The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review
With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of ef...
        Saved in:
      
    
          | Published in | Energies (Basel) Vol. 14; no. 16; p. 5078 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.08.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1073 1996-1073  | 
| DOI | 10.3390/en14165078 | 
Cover
| Abstract | With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of effective transmission of present-day power assets. The paper aims to survey the present literature concerning predictive maintenance and different types of faults that could be detected within the smart grid. Four databases (Scopus, ScienceDirect, IEEE Xplore, and Web of Science) were searched between 2012 and 2020. Sixty-five (n = 65) were chosen based on specified exclusion and inclusion criteria. Fifty-seven percent (n = 37/65) of the studies analyzed the issues from predictive maintenance perspectives, while about 18% (n = 12/65) focused on factors-related review studies on the smart grid and about 15% (n = 10/65) focused on factors related to the experimental study. The remaining 9% (n = 6/65) concentrated on fields related to the challenges and benefits of the study. The significance of predictive maintenance has been developing over time in connection with Industry 4.0 revolution. The paper’s fundamental commitment is the outline and overview of faults in the smart grid such as fault location and detection. Therefore, advanced methods of applying Artificial Intelligence (AI) techniques can enhance and improve the reliability and resilience of smart grid systems. For future direction, we aim to supply a deep understanding of Smart meters to detect or monitor faults in the smart grid as it is the primary IoT sensor in an AMI. | 
    
|---|---|
| AbstractList | With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced innovative thought universally as a solution for the power demand increase around the world. The smart grid is the most practical trend of effective transmission of present-day power assets. The paper aims to survey the present literature concerning predictive maintenance and different types of faults that could be detected within the smart grid. Four databases (Scopus, ScienceDirect, IEEE Xplore, and Web of Science) were searched between 2012 and 2020. Sixty-five (n = 65) were chosen based on specified exclusion and inclusion criteria. Fifty-seven percent (n = 37/65) of the studies analyzed the issues from predictive maintenance perspectives, while about 18% (n = 12/65) focused on factors-related review studies on the smart grid and about 15% (n = 10/65) focused on factors related to the experimental study. The remaining 9% (n = 6/65) concentrated on fields related to the challenges and benefits of the study. The significance of predictive maintenance has been developing over time in connection with Industry 4.0 revolution. The paper’s fundamental commitment is the outline and overview of faults in the smart grid such as fault location and detection. Therefore, advanced methods of applying Artificial Intelligence (AI) techniques can enhance and improve the reliability and resilience of smart grid systems. For future direction, we aim to supply a deep understanding of Smart meters to detect or monitor faults in the smart grid as it is the primary IoT sensor in an AMI. | 
    
| Author | Mahmoud, Moamin A. Mostafa, Salama A. Gurunathan, Mathuri Md Nasir, Naziffa Raha Raj, Preveena  | 
    
| Author_xml | – sequence: 1 givenname: Moamin A. orcidid: 0000-0001-8333-5575 surname: Mahmoud fullname: Mahmoud, Moamin A. – sequence: 2 givenname: Naziffa Raha surname: Md Nasir fullname: Md Nasir, Naziffa Raha – sequence: 3 givenname: Mathuri surname: Gurunathan fullname: Gurunathan, Mathuri – sequence: 4 givenname: Preveena surname: Raj fullname: Raj, Preveena – sequence: 5 givenname: Salama A. orcidid: 0000-0001-5348-502X surname: Mostafa fullname: Mostafa, Salama A.  | 
    
| BookMark | eNp9kc1uUzEQhS1UJErohiewxA4I-O_-sasCLZVaQCSsrbm-c4nDrZ3avo2y60Ow4R14qj4JDkEFIYQ3Y42-czRn5iE5cN4hIY85eyFlw16i44qXBavqe-SQN0055aySB3_8H5CjGFcsPym5lPKQfF8skc7GENAlOk-QkPqeptw8DolaRz9iRAhmSb2jHwJ21iR7jfQCrEvowBncUfNLyPhpsB19bWMKth2TzYp3mDY-fHlFT2Ac0u3Nt0gX2zXG53QGY9xVcN2dbxZcYFr6Lt7efD2m821MeAnJmjzFtcXNI3K_hyHi0a86IZ9O3ixmb6fn70_PZsfnUyNLnqaqMm0DHbYoeNn2iissagNYQc26QkjFjGFtj6ruuSlAlZ2q66ppgFelwFrICTnb-3YeVnodbE631R6s_tnw4bPOca0ZUENbdMhlK5Rkqmj6Wra1YB3nokCEvOcJebb3Gt0athsYhjtDzvTubvr33TL9ZE-vg78aMSa98mNwOawWRVkIwRtRZortKRN8jAF7bWw-Xd5fCmCHfxs__Uvynyl-AAItuXY | 
    
| CitedBy_id | crossref_primary_10_1515_jisys_2022_0221 crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_3390_en16052280 crossref_primary_10_1016_j_egyr_2024_08_044 crossref_primary_10_1109_ACCESS_2024_3396402 crossref_primary_10_3390_ma15134645 crossref_primary_10_1007_s11277_024_11233_w crossref_primary_10_3390_s23031409 crossref_primary_10_1063_5_0147592 crossref_primary_10_1016_j_jup_2024_101769 crossref_primary_10_1109_ACCESS_2024_3524061 crossref_primary_10_3390_en16020820 crossref_primary_10_3390_en16176332 crossref_primary_10_3389_fenrg_2022_1007914 crossref_primary_10_2478_amns_2024_3314 crossref_primary_10_3390_en17246399 crossref_primary_10_3390_s24134313 crossref_primary_10_1080_15325008_2024_2337217 crossref_primary_10_3390_en15228367 crossref_primary_10_3390_su14148801 crossref_primary_10_32604_cmc_2023_028433 crossref_primary_10_3389_fenrg_2022_977665 crossref_primary_10_1016_j_prime_2024_100474 crossref_primary_10_1016_j_jmsy_2022_06_002 crossref_primary_10_1109_TQE_2022_3185505 crossref_primary_10_3390_en18061523 crossref_primary_10_1016_j_energy_2022_125521 crossref_primary_10_1016_j_engappai_2024_108785 crossref_primary_10_2139_ssrn_4185657 crossref_primary_10_3390_en14237997 crossref_primary_10_1109_TII_2023_3348819  | 
    
| Cites_doi | 10.1016/j.measurement.2020.108691 10.1016/j.asej.2018.04.006 10.1109/SPEC.2018.8635983 10.1109/ICTAI.2017.00151 10.1109/ACCESS.2020.2991067 10.1109/PESMG.2013.6672862 10.1109/TSG.2014.2365855 10.1016/j.ijepes.2018.12.019 10.1109/SEST.2018.8495846 10.4236/sgre.2019.104007 10.1109/PTC.2019.8810663 10.1016/j.promfg.2019.05.085 10.1016/j.ijepes.2014.10.010 10.1109/JESTPE.2019.2956042 10.1109/SCEECS.2018.8546879 10.3390/s21041470 10.1016/j.ijepes.2014.12.038 10.1109/CIEC.2014.6959189 10.1109/SGC.2015.7857419 10.1109/SMC.2019.8913912 10.3390/su12198211 10.1109/EI247390.2019.9061936 10.1109/TSG.2017.2709546 10.1109/ISGT.2015.7131914 10.1109/TSG.2017.2776310 10.1016/j.ijepes.2019.01.039 10.9790/1676-0814250 10.1016/j.cosrev.2020.100318 10.1109/ICPEDC47771.2019.9036484 10.1016/j.procs.2018.04.123 10.1097/MEG.0b013e3282f198a0 10.1109/TSG.2016.2642988 10.1109/TPWRD.2014.2302137 10.1016/j.ijepes.2020.106189 10.1109/TSG.2016.2576282 10.1109/SEST.2019.8849151 10.3390/en12244667 10.1016/j.cosrev.2020.100341 10.1016/j.ijepes.2019.05.029 10.1016/j.epsr.2020.106254 10.1016/j.physc.2015.02.051 10.1109/ACCESS.2017.2785763 10.1088/1757-899X/384/1/012039 10.1109/TSG.2014.2327167 10.1109/FSKD.2017.8393060 10.1109/TPWRS.2019.2914214 10.3390/en13236269 10.1016/j.epsr.2009.04.002 10.1109/ICCCA49541.2020.9250916 10.1016/j.rser.2017.03.021 10.1016/j.epsr.2020.106602 10.1109/TTE.2018.2863550 10.1080/22348972.2017.1385440 10.1109/TCCN.2018.2881442 10.1016/j.epsr.2016.10.008 10.1109/ISGWCP.2016.7548270 10.4236/jpee.2016.48001 10.1109/eGRID48402.2019.9092670 10.1109/TSG.2015.2477482 10.1007/s10836-017-5658-9 10.3390/en10121987 10.1109/HOLM.2018.8611739 10.1109/ICCPEIC.2017.8290461 10.14569/IJARAI.2013.020206 10.1016/j.neucom.2015.05.112 10.1109/EI247390.2019.9061740 10.1109/CICED.2018.8592221 10.1109/PESTSE.2016.7516526 10.1109/TSG.2020.2994637 10.1109/ACCESS.2018.2873615 10.1109/ISGT-Asia.2019.8881710 10.1109/TPWRD.2018.2799181 10.1016/j.compeleceng.2018.05.025 10.1016/j.apenergy.2020.115299 10.1016/j.ijepes.2017.05.015 10.1109/ISGT-Asia.2019.8881346 10.1109/TELSIKS46999.2019.9002345 10.1016/j.apm.2019.07.034 10.1186/s41601-017-0048-y 10.1016/j.simpat.2008.12.003 10.17559/TV-20150210221236 10.1109/PTC.2019.8810799 10.1051/e3sconf/202018602004 10.1016/j.ijepes.2020.106269 10.1109/APPEEC.2016.7779524 10.1109/TPWRD.2013.2287025 10.1109/TIE.2014.2387093  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/en14165078 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1073 | 
    
| ExternalDocumentID | oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00 10.3390/en14165078 10_3390_en14165078  | 
    
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c361t-47cb9adebe216bf414e58cae7a80d52340cc0bfe48f1c5a46d488799a1762e823 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1996-1073 | 
    
| IngestDate | Tue Oct 14 19:07:11 EDT 2025 Sun Oct 26 04:10:11 EDT 2025 Mon Jun 30 07:26:27 EDT 2025 Thu Oct 16 04:30:38 EDT 2025 Thu Apr 24 23:07:56 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 16 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c361t-47cb9adebe216bf414e58cae7a80d52340cc0bfe48f1c5a46d488799a1762e823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5348-502X 0000-0001-8333-5575  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1073/14/16/5078/pdf | 
    
| PQID | 2565221926 | 
    
| PQPubID | 2032402 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00 unpaywall_primary_10_3390_en14165078 proquest_journals_2565221926 crossref_citationtrail_10_3390_en14165078 crossref_primary_10_3390_en14165078  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-08-01 | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Energies (Basel) | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Rivas (ref_56) 2020; 189 ref_94 ref_93 Hidayatullah (ref_54) 2018; 384 Yen (ref_72) 2019; 109 Dhend (ref_41) 2017; 33 Kavaskar (ref_91) 2018; 10 ref_14 ref_57 ref_11 ref_10 ref_95 Alazab (ref_42) 2020; 8 ref_19 ref_17 Stefenon (ref_35) 2020; 123 Barik (ref_39) 2018; 33 Tang (ref_45) 2013; 29 Ali (ref_63) 2012; 9 Kashyap (ref_88) 2015; 62 Affijulla (ref_69) 2017; 9 Sarwar (ref_90) 2019; 32 Awalin (ref_55) 2020; 186 ref_24 Kotsiopoulos (ref_62) 2021; 40 ref_22 Calderaro (ref_70) 2009; 79 Srivastava (ref_60) 2010; 12 ref_20 ref_64 Asgharigovar (ref_92) 2019; 107 Livi (ref_65) 2015; 170 Skydt (ref_23) 2020; 170 ref_28 Kabir (ref_47) 2019; 34 Chaitanya (ref_5) 2018; 69 Hlalele (ref_12) 2019; 35 Zhang (ref_52) 2015; 22 Sathya (ref_58) 2013; 2 Hossain (ref_15) 2018; 6 Yu (ref_26) 2017; 10 Milioudis (ref_44) 2014; 6 ref_71 Saleh (ref_30) 2015; 8 Xiong (ref_40) 2020; 11 Ntalampiras (ref_21) 2016; 9 Das (ref_53) 2013; 8 Simeone (ref_59) 2018; 4 ref_79 ref_78 Rajaei (ref_18) 2014; 5 ref_32 Kalogeropoulos (ref_43) 2019; 77 ref_75 ref_74 Roostaee (ref_50) 2017; 2 Zarei (ref_67) 2019; 9 Sapountzoglou (ref_34) 2020; 276 Zhang (ref_38) 2017; 6 Daryalal (ref_68) 2017; 92 Qi (ref_73) 2017; 143 Hajjaji (ref_13) 2021; 39 ref_83 ref_82 ref_81 ref_80 (ref_29) 2018; 166 Gururajapathy (ref_49) 2017; 74 Zhai (ref_66) 2019; 113 Deng (ref_76) 2015; 65 Mousa (ref_9) 2019; 10 Grossi (ref_61) 2007; 19 ref_89 Lau (ref_25) 2017; 7 ref_87 ref_86 ref_85 ref_84 ref_1 England (ref_36) 2020; 122 Chen (ref_46) 2016; 7 ref_3 ref_2 Rahman (ref_37) 2014; 67 Baimel (ref_16) 2016; 4 Chen (ref_33) 2015; 518 Wang (ref_8) 2016; 9 ref_48 Feng (ref_7) 2018; 4 Sapountzoglou (ref_31) 2020; 182 Ferreira (ref_77) 2018; 130 Robson (ref_27) 2014; 29 ref_4 Firouzjah (ref_51) 2009; 17 ref_6  | 
    
| References_xml | – volume: 170 start-page: 108691 year: 2020 ident: ref_23 article-title: A probabilistic sequence classification approach for early fault prediction in distribution grids using long short-term memory neural networks publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2020.108691 – volume: 10 start-page: 5 year: 2018 ident: ref_91 article-title: Detection of High Impedance Fault in Distribution Networks publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2018.04.006 – ident: ref_24 doi: 10.1109/SPEC.2018.8635983 – ident: ref_1 doi: 10.1109/ICTAI.2017.00151 – volume: 8 start-page: 85454 year: 2020 ident: ref_42 article-title: A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991067 – ident: ref_87 doi: 10.1109/PESMG.2013.6672862 – volume: 6 start-page: 894 year: 2014 ident: ref_44 article-title: Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2365855 – volume: 107 start-page: 412 year: 2019 ident: ref_92 article-title: Electrical Power and Energy Systems High impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and cross-country faults publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.12.019 – ident: ref_6 doi: 10.1109/SEST.2018.8495846 – volume: 10 start-page: 98 year: 2019 ident: ref_9 article-title: Review of Fault Types, Impacts, and Management Solutions in Smart Grid Systems publication-title: Smart Grid Renew. Energy doi: 10.4236/sgre.2019.104007 – volume: 9 start-page: 272 year: 2012 ident: ref_63 article-title: Random Forests and Decision Trees publication-title: Int. J. Comput. Sci. Issues – ident: ref_78 doi: 10.1109/PTC.2019.8810663 – volume: 35 start-page: 601 year: 2019 ident: ref_12 article-title: Faults Classification and Identification on Smart Grid: Part-A Status Review publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.05.085 – volume: 65 start-page: 254 year: 2015 ident: ref_76 article-title: Fault location in loop distribution network using SVM technology publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.10.010 – volume: 9 start-page: 949 year: 2019 ident: ref_67 article-title: Switch Fault Tolerant Model-Based Predictive Control of a VSC Connected to the Grid publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2019.2956042 – ident: ref_2 doi: 10.1109/SCEECS.2018.8546879 – ident: ref_17 doi: 10.3390/s21041470 – volume: 67 start-page: 488 year: 2014 ident: ref_37 article-title: A multi-agent approach for enhancing transient stability of smart grids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.038 – ident: ref_19 doi: 10.1109/CIEC.2014.6959189 – volume: 166 start-page: 1 year: 2018 ident: ref_29 article-title: Performance analysis of a learning structured fault locator for distribution systems in the case of polluted inputs publication-title: Electr. Power Syst. Res. – ident: ref_75 doi: 10.1109/SGC.2015.7857419 – ident: ref_83 doi: 10.1109/SMC.2019.8913912 – ident: ref_57 doi: 10.3390/su12198211 – ident: ref_85 doi: 10.1109/EI247390.2019.9061936 – volume: 9 start-page: 6348 year: 2017 ident: ref_69 article-title: A Robust Fault Detection and Discrimination Technique for Transmission Lines publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2709546 – ident: ref_32 doi: 10.1109/ISGT.2015.7131914 – volume: 10 start-page: 1694 year: 2017 ident: ref_26 article-title: Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2776310 – volume: 109 start-page: 1 year: 2019 ident: ref_72 article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.01.039 – volume: 8 start-page: 42 year: 2013 ident: ref_53 article-title: Impact of Distributed Generation on Reliability of Distribution System publication-title: IOSR J. Electr. Electron. Eng. doi: 10.9790/1676-0814250 – volume: 39 start-page: 100318 year: 2021 ident: ref_13 article-title: Big data and IoT-based applications in smart environments: A systematic review publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100318 – ident: ref_94 doi: 10.1109/ICPEDC47771.2019.9036484 – volume: 130 start-page: 696 year: 2018 ident: ref_77 article-title: Faults Monitoring System in the Electric Power Grid of Medium Voltage publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.123 – volume: 19 start-page: 1046 year: 2007 ident: ref_61 article-title: Introduction to artificial neural networks publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/MEG.0b013e3282f198a0 – volume: 32 start-page: 524 year: 2019 ident: ref_90 article-title: High impedance fault detection and isolation in power distribution networks using support vector machines publication-title: J. King Saud Univ. Eng. Sci. – volume: 9 start-page: 3783 year: 2016 ident: ref_8 article-title: High-Impedance Fault Detection Based on Nonlinear Voltage–Current Characteristic Profile Identification publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2642988 – volume: 29 start-page: 1955 year: 2014 ident: ref_27 article-title: Fault Location on Branched Networks Using a Multiended Approach publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2014.2302137 – volume: 122 start-page: 106189 year: 2020 ident: ref_36 article-title: Real time voltage stability prediction of smart grid areas using smart meters data and improved Thevenin estimates publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106189 – volume: 7 start-page: 2827 year: 2016 ident: ref_46 article-title: Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2576282 – ident: ref_80 doi: 10.1109/SEST.2019.8849151 – ident: ref_11 doi: 10.3390/en12244667 – volume: 40 start-page: 100341 year: 2021 ident: ref_62 article-title: Machine Learning and Deep Learning in smart manufacturing: The Smart Grid paradigm publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100341 – volume: 113 start-page: 310 year: 2019 ident: ref_66 article-title: A model predictive approach to protect power systems against cascading blackouts publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.05.029 – ident: ref_93 – volume: 182 start-page: 106254 year: 2020 ident: ref_31 article-title: Fault diagnosis in low voltage smart distribution grids using gradient boosting trees publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106254 – volume: 518 start-page: 144 year: 2015 ident: ref_33 article-title: Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid publication-title: Phys. C Supercond. doi: 10.1016/j.physc.2015.02.051 – volume: 6 start-page: 7675 year: 2017 ident: ref_38 article-title: Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2785763 – volume: 384 start-page: 012039 year: 2018 ident: ref_54 article-title: Power Transmission and Distribution Monitoring using Internet of Things (IoT) for Smart Grid publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/384/1/012039 – volume: 5 start-page: 2183 year: 2014 ident: ref_18 article-title: Fault current management using inverter-based distributed generators in smart grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2327167 – ident: ref_4 doi: 10.1109/FSKD.2017.8393060 – volume: 34 start-page: 4370 year: 2019 ident: ref_47 article-title: Predicting Thunderstorm-Induced Power Outages to Support Utility Restoration publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2914214 – ident: ref_10 doi: 10.3390/en13236269 – volume: 79 start-page: 1300 year: 2009 ident: ref_70 article-title: A Petri net based protection monitoring system for distribution networks with distributed generation publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.04.002 – ident: ref_3 doi: 10.1109/ICCCA49541.2020.9250916 – volume: 74 start-page: 949 year: 2017 ident: ref_49 article-title: Fault location and detection techniques in power distribution systems with distributed generation: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.021 – volume: 189 start-page: 106602 year: 2020 ident: ref_56 article-title: Faults in smart grid systems: Monitoring, detection and classification publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106602 – volume: 4 start-page: 961 year: 2018 ident: ref_7 article-title: Optimization Method With Prediction-Based Maintenance Strategy for Traction Power Supply Equipment Based on Risk Quantification publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2018.2863550 – volume: 7 start-page: 269 year: 2017 ident: ref_25 article-title: Open-circuit fault detection in distribution overhead power supply network publication-title: J. Int. Counc. Electr. Eng. doi: 10.1080/22348972.2017.1385440 – volume: 4 start-page: 648 year: 2018 ident: ref_59 article-title: A Very Brief Introduction to Machine Learning With Applications to Communication Systems publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2018.2881442 – volume: 143 start-page: 130 year: 2017 ident: ref_73 article-title: Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.10.008 – ident: ref_95 doi: 10.1109/ISGWCP.2016.7548270 – ident: ref_14 – volume: 4 start-page: 1 year: 2016 ident: ref_16 article-title: Smart Grid Communication Technologies publication-title: J. Power Energy Eng. doi: 10.4236/jpee.2016.48001 – ident: ref_86 doi: 10.1109/eGRID48402.2019.9092670 – volume: 8 start-page: 1129 year: 2015 ident: ref_30 article-title: Hybrid Passive-Overcurrent Relay for Detection of Faults in Low-Voltage DC Grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2477482 – volume: 33 start-page: 329 year: 2017 ident: ref_41 article-title: Fault Diagnosis of Smart Grid Distribution System by Using Smart Sensors and Symlet Wavelet Function publication-title: J. Electron. Test. doi: 10.1007/s10836-017-5658-9 – ident: ref_48 doi: 10.3390/en10121987 – ident: ref_71 doi: 10.1109/HOLM.2018.8611739 – ident: ref_89 doi: 10.1109/ICCPEIC.2017.8290461 – volume: 2 start-page: 34 year: 2013 ident: ref_58 article-title: Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification publication-title: Int. J. Adv. Res. Artif. Intell. doi: 10.14569/IJARAI.2013.020206 – volume: 170 start-page: 368 year: 2015 ident: ref_65 article-title: Modeling and recognition of smart grid faults by a combined approach of dissimilarity learning and one-class classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.112 – ident: ref_84 doi: 10.1109/EI247390.2019.9061740 – ident: ref_74 doi: 10.1109/CICED.2018.8592221 – ident: ref_22 doi: 10.1109/PESTSE.2016.7516526 – volume: 11 start-page: 5239 year: 2020 ident: ref_40 article-title: Incipient Fault Identification in Power Distribution Systems via Human-Level Concept Learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2994637 – volume: 6 start-page: 60294 year: 2018 ident: ref_15 article-title: Utility Grid: Present Challenges and Their Potential Solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873615 – ident: ref_82 doi: 10.1109/ISGT-Asia.2019.8881710 – volume: 33 start-page: 2462 year: 2018 ident: ref_39 article-title: A decentralized fault detection technique for detecting single phase to ground faults in power distribution systems with resonant grounding publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2018.2799181 – volume: 69 start-page: 28 year: 2018 ident: ref_5 article-title: An intelligent fault detection and classification scheme for distribution lines integrated with distributed generators publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.05.025 – volume: 276 start-page: 115299 year: 2020 ident: ref_34 article-title: A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115299 – volume: 9 start-page: 1964 year: 2016 ident: ref_21 article-title: Fault Diagnosis for Smart Grids in Pragmatic Conditions publication-title: IEEE Trans. Smart Grid – ident: ref_64 – volume: 92 start-page: 230 year: 2017 ident: ref_68 article-title: Fast fault detection scheme for series-compensated lines during power swing publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.05.015 – ident: ref_81 doi: 10.1109/ISGT-Asia.2019.8881346 – ident: ref_28 doi: 10.1109/TELSIKS46999.2019.9002345 – volume: 77 start-page: 635 year: 2019 ident: ref_43 article-title: Predictive control algorithms for congestion management in electric power distribution grids publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.034 – volume: 2 start-page: 16 year: 2017 ident: ref_50 article-title: Experimental studies on impedance based fault location for long transmission lines publication-title: Prot. Control. Mod. Power Syst. doi: 10.1186/s41601-017-0048-y – volume: 17 start-page: 692 year: 2009 ident: ref_51 article-title: A current independent method based on synchronized voltage measurement for fault location on transmission lines publication-title: Simul. Model. Pr. Theory doi: 10.1016/j.simpat.2008.12.003 – volume: 22 start-page: 51 year: 2015 ident: ref_52 article-title: Istraživanje sustava zaštite releja mikro-rešetke publication-title: Teh. Vjesn. doi: 10.17559/TV-20150210221236 – volume: 12 start-page: 1 year: 2010 ident: ref_60 article-title: Data classification using support vector machine publication-title: J. Theor. Appl. Inf. Technol. – ident: ref_79 doi: 10.1109/PTC.2019.8810799 – volume: 186 start-page: 02004 year: 2020 ident: ref_55 article-title: A Recent Development of Monitoring Devices on Smart Grid publication-title: E3S Web Conf. doi: 10.1051/e3sconf/202018602004 – volume: 123 start-page: 106269 year: 2020 ident: ref_35 article-title: Wavelet group method of data handling for fault prediction in electrical power insulators publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106269 – ident: ref_20 doi: 10.1109/APPEEC.2016.7779524 – volume: 29 start-page: 951 year: 2013 ident: ref_45 article-title: Analysis of Significant Factors on Cable Failure Using the Cox Proportional Hazard Model publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2013.2287025 – volume: 62 start-page: 2612 year: 2015 ident: ref_88 article-title: Automated Fault Location and Isolation in Distribution Grids with Distributed Control and Unreliable Communication publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2387093  | 
    
| SSID | ssj0000331333 | 
    
| Score | 2.4634562 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | With the exponential growth of science, Internet of Things (IoT) innovation, and expanding significance in renewable energy, Smart Grid has become an advanced... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 5078 | 
    
| SubjectTerms | Bibliometrics Breakdowns Fault diagnosis faults detection predictive maintenance smart grid Systematic review Taxonomy  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS9xAEF7El9qH0mpLT20ZqC9Cg0l2N7fpm7U9RTgRrOBbmN3sgnDm5HJH6Zs_oi_-B3-Vv6QzSS49obQvfQqESdhkJjPfx06-EWJPZgatt3HkMLUR1WuMbAghCkmMisqTRsc_OI_PspNLdXqlr1ZGfXFPWCsP3L64A7S69Im0qeI9vTwYaalolQQTtPcYN2w9NvkKmWpysJREvmSrRyqJ1x_4KiHsQejHPKlAjVD_E3T5bFHd4o_vOJmsFJrRS_GiQ4hw2K7slVjz1aZ4vqIbuCUeyLnQKStBAxdhGoCgHF8F1xUs--lgWsH5jPdiOKvBGFkdgiU2PFtd3NDjw_HsuoQvrJ_bjb6Cs7Y1_BOMcDGZP97d18B0tf4IR7io-YhV2d-XLhg3Y6jrx7ufh3DRS0NDu-_wWlyOvn47Oom6sQuRk1kyj9TQ2RxL8m6aZDaoRHltHPohmrgk3qpi52IbvDIhcRpVVlISGOY5JpRYvUnlG7FeTSv_VgDRxyBTqcuQoTLa5qyLrYPO0BKysmEg9peuKFynSc6jMSYFcRN2W_HbbQPxobe9bZU4_mj1mT3aW7B6dnOCYqroYqr4V0wNxO4yHoruk64LwoaEVQkQZwOx18fIX5ay_T-WsiM2Uu6iaVoOd8X6fLbw7wgGze37JuJ_AX9vCCo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NatxADB7SzaHtIfSXbpOWgeZSqIntmfHahVCSNNtQ2CU0DeRmNH8hsLW3611Kb3mIXvoOeao8SSX_JYGSk8FoBoM00idL84mxbZGkoJ0OAwOxDjBeQ6C994GPQpAYnhQYuuA8mSZHp_LrmTpbY9PuLgy1VXY-sXbUtjT0j3wHQzNCBcQjyaf5z4CmRlF1tRuhAe1oBbtbU4w9YOsxMWMN2Pr-4fT4W__XJRQCkzLR8JQKzPd3XBEhJkFUlN6JTDWB_x3U-XBVzOH3L5jNbgWg8RO20SJHvteo-ilbc8Uz9vgWn-BzdoVK5y3jEq9hJC89R4hHq_hFwbs-O14W_HhBNRrydnwCxBpB1BuOpE5-oD3xL4sLyz8Tr247EotPm5bxj3wMq9ny-vJvxSmNrT7wA1hV9ITC9vvigkk9nrq6vvyzx096ymje1CNesNPx4feDo6AdxxAYkUTLQI6MzsCi1uMo0V5G0qnUgBtBGlrMZ2VoTKi9k6mPjAKZWHQOoyyDCB2uS2Pxkg2KsnCvGMe00otYKOsTkKnSGfFlK68S0Ii4tB-y950qctNyldPIjFmOOQupLb9R25C962XnDUPHf6X2SaO9BLFq1y_KxXneHtIctLIuEjqWVD_OfCo0AiSLkFQ5B2E4ZFudPeTtUa_yG8Mcsu3eRu75lNf377LJHsXUN1M3GW6xwXKxcm8Q-Cz129aa_wFTZAal priority: 102 providerName: ProQuest  | 
    
| Title | The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review | 
    
| URI | https://www.proquest.com/docview/2565221926 https://www.mdpi.com/1996-1073/14/16/5078/pdf https://doaj.org/article/ab5de13b2430459f83b820d1125eea00  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELbY9gAc-F9RWCpL7AWJbOPEdhNu3WXbFVKjiqVSOUW2Y6OKklZNIgSnfQguvANPtU_COHHDLkJoL4kUjSNL-TzzTWb8GaHDkEdCaul7SgTSg3gtPGmM8QzxBYXwxISyG5ynCT-b03cLtnCb1QvXVgmp-LJ20nWHLOQn4YDQAeED4C7RYJOZPdTlDKh3B3XnyWz0sa4cO9NGgjSEVH6gcwJ0ww66FnRqbf5rhPJ2lW_Et69itboSW8b3UbKbVdNS8vmoKuWR-v6XYOONp_0A3XMsE48aWDxEt3T-CN29oj34GP0CgGCnzoRryonXBgMdtKPwMse7njy8zvFsa-s51jPiqbAKE1amQ1ur8y-APTzZLjP81mrwuuOzcNK0l7_BY1GtysuLnwW2KW_xGp-IqrB3kWfte2HAtD7Kuri8-DHC5628NG5qF0_QfHz64eTMc0c3eCrkpPToUMlYZICQgHBpKKGaRUrooYj8DHJf6ivlS6NpZIhigvIMHMkwjgUB56yjINxHnXyd66cIQwpqwiBkmeGCRkzGVlubGcaFBHYmTQ-92n3bVDldc3u8xiqF_MbiIP2Dgx562dpuGjWPf1odW4i0FlaBu36w3n5K3YJOhWSZJqEMqK01xyYKJZCpDOgr01r4fg8d7ACWOrdQpMAvge8CqeY9dNiC7j9TeXYzs-foTmB7berGxAPUKbeVfgFkqZR9tBeNJ33UPT5NZu_79S8HuE4WpO8Wz2-s3hdp | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhOaQ9lP7SbdNW0PRQqIltSV67EEr-tpsmu4QmgdzckS2VwNberncJueUheuk79Bn6MHmSznhlJ4GSW04GIwmbGc18oxl9w9iqiGLQRvteBqH20F-Dp621ng18kOieFGR0wXkwjPrH8suJOllgf5u7MFRW2djE2lDnZUZn5GvomhEqIB6JPo1_etQ1irKrTQsNcK0V8vWaYsxd7Ngz52cYwlXru9so73dh2Ns52up7rsuAl4komHqym-kEcvyZMIi0lYE0Ks7AdCH2cwzTpJ9lvrZGxjbIFMgoR53vJgkEaEdMTMQH6AKWpJAJBn9LmzvDg6_tKY8vBAaBYs6LKkTir5kiQAyEKCy-4QnrhgE3UO7yrBjD-RmMRtccXu8he-CQKt-Yq9YjtmCKx-z-Nf7CJ-wPKhl3DE-8hq28tBwhJc3ipwVv6vp4WfCDCeWEyLryARBLBVF9GBp1-AP1l3-enOZ8m3h8XQsuPpyXqH_kPZiNppcXvytOYXP1gW_BrKInFHm7Lk4Y1O2wq8uLXxv8sKWo5vP8x1N2fCeCecYWi7IwzxnHMNaKUKjcRiBjpRPi51ZWRaAR4WnbYe8bUaSZ40anFh2jFGMkElt6JbYOe9uOHc8ZQf47apMk2o4gFu_6RTn5njqjkIJWuQmEDiXlqxMbC42ALEcIrIwB3--wlUYfUmdaqvRqI3TYaqsjt3zKi9tXecOW-0eD_XR_d7j3kt0LqWanLnBcYYvTycy8QtA11a-dZnP27a430z88aEQr | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NatwwEBYhhf4cSn_ptmkraHoo1KxtSV67UEqa7SZpuksgDeTmjmSpBLb2dr1LyC0P0UvfoU_Qx8mTdMZ_SaDklpPBSMJmRjPfaEbfMLYuohi01b5nINQe-mvwtHPOc4EPEt2TAkMXnMeTaPtAfj5Uhyvsb3sXhsoqW5tYGeqsMHRG3kfXjFAB8UjUd01ZxN5w9GH206MOUpRpbdtp1Cqya0-OMXwr3-8MUdavw3D06evmttd0GPCMiIKFJwdGJ5Dhj4RBpJ0MpFWxATuA2M8wRJO-Mb52VsYuMApklKG-D5IEArQhNibSAzT_NwbE4k631Edb3fmOLwSGf6JmRBUi8fs2DxD9IP6KL_nAqlXAJXx7a5nP4OQYptMLrm50j91tMCrfqJXqPlux-QN25wJz4UP2B9WLN9xOvAKsvHAcwSTN4kc5byv6eJHzvTllg8iu8jEQPwWRfFgatf8DNZdvzY8yPiQG36b5Fp_Uxenv-AiW08XZ6e-SU8BcvuWbsCzpCXnWrYsTxlUj7PLs9NcG3-_IqXmd-XjEDq5FLI_Zal7k9gnjGMA6EQqVuQhkrHRCzNzKqQg0YjvteuxNK4rUNKzo1JxjmmJ0RGJLz8XWY6-6sbOaC-S_oz6SRLsRxN9dvSjm39PGHKSgVWYDoUNJmerExUIjFMsQ_Cprwfd7bK3Vh7QxKmV6vgV6bL3TkSs-5enVq7xkN3ELpV92JrvP2O2QinWqysY1trqYL-1zRFsL_aJSa86-Xfc--gdvfEHF | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgewAO_CMWCrJEL0ikiRPbm3BbCkuFtKtKZaVyisaOXa1YsqtNIgSnPgQX3oGn6pMwTryhRQj1FCkaR5byeeYbzfgbQvYSmYIyKgo0xCrAeA2BstYGlkXAMTwJ0O6C83QmD-f8w4k48ZfVK99Wian4onXSbYcs5idJyHjIZIjcJQ3Xhb1OdqRA6j0gO_PZ0fhTWzn2pp0EaYKpfGhKhnTDLboUdFpt_kuE8kZTruHbV1guL8SWyR0y2-6qayn5vN_Ual9__0uw8crbvktue5ZJxx0s7pFrprxPbl3QHnxAfiFAqFdnoi3lpCtLkQ66VXRR0m1PHl2V9Gjj6jnOM9IpOIUJJ9NhnNXxF8Qefb9ZFPSt0-D147PorGsvf00n0Czr87OfFXUpb_WKHkBTuSeURf9dXDBtR1lX52c_xvS4l5emXe3iIZlP3n08OAz86IZAJ5LVAR9plUGBCImZVJYzbkSqwYwgjQrMfXmkdaSs4allWgCXBTqSUZYBQ-ds0jh5RAblqjSPCcUU1CZxIgorgadCZU5bW1ghQSE7U3ZIXm7_ba69rrkbr7HMMb9xOMj_4GBIXvS2607N459WbxxEegunwN2-WG1Oc3-gc1CiMCxRMXe15symiUIyVSB9FcZAFA3J7hZguXcLVY78Evkukmo5JHs96P6zlSdXM3tKbsau16ZtTNwlg3rTmGdIlmr13B-R34_QEwM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Current+State+of+the+Art+in+Research+on+Predictive+Maintenance+in+Smart+Grid+Distribution+Network%3A+Fault%E2%80%99s+Types%2C+Causes%2C+and+Prediction+Methods%E2%80%94A+Systematic+Review&rft.jtitle=Energies+%28Basel%29&rft.au=Moamin+A.+Mahmoud&rft.au=Naziffa+Raha+Md+Nasir&rft.au=Mathuri+Gurunathan&rft.au=Preveena+Raj&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=14&rft.issue=16&rft.spage=5078&rft_id=info:doi/10.3390%2Fen14165078&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab5de13b2430459f83b820d1125eea00 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |