
10.1016/j.ijepes.2019.05.029
10.1016/j.epsr.2020.106254
10.1016/j.physc.2015.02.051
10.1109/ACCESS.2017.2785763
10.1088/1757-899X/384/1/012039
10.1109/TSG.2014.2327167
10.1109/FSKD.2017.8393060
10.1109/TPWRS.2019.2914214
10.3390/en13236269
10.1016/j.epsr.2009.04.002
10.1109/ICCCA49541.2020.9250916
10.1016/j.rser.2017.03.021
10.1016/j.epsr.2020.106602
10.1109/TTE.2018.2863550
10.1080/22348972.2017.1385440
10.1109/TCCN.2018.2881442
10.1016/j.epsr.2016.10.008
10.1109/ISGWCP.2016.7548270
10.4236/jpee.2016.48001
10.1109/eGRID48402.2019.9092670
10.1109/TSG.2015.2477482
10.1007/s10836-017-5658-9
10.3390/en10121987
10.1109/HOLM.2018.8611739
10.1109/ICCPEIC.2017.8290461
10.14569/IJARAI.2013.020206
10.1016/j.neucom.2015.05.112
10.1109/EI247390.2019.9061740
10.1109/CICED.2018.8592221
10.1109/PESTSE.2016.7516526
10.1109/TSG.2020.2994637
10.1109/ACCESS.2018.2873615
10.1109/ISGT-Asia.2019.8881710
10.1109/TPWRD.2018.2799181
10.1016/j.compeleceng.2018.05.025
10.1016/j.apenergy.2020.115299
10.1016/j.ijepes.2017.05.015
10.1109/ISGT-Asia.2019.8881346
10.1109/TELSIKS46999.2019.9002345
10.1016/j.apm.2019.07.034
10.1186/s41601-017-0048-y
10.1016/j.simpat.2008.12.003
10.17559/TV-20150210221236
10.1109/PTC.2019.8810799
10.1051/e3sconf/202018602004
10.1016/j.ijepes.2020.106269
10.1109/APPEEC.2016.7779524
10.1109/TPWRD.2013.2287025
10.1109/TIE.2014.2387093
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/en14165078
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00
10.3390/en14165078
10_3390_en14165078
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c361t-47cb9adebe216bf414e58cae7a80d52340cc0bfe48f1c5a46d488799a1762e823
IEDL.DBID UNPAY
ISSN 1996-1073
IngestDate Tue Oct 14 19:07:11 EDT 2025
Sun Oct 26 04:10:11 EDT 2025
Mon Jun 30 07:26:27 EDT 2025
Thu Oct 16 04:30:38 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-47cb9adebe216bf414e58cae7a80d52340cc0bfe48f1c5a46d488799a1762e823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5348-502X
0000-0001-8333-5575
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1073/14/16/5078/pdf
PQID 2565221926
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00
unpaywall_primary_10_3390_en14165078
proquest_journals_2565221926
crossref_citationtrail_10_3390_en14165078
crossref_primary_10_3390_en14165078
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rivas (ref_56) 2020; 189
ref_94
ref_93
Hidayatullah (ref_54) 2018; 384
Yen (ref_72) 2019; 109
Dhend (ref_41) 2017; 33
Kavaskar (ref_91) 2018; 10
ref_14
ref_57
ref_11
ref_10
ref_95
Alazab (ref_42) 2020; 8
ref_19
ref_17
Stefenon (ref_35) 2020; 123
Barik (ref_39) 2018; 33
Tang (ref_45) 2013; 29
Ali (ref_63) 2012; 9
Kashyap (ref_88) 2015; 62
Affijulla (ref_69) 2017; 9
Sarwar (ref_90) 2019; 32
Awalin (ref_55) 2020; 186
ref_24
Kotsiopoulos (ref_62) 2021; 40
ref_22
Calderaro (ref_70) 2009; 79
Srivastava (ref_60) 2010; 12
ref_20
ref_64
Asgharigovar (ref_92) 2019; 107
Livi (ref_65) 2015; 170
Skydt (ref_23) 2020; 170
ref_28
Kabir (ref_47) 2019; 34
Chaitanya (ref_5) 2018; 69
Hlalele (ref_12) 2019; 35
Zhang (ref_52) 2015; 22
Sathya (ref_58) 2013; 2
Hossain (ref_15) 2018; 6
Yu (ref_26) 2017; 10
Milioudis (ref_44) 2014; 6
ref_71
Saleh (ref_30) 2015; 8
Xiong (ref_40) 2020; 11
Ntalampiras (ref_21) 2016; 9
Das (ref_53) 2013; 8
Simeone (ref_59) 2018; 4
ref_79
ref_78
Rajaei (ref_18) 2014; 5
ref_32
Kalogeropoulos (ref_43) 2019; 77
ref_75
ref_74
Roostaee (ref_50) 2017; 2
Zarei (ref_67) 2019; 9
Sapountzoglou (ref_34) 2020; 276
Zhang (ref_38) 2017; 6
Daryalal (ref_68) 2017; 92
Qi (ref_73) 2017; 143
Hajjaji (ref_13) 2021; 39
ref_83
ref_82
ref_81
ref_80
(ref_29) 2018; 166
Gururajapathy (ref_49) 2017; 74
Zhai (ref_66) 2019; 113
Deng (ref_76) 2015; 65
Mousa (ref_9) 2019; 10
Grossi (ref_61) 2007; 19
ref_89
Lau (ref_25) 2017; 7
ref_87
ref_86
ref_85
ref_84
ref_1
England (ref_36) 2020; 122
Chen (ref_46) 2016; 7
ref_3
ref_2
Rahman (ref_37) 2014; 67
Baimel (ref_16) 2016; 4
Chen (ref_33) 2015; 518
Wang (ref_8) 2016; 9
ref_48
Feng (ref_7) 2018; 4
Sapountzoglou (ref_31) 2020; 182
Ferreira (ref_77) 2018; 130
Robson (ref_27) 2014; 29
ref_4
Firouzjah (ref_51) 2009; 17
ref_6
References_xml – volume: 170
  start-page: 108691
  year: 2020
  ident: ref_23
  article-title: A probabilistic sequence classification approach for early fault prediction in distribution grids using long short-term memory neural networks
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2020.108691
– volume: 10
  start-page: 5
  year: 2018
  ident: ref_91
  article-title: Detection of High Impedance Fault in Distribution Networks
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2018.04.006
– ident: ref_24
  doi: 10.1109/SPEC.2018.8635983
– ident: ref_1
  doi: 10.1109/ICTAI.2017.00151
– volume: 8
  start-page: 85454
  year: 2020
  ident: ref_42
  article-title: A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991067
– ident: ref_87
  doi: 10.1109/PESMG.2013.6672862
– volume: 6
  start-page: 894
  year: 2014
  ident: ref_44
  article-title: Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2365855
– volume: 107
  start-page: 412
  year: 2019
  ident: ref_92
  article-title: Electrical Power and Energy Systems High impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.12.019
– ident: ref_6
  doi: 10.1109/SEST.2018.8495846
– volume: 10
  start-page: 98
  year: 2019
  ident: ref_9
  article-title: Review of Fault Types, Impacts, and Management Solutions in Smart Grid Systems
  publication-title: Smart Grid Renew. Energy
  doi: 10.4236/sgre.2019.104007
– volume: 9
  start-page: 272
  year: 2012
  ident: ref_63
  article-title: Random Forests and Decision Trees
  publication-title: Int. J. Comput. Sci. Issues
– ident: ref_78
  doi: 10.1109/PTC.2019.8810663
– volume: 35
  start-page: 601
  year: 2019
  ident: ref_12
  article-title: Faults Classification and Identification on Smart Grid: Part-A Status Review
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2019.05.085
– volume: 65
  start-page: 254
  year: 2015
  ident: ref_76
  article-title: Fault location in loop distribution network using SVM technology
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.10.010
– volume: 9
  start-page: 949
  year: 2019
  ident: ref_67
  article-title: Switch Fault Tolerant Model-Based Predictive Control of a VSC Connected to the Grid
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2019.2956042
– ident: ref_2
  doi: 10.1109/SCEECS.2018.8546879
– ident: ref_17
  doi: 10.3390/s21041470
– volume: 67
  start-page: 488
  year: 2014
  ident: ref_37
  article-title: A multi-agent approach for enhancing transient stability of smart grids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.038
– ident: ref_19
  doi: 10.1109/CIEC.2014.6959189
– volume: 166
  start-page: 1
  year: 2018
  ident: ref_29
  article-title: Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs
  publication-title: Electr. Power Syst. Res.
– ident: ref_75
  doi: 10.1109/SGC.2015.7857419
– ident: ref_83
  doi: 10.1109/SMC.2019.8913912
– ident: ref_57
  doi: 10.3390/su12198211
– ident: ref_85
  doi: 10.1109/EI247390.2019.9061936
– volume: 9
  start-page: 6348
  year: 2017
  ident: ref_69
  article-title: A Robust Fault Detection and Discrimination Technique for Transmission Lines
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2709546
– ident: ref_32
  doi: 10.1109/ISGT.2015.7131914
– volume: 10
  start-page: 1694
  year: 2017
  ident: ref_26
  article-title: Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2776310
– volume: 109
  start-page: 1
  year: 2019
  ident: ref_72
  article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.01.039
– volume: 8
  start-page: 42
  year: 2013
  ident: ref_53
  article-title: Impact of Distributed Generation on Reliability of Distribution System
  publication-title: IOSR J. Electr. Electron. Eng.
  doi: 10.9790/1676-0814250
– volume: 39
  start-page: 100318
  year: 2021
  ident: ref_13
  article-title: Big data and IoT-based applications in smart environments: A systematic review
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100318
– ident: ref_94
  doi: 10.1109/ICPEDC47771.2019.9036484
– volume: 130
  start-page: 696
  year: 2018
  ident: ref_77
  article-title: Faults Monitoring System in the Electric Power Grid of Medium Voltage
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.123
– volume: 19
  start-page: 1046
  year: 2007
  ident: ref_61
  article-title: Introduction to artificial neural networks
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/MEG.0b013e3282f198a0
– volume: 32
  start-page: 524
  year: 2019
  ident: ref_90
  article-title: High impedance fault detection and isolation in power distribution networks using support vector machines
  publication-title: J. King Saud Univ. Eng. Sci.
– volume: 9
  start-page: 3783
  year: 2016
  ident: ref_8
  article-title: High-Impedance Fault Detection Based on Nonlinear Voltage–Current Characteristic Profile Identification
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2642988
– volume: 29
  start-page: 1955
  year: 2014
  ident: ref_27
  article-title: Fault Location on Branched Networks Using a Multiended Approach
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2014.2302137
– volume: 122
  start-page: 106189
  year: 2020
  ident: ref_36
  article-title: Real time voltage stability prediction of smart grid areas using smart meters data and improved Thevenin estimates
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106189
– volume: 7
  start-page: 2827
  year: 2016
  ident: ref_46
  article-title: Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2576282
– ident: ref_80
  doi: 10.1109/SEST.2019.8849151
– ident: ref_11
  doi: 10.3390/en12244667
– volume: 40
  start-page: 100341
  year: 2021
  ident: ref_62
  article-title: Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100341
– volume: 113
  start-page: 310
  year: 2019
  ident: ref_66
  article-title: A model predictive approach to protect power systems against cascading blackouts
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.05.029
– ident: ref_93
– volume: 182
  start-page: 106254
  year: 2020
  ident: ref_31
  article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106254
– volume: 518
  start-page: 144
  year: 2015
  ident: ref_33
  article-title: Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid
  publication-title: Phys. C Supercond.
  doi: 10.1016/j.physc.2015.02.051
– volume: 6
  start-page: 7675
  year: 2017
  ident: ref_38
  article-title: Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2785763
– volume: 384
  start-page: 012039
  year: 2018
  ident: ref_54
  article-title: Power Transmission and Distribution Monitoring using Internet of Things (IoT) for Smart Grid
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/384/1/012039
– volume: 5
  start-page: 2183
  year: 2014
  ident: ref_18
  article-title: Fault current management using inverter-based distributed generators in smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2327167
– ident: ref_4
  doi: 10.1109/FSKD.2017.8393060
– volume: 34
  start-page: 4370
  year: 2019
  ident: ref_47
  article-title: Predicting Thunderstorm-Induced Power Outages to Support Utility Restoration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2914214
– ident: ref_10
  doi: 10.3390/en13236269
– volume: 79
  start-page: 1300
  year: 2009
  ident: ref_70
  article-title: A Petri net based protection monitoring system for distribution networks with distributed generation
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2009.04.002
– ident: ref_3
  doi: 10.1109/ICCCA49541.2020.9250916
– volume: 74
  start-page: 949
  year: 2017
  ident: ref_49
  article-title: Fault location and detection techniques in power distribution systems with distributed generation: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.021
– volume: 189
  start-page: 106602
  year: 2020
  ident: ref_56
  article-title: Faults in smart grid systems: Monitoring, detection and classification
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106602
– volume: 4
  start-page: 961
  year: 2018
  ident: ref_7
  article-title: Optimization Method With Prediction-Based Maintenance Strategy for Traction Power Supply Equipment Based on Risk Quantification
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2018.2863550
– volume: 7
  start-page: 269
  year: 2017
  ident: ref_25
  article-title: Open-circuit fault detection in distribution overhead power supply network
  publication-title: J. Int. Counc. Electr. Eng.
  doi: 10.1080/22348972.2017.1385440
– volume: 4
  start-page: 648
  year: 2018
  ident: ref_59
  article-title: A Very Brief Introduction to Machine Learning With Applications to Communication Systems
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2018.2881442
– volume: 143
  start-page: 130
  year: 2017
  ident: ref_73
  article-title: Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.10.008
– ident: ref_95
  doi: 10.1109/ISGWCP.2016.7548270
– ident: ref_14
– volume: 4
  start-page: 1
  year: 2016
  ident: ref_16
  article-title: Smart Grid Communication Technologies
  publication-title: J. Power Energy Eng.
  doi: 10.4236/jpee.2016.48001
– ident: ref_86
  doi: 10.1109/eGRID48402.2019.9092670
– volume: 8
  start-page: 1129
  year: 2015
  ident: ref_30
  article-title: Hybrid Passive-Overcurrent Relay for Detection of Faults in Low-Voltage DC Grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2477482
– volume: 33
  start-page: 329
  year: 2017
  ident: ref_41
  article-title: Fault Diagnosis of Smart Grid Distribution System by Using Smart Sensors and Symlet Wavelet Function
  publication-title: J. Electron. Test.
  doi: 10.1007/s10836-017-5658-9
– ident: ref_48
  doi: 10.3390/en10121987
– ident: ref_71
  doi: 10.1109/HOLM.2018.8611739
– ident: ref_89
  doi: 10.1109/ICCPEIC.2017.8290461
– volume: 2
  start-page: 34
  year: 2013
  ident: ref_58
  article-title: Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
  publication-title: Int. J. Adv. Res. Artif. Intell.
  doi: 10.14569/IJARAI.2013.020206
– volume: 170
  start-page: 368
  year: 2015
  ident: ref_65
  article-title: Modeling and recognition of smart grid faults by a combined approach of dissimilarity learning and one-class classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.112
– ident: ref_84
  doi: 10.1109/EI247390.2019.9061740
– ident: ref_74
  doi: 10.1109/CICED.2018.8592221
– ident: ref_22
  doi: 10.1109/PESTSE.2016.7516526
– volume: 11
  start-page: 5239
  year: 2020
  ident: ref_40
  article-title: Incipient Fault Identification in Power Distribution Systems via Human-Level Concept Learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2994637
– volume: 6
  start-page: 60294
  year: 2018
  ident: ref_15
  article-title: Utility Grid: Present Challenges and Their Potential Solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873615
– ident: ref_82
  doi: 10.1109/ISGT-Asia.2019.8881710
– volume: 33
  start-page: 2462
  year: 2018
  ident: ref_39
  article-title: A decentralized fault detection technique for detecting single phase to ground faults in power distribution systems with resonant grounding
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2018.2799181
– volume: 69
  start-page: 28
  year: 2018
  ident: ref_5
  article-title: An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.05.025
– volume: 276
  start-page: 115299
  year: 2020
  ident: ref_34
  article-title: A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115299
– volume: 9
  start-page: 1964
  year: 2016
  ident: ref_21
  article-title: Fault Diagnosis for Smart Grids in Pragmatic Conditions
  publication-title: IEEE Trans. Smart Grid
– ident: ref_64
– volume: 92
  start-page: 230
  year: 2017
  ident: ref_68
  article-title: Fast fault detection scheme for series-compensated lines during power swing
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.05.015
– ident: ref_81
  doi: 10.1109/ISGT-Asia.2019.8881346
– ident: ref_28
  doi: 10.1109/TELSIKS46999.2019.9002345
– volume: 77
  start-page: 635
  year: 2019
  ident: ref_43
  article-title: Predictive control algorithms for congestion management in electric power distribution grids
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.07.034
– volume: 2
  start-page: 16
  year: 2017
  ident: ref_50
  article-title: Experimental studies on impedance based fault location for long transmission lines
  publication-title: Prot. Control. Mod. Power Syst.
  doi: 10.1186/s41601-017-0048-y
– volume: 17
  start-page: 692
  year: 2009
  ident: ref_51
  article-title: A current independent method based on synchronized voltage measurement for fault location on transmission lines
  publication-title: Simul. Model. Pr. Theory
  doi: 10.1016/j.simpat.2008.12.003
– volume: 22
  start-page: 51
  year: 2015
  ident: ref_52
  article-title: Istraživanje sustava zaštite releja mikro-rešetke
  publication-title: Teh. Vjesn.
  doi: 10.17559/TV-20150210221236
– volume: 12
  start-page: 1
  year: 2010
  ident: ref_60
  article-title: Data classification using support vector machine
  publication-title: J. Theor. Appl. Inf. Technol.
– ident: ref_79
  doi: 10.1109/PTC.2019.8810799
– volume: 186
  start-page: 02004
  year: 2020
  ident: ref_55
  article-title: A Recent Development of Monitoring Devices on Smart Grid
  publication-title: E3S Web Conf.
  doi: 10.1051/e3sconf/202018602004
– volume: 123
  start-page: 106269
  year: 2020
  ident: ref_35
  article-title: Wavelet group method of data handling for fault prediction in electrical power insulators
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106269
– ident: ref_20
  doi: 10.1109/APPEEC.2016.7779524
– volume: 29
  start-page: 951
  year: 2013
  ident: ref_45
  article-title: Analysis of Significant Factors on Cable Failure Using the Cox Proportional Hazard Model
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2013.2287025
– volume: 62
  start-page: 2612
  year: 2015
  ident: ref_88
  article-title: Automated Fault Location and Isolation in Distribution Grids with Distributed Control and Unreliable Communication
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2387093
SSID ssj0000331333
Score 2.4634562
SecondaryResourceType review_article
Snippet With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5078
SubjectTerms Bibliometrics
Breakdowns
Fault diagnosis
faults detection
predictive maintenance
smart grid
Systematic review
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS9xAEF7El9qH0mpLT20ZqC9Cg0l2N7fpm7U9RTgRrOBbmN3sgnDm5HJH6Zs_oi_-B3-Vv6QzSS49obQvfQqESdhkJjPfx06-EWJPZgatt3HkMLUR1WuMbAghCkmMisqTRsc_OI_PspNLdXqlr1ZGfXFPWCsP3L64A7S69Im0qeI9vTwYaalolQQTtPcYN2w9NvkKmWpysJREvmSrRyqJ1x_4KiHsQejHPKlAjVD_E3T5bFHd4o_vOJmsFJrRS_GiQ4hw2K7slVjz1aZ4vqIbuCUeyLnQKStBAxdhGoCgHF8F1xUs--lgWsH5jPdiOKvBGFkdgiU2PFtd3NDjw_HsuoQvrJ_bjb6Cs7Y1_BOMcDGZP97d18B0tf4IR7io-YhV2d-XLhg3Y6jrx7ufh3DRS0NDu-_wWlyOvn47Oom6sQuRk1kyj9TQ2RxL8m6aZDaoRHltHPohmrgk3qpi52IbvDIhcRpVVlISGOY5JpRYvUnlG7FeTSv_VgDRxyBTqcuQoTLa5qyLrYPO0BKysmEg9peuKFynSc6jMSYFcRN2W_HbbQPxobe9bZU4_mj1mT3aW7B6dnOCYqroYqr4V0wNxO4yHoruk64LwoaEVQkQZwOx18fIX5ay_T-WsiM2Uu6iaVoOd8X6fLbw7wgGze37JuJ_AX9vCCo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatxADB7SzaHtIfSXbpOWgeZSqIntmfHahVCSNNtQ2CU0DeRmNH8hsLW3611Kb3mIXvoOeao8SSX_JYGSk8FoBoM00idL84mxbZGkoJ0OAwOxDjBeQ6C994GPQpAYnhQYuuA8mSZHp_LrmTpbY9PuLgy1VXY-sXbUtjT0j3wHQzNCBcQjyaf5z4CmRlF1tRuhAe1oBbtbU4w9YOsxMWMN2Pr-4fT4W__XJRQCkzLR8JQKzPd3XBEhJkFUlN6JTDWB_x3U-XBVzOH3L5jNbgWg8RO20SJHvteo-ilbc8Uz9vgWn-BzdoVK5y3jEq9hJC89R4hHq_hFwbs-O14W_HhBNRrydnwCxBpB1BuOpE5-oD3xL4sLyz8Tr247EotPm5bxj3wMq9ny-vJvxSmNrT7wA1hV9ITC9vvigkk9nrq6vvyzx096ymje1CNesNPx4feDo6AdxxAYkUTLQI6MzsCi1uMo0V5G0qnUgBtBGlrMZ2VoTKi9k6mPjAKZWHQOoyyDCB2uS2Pxkg2KsnCvGMe00otYKOsTkKnSGfFlK68S0Ii4tB-y950qctNyldPIjFmOOQupLb9R25C962XnDUPHf6X2SaO9BLFq1y_KxXneHtIctLIuEjqWVD_OfCo0AiSLkFQ5B2E4ZFudPeTtUa_yG8Mcsu3eRu75lNf377LJHsXUN1M3GW6xwXKxcm8Q-Cz129aa_wFTZAal
  priority: 102
  providerName: ProQuest
Title The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review
URI https://www.proquest.com/docview/2565221926
https://www.mdpi.com/1996-1073/14/16/5078/pdf
https://doaj.org/article/ab5de13b2430459f83b820d1125eea00
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELbY9gAc-F9RWCpL7AWJbOPEdhNu3WXbFVKjiqVSOUW2Y6OKklZNIgSnfQguvANPtU_COHHDLkJoL4kUjSNL-TzzTWb8GaHDkEdCaul7SgTSg3gtPGmM8QzxBYXwxISyG5ynCT-b03cLtnCb1QvXVgmp-LJ20nWHLOQn4YDQAeED4C7RYJOZPdTlDKh3B3XnyWz0sa4cO9NGgjSEVH6gcwJ0ww66FnRqbf5rhPJ2lW_Et69itboSW8b3UbKbVdNS8vmoKuWR-v6XYOONp_0A3XMsE48aWDxEt3T-CN29oj34GP0CgGCnzoRryonXBgMdtKPwMse7njy8zvFsa-s51jPiqbAKE1amQ1ur8y-APTzZLjP81mrwuuOzcNK0l7_BY1GtysuLnwW2KW_xGp-IqrB3kWfte2HAtD7Kuri8-DHC5628NG5qF0_QfHz64eTMc0c3eCrkpPToUMlYZICQgHBpKKGaRUrooYj8DHJf6ivlS6NpZIhigvIMHMkwjgUB56yjINxHnXyd66cIQwpqwiBkmeGCRkzGVlubGcaFBHYmTQ-92n3bVDldc3u8xiqF_MbiIP2Dgx562dpuGjWPf1odW4i0FlaBu36w3n5K3YJOhWSZJqEMqK01xyYKJZCpDOgr01r4fg8d7ACWOrdQpMAvge8CqeY9dNiC7j9TeXYzs-foTmB7berGxAPUKbeVfgFkqZR9tBeNJ33UPT5NZu_79S8HuE4WpO8Wz2-s3hdp
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhOaQ9lP7SbdNW0PRQqIltSV67EEr-tpsmu4QmgdzckS2VwNberncJueUheuk79Bn6MHmSznhlJ4GSW04GIwmbGc18oxl9w9iqiGLQRvteBqH20F-Dp621ng18kOieFGR0wXkwjPrH8suJOllgf5u7MFRW2djE2lDnZUZn5GvomhEqIB6JPo1_etQ1irKrTQsNcK0V8vWaYsxd7Ngz52cYwlXru9so73dh2Ns52up7rsuAl4komHqym-kEcvyZMIi0lYE0Ks7AdCH2cwzTpJ9lvrZGxjbIFMgoR53vJgkEaEdMTMQH6AKWpJAJBn9LmzvDg6_tKY8vBAaBYs6LKkTir5kiQAyEKCy-4QnrhgE3UO7yrBjD-RmMRtccXu8he-CQKt-Yq9YjtmCKx-z-Nf7CJ-wPKhl3DE-8hq28tBwhJc3ipwVv6vp4WfCDCeWEyLryARBLBVF9GBp1-AP1l3-enOZ8m3h8XQsuPpyXqH_kPZiNppcXvytOYXP1gW_BrKInFHm7Lk4Y1O2wq8uLXxv8sKWo5vP8x1N2fCeCecYWi7IwzxnHMNaKUKjcRiBjpRPi51ZWRaAR4WnbYe8bUaSZ40anFh2jFGMkElt6JbYOe9uOHc8ZQf47apMk2o4gFu_6RTn5njqjkIJWuQmEDiXlqxMbC42ALEcIrIwB3--wlUYfUmdaqvRqI3TYaqsjt3zKi9tXecOW-0eD_XR_d7j3kt0LqWanLnBcYYvTycy8QtA11a-dZnP27a430z88aEQr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhhf4cSn_ptmkraHoo1KxtSV67UEqa7SZpuksgDeTmjmSpBLb2dr1LyC0P0UvfoU_Qx8mTdMZ_SaDklpPBSMJmRjPfaEbfMLYuohi01b5nINQe-mvwtHPOc4EPEt2TAkMXnMeTaPtAfj5Uhyvsb3sXhsoqW5tYGeqsMHRG3kfXjFAB8UjUd01ZxN5w9GH206MOUpRpbdtp1Cqya0-OMXwr3-8MUdavw3D06evmttd0GPCMiIKFJwdGJ5Dhj4RBpJ0MpFWxATuA2M8wRJO-Mb52VsYuMApklKG-D5IEArQhNibSAzT_NwbE4k631Edb3fmOLwSGf6JmRBUi8fs2DxD9IP6KL_nAqlXAJXx7a5nP4OQYptMLrm50j91tMCrfqJXqPlux-QN25wJz4UP2B9WLN9xOvAKsvHAcwSTN4kc5byv6eJHzvTllg8iu8jEQPwWRfFgatf8DNZdvzY8yPiQG36b5Fp_Uxenv-AiW08XZ6e-SU8BcvuWbsCzpCXnWrYsTxlUj7PLs9NcG3-_IqXmd-XjEDq5FLI_Zal7k9gnjGMA6EQqVuQhkrHRCzNzKqQg0YjvteuxNK4rUNKzo1JxjmmJ0RGJLz8XWY6-6sbOaC-S_oz6SRLsRxN9dvSjm39PGHKSgVWYDoUNJmerExUIjFMsQ_Cprwfd7bK3Vh7QxKmV6vgV6bL3TkSs-5enVq7xkN3ELpV92JrvP2O2QinWqysY1trqYL-1zRFsL_aJSa86-Xfc--gdvfEHF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgewAO_CMWCrJEL0ikiRPbm3BbCkuFtKtKZaVyisaOXa1YsqtNIgSnPgQX3oGn6pMwTryhRQj1FCkaR5byeeYbzfgbQvYSmYIyKgo0xCrAeA2BstYGlkXAMTwJ0O6C83QmD-f8w4k48ZfVK99Wian4onXSbYcs5idJyHjIZIjcJQ3Xhb1OdqRA6j0gO_PZ0fhTWzn2pp0EaYKpfGhKhnTDLboUdFpt_kuE8kZTruHbV1guL8SWyR0y2-6qayn5vN_Ual9__0uw8crbvktue5ZJxx0s7pFrprxPbl3QHnxAfiFAqFdnoi3lpCtLkQ66VXRR0m1PHl2V9Gjj6jnOM9IpOIUJJ9NhnNXxF8Qefb9ZFPSt0-D147PorGsvf00n0Czr87OfFXUpb_WKHkBTuSeURf9dXDBtR1lX52c_xvS4l5emXe3iIZlP3n08OAz86IZAJ5LVAR9plUGBCImZVJYzbkSqwYwgjQrMfXmkdaSs4allWgCXBTqSUZYBQ-ds0jh5RAblqjSPCcUU1CZxIgorgadCZU5bW1ghQSE7U3ZIXm7_ba69rrkbr7HMMb9xOMj_4GBIXvS2607N459WbxxEegunwN2-WG1Oc3-gc1CiMCxRMXe15symiUIyVSB9FcZAFA3J7hZguXcLVY78Evkukmo5JHs96P6zlSdXM3tKbsau16ZtTNwlg3rTmGdIlmr13B-R34_QEwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Current+State+of+the+Art+in+Research+on+Predictive+Maintenance+in+Smart+Grid+Distribution+Network%3A+Fault%E2%80%99s+Types%2C+Causes%2C+and+Prediction+Methods%E2%80%94A+Systematic+Review&rft.jtitle=Energies+%28Basel%29&rft.au=Moamin+A.+Mahmoud&rft.au=Naziffa+Raha+Md+Nasir&rft.au=Mathuri+Gurunathan&rft.au=Preveena+Raj&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=16&rft.spage=5078&rft_id=info:doi/10.3390%2Fen14165078&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon