Face recognition subject to variations in facial expression, illumination and pose using correlation filters

In this paper, we have selected some recent advanced correlation filters: minimum average correlation filter (MACE), unconstrained MACE filter (UMACE), phase-only unconstrained MACE filter (POUMACE), distance-classifier correlation filter (DCCF) [B.V.K. Vijaya Kumar, D. Casasent, A. Mahalanobis, Dis...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 104; no. 1; pp. 1 - 15
Main Authors Levine, Martin David, Yu, Yingfeng
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.10.2006
Elsevier
Subjects
Online AccessGet full text
ISSN1077-3142
1090-235X
DOI10.1016/j.cviu.2006.06.004

Cover

Abstract In this paper, we have selected some recent advanced correlation filters: minimum average correlation filter (MACE), unconstrained MACE filter (UMACE), phase-only unconstrained MACE filter (POUMACE), distance-classifier correlation filter (DCCF) [B.V.K. Vijaya Kumar, D. Casasent, A. Mahalanobis, Distance-classifier correlation filters for multiclass target recognition. Appl. Opt. 35 (1996) 3127–3133] and minimax distance transform correlation filter (MDTC) and used them to test recognition performance in different situations involving variations in facial expression, illumination conditions and head pose. The paper introduces the first application of correlation filter classifiers to facial images subject to head pose variations. It also demonstrates that it is possible to obtain illumination invariance without using any training images for this purpose. A comparison of MDTC with traditional discriminant learning methods (e.g., KPCA [Scholikopf, B., Smola, A., Muller, K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10 (1999) 1299–1319], IPCA [16], GDA [Baudat, G., Anouar, F., Generalized discriminant analysis using a kernel approach. Neural Comput., 12 (2000) 2385–2404], R-KDA [Lu, J., Plataniotis, K., Venetsanopoulos, A. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recogn. Lett., 26(2) (2005) 181–191]) is also presented. The paper shows that correlation filter classifiers, a relatively unheralded model-based approach, have a greater robustness and accuracy than traditional appearance-based methods (such as PCA). Overall, the POUMACE filter provided the best choice for facial matching. It achieved 100% accuracy on the publicly available CMU facial expression database and the Yale frontal face illumination database, and slightly less in the head pose experiments.
AbstractList In this paper, we have selected some recent advanced correlation filters: minimum average correlation filter (MACE), unconstrained MACE filter (UMACE), phase-only unconstrained MACE filter (POUMACE), distance-classifier correlation filter (DCCF) [B.V.K. Vijaya Kumar, D. Casasent, A. Mahalanobis, Distance-classifier correlation filters for multiclass target recognition. Appl. Opt. 35 (1996) 3127–3133] and minimax distance transform correlation filter (MDTC) and used them to test recognition performance in different situations involving variations in facial expression, illumination conditions and head pose. The paper introduces the first application of correlation filter classifiers to facial images subject to head pose variations. It also demonstrates that it is possible to obtain illumination invariance without using any training images for this purpose. A comparison of MDTC with traditional discriminant learning methods (e.g., KPCA [Scholikopf, B., Smola, A., Muller, K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10 (1999) 1299–1319], IPCA [16], GDA [Baudat, G., Anouar, F., Generalized discriminant analysis using a kernel approach. Neural Comput., 12 (2000) 2385–2404], R-KDA [Lu, J., Plataniotis, K., Venetsanopoulos, A. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recogn. Lett., 26(2) (2005) 181–191]) is also presented. The paper shows that correlation filter classifiers, a relatively unheralded model-based approach, have a greater robustness and accuracy than traditional appearance-based methods (such as PCA). Overall, the POUMACE filter provided the best choice for facial matching. It achieved 100% accuracy on the publicly available CMU facial expression database and the Yale frontal face illumination database, and slightly less in the head pose experiments.
In this paper, we have selected some recent advanced correlation filters: minimum average correlation filter (MACE), unconstrained MACE filter (UMACE), phase-only unconstrained MACE filter (POUMACE), distance-classifier correlation filter (DCCF) [B.V.K. Vijaya Kumar, D. Casasent, A. Mahalanobis, Distance- classifier correlation filters for multiclass target recognition. Appl. Opt. 35 (1996) 3127-3133] and minimax distance transform correlation filter (MDTC) and used them to test recognition performance in different situations involving variations in facial expression, illumination conditions and head pose. The paper introduces the first application of correlation filter classifiers to facial images subject to head pose variations. It also demonstrates that it is possible to obtain illumination invariance without using any training images for this purpose. A comparison of MDTC with traditional discriminant learning methods (e.g., KPCA [Scholikopf, B., Smola, A., Muller, K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput., 10 (1999) 1299-1319], IPCA [16], GDA [Baudat, G., Anouar, F., Generalized discriminant analysis using a kernel approach. Neural Comput., 12 (2000) 2385-2404], R-KDA [Lu, J., Plataniotis, K., Venetsanopoulos, A. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recogn. Lett., 26(2) (2005) 181-191]) is also presented. The paper shows that correlation filter classifiers, a relatively unheralded model-based approach, have a greater robustness and accuracy than traditional appearance-based methods (such as PCA). Overall, the POUMACE filter provided the best choice for facial matching. It achieved 100% accuracy on the publicly available CMU facial expression database and the Yale frontal face illumination database, and slightly less in the head pose experiments.
Author Yu, Yingfeng
Levine, Martin David
Author_xml – sequence: 1
  givenname: Martin David
  surname: Levine
  fullname: Levine, Martin David
  email: m.levine@ieee.org
– sequence: 2
  givenname: Yingfeng
  surname: Yu
  fullname: Yu, Yingfeng
  email: chrisyu@cim.mcgill.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18156395$$DView record in Pascal Francis
BookMark eNp9kU-LFDEQxYOs4O7qF_CUi57sMdXp9B_wIourwoIXBW8hna5easgkYyo96Le3e2fx4GGhIKHye6-ovCtxEVNEIV6D2oGC9v1-50-07Gql2t1WqnkmLkENqqq1-Xmx3buu0tDUL8QV814pgGaASxFunUeZ0af7SIVSlLyMe_RFliRPLpPbmiwpytl5ckHi72NG5rX7TlIIy4HiAyNdnOQxMcqFKd5Ln3LGcH6aKRTM_FI8n11gfPV4Xosft5--33yp7r59_nrz8a7yuoVSaYMGwcM8D9qpAdvBj6p3U6cab7p61LXpJ-ybbqyhnzzA6PpOt1h349QYA_pavD37HnP6tSAXeyD2GIKLmBa2MDSm1V2zgm8eQcfehTm76IntMdPB5T8Weli5waxcf-Z8TswZZ-upPKxWsqNgQdktBru3Wwx2i8FupbYR9X_Sf-5PiT6cRbj-0okwW_aE0eNEa1TFTomekv8Fvhqlhw
CODEN CVIUF4
CitedBy_id crossref_primary_10_1007_s11760_016_0882_9
crossref_primary_10_1016_j_cviu_2008_01_003
crossref_primary_10_1371_journal_pone_0055700
crossref_primary_10_1109_TPAMI_2008_143
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1016_j_optlaseng_2016_06_019
crossref_primary_10_1016_j_patrec_2013_10_012
crossref_primary_10_1142_S0218001414590058
crossref_primary_10_1007_s00500_017_2898_7
crossref_primary_10_1145_2845089
crossref_primary_10_1007_s10462_017_9578_y
crossref_primary_10_1364_AOP_9_000001
crossref_primary_10_1016_j_patcog_2009_04_017
crossref_primary_10_1016_j_optlaseng_2017_01_014
Cites_doi 10.1364/AO.35.003127
10.1364/AO.19.001758
10.1109/ICIP.2002.1037957
10.1364/AO.31.004773
10.1162/089976698300017467
10.1109/TNN.2002.806629
10.1016/j.patrec.2004.09.014
10.1364/AO.26.003633
10.1109/34.927464
10.1145/311535.311556
10.1016/S0031-3203(00)00162-X
10.1364/JOSAA.3.001579
10.1038/scientificamerican1277-108
10.1109/AVSS.2003.1217900
10.1109/ICME.2003.1221290
10.1364/AO.33.003751
10.1162/089976600300014980
10.1364/AO.41.006829
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
DOI 10.1016/j.cviu.2006.06.004
DatabaseName CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
EndPage 15
ExternalDocumentID 18156395
10_1016_j_cviu_2006_06_004
S1077314206000658
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c361t-35e5e1c1ff93a09e69cb08ad704c572b3258de847b218dc11ba8736e27bd45513
IEDL.DBID AIKHN
ISSN 1077-3142
IngestDate Mon Oct 06 18:02:20 EDT 2025
Mon Jul 21 09:13:10 EDT 2025
Wed Oct 01 05:08:52 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:26:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phase-only
Correlation filter
Verification
Energy peak
Face recognition
Recognition
Sample size
Image processing
Modeling
Remote teaching
Teaching
Posture
Minimax problem
Classification
Facies
Database
Illumination
Eigenvalue problem
Robustness
Target detection
Computer vision
Discriminant analysis
Invariance
Pattern recognition
Kernel method
Discrete geometry
Luminance
Optical correlation
Optical filter
Minimax method
Phase filter
Spatial filters
Internet
Multiclass
Facial expression
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-35e5e1c1ff93a09e69cb08ad704c572b3258de847b218dc11ba8736e27bd45513
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 19456374
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_19456374
pascalfrancis_primary_18156395
crossref_citationtrail_10_1016_j_cviu_2006_06_004
crossref_primary_10_1016_j_cviu_2006_06_004
elsevier_sciencedirect_doi_10_1016_j_cviu_2006_06_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Computer vision and image understanding
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Advanced Multimedia Processing Laboratory of the Department of Electrical and Computer Engineering at Carnegie-Mellon University.
Liu, Chen, Vijaya Kumar (bib12) 2001
Scholikopf, Smola, Muller (bib19) 1999; 10
M. Savvides, B.V.K. Vijaya Kumar, P.K. Khosla, Face verification using correlation filters, Proceedings of the Third IEEE Automatic Identification Advanced Technologies, pp. 56–61, Tarrytown, NY, March 2002.
M. Savvides, B.V.K. Vijaya Kumar, Efficient design of advanced correlation filters for robust distortion-tolerant face identification. IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2003, pp. 45–52.
B.V.K. Vijaya Kumar, M. Savvides, K. Venkataramani, C. Xie, Spatial frequency domain image processing for biometric recognition. Proc. Int. Conf. Image Processing (ICIP) I, 2002, pp. 53–56.
Savvides, Vijaya Kumar, Khosla (bib5) 2002; 41
Mahalanobis, Vijaya Kumar, Casasent (bib6) 1987; 26
Baudat, Anouar (bib20) 2000; 12
M. Savvides, K. Venkataramani, B.V.K. Vijaya Kumar, Incremental updating of advanced correlation filter designs, International Conference on Multimedia and Expo, Special Session on Signal Processing and Multimodal Biometric Verification, 2003, pp. 229–232.
Vijaya Kumar, Casasent, Mahalanobis (bib11) 1996; 35
Lu, Plataniotis, Venetsanopoulos (bib23) 2003; 14
Vijaya Kumar (bib13) 1992; 31
Yu, Yang (bib22) 2001; 34
Vijaya Kumar, Mahalanobis (bib14) 1999; 8
Land (bib18) 1977
Hester, Casasent (bib8) 1980; 19
.
M.D. Levine, M.R. Gandhi, J. Bhattacharyya, Image Normalization for Illumination Compensation in Facial Images. Department of Electrical & Computer Engineering & Center for Intelligent Machines, McGill University, Montreal, Canada, Unpublished Report, August 2004. See
Vijaya Kumar (bib9) 1986
V. Blanz, T. Vetter, A morphable model for the synthesis of 3D faces, in: Proceeding of SIGGRAPH’99, Los Angeles, 1999, pp. 187–194.
Lu, Plataniotis, Venetsanopoulos (bib21) 2005; 26
Mahalanobis, Vijaya Kumar, Casasent (bib7) 1994; 33
<
A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose, IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp. 643–660.
10.1016/j.cviu.2006.06.004_bib3
Vijaya Kumar (10.1016/j.cviu.2006.06.004_bib13) 1992; 31
10.1016/j.cviu.2006.06.004_bib4
Liu (10.1016/j.cviu.2006.06.004_bib12) 2001
Mahalanobis (10.1016/j.cviu.2006.06.004_bib7) 1994; 33
Baudat (10.1016/j.cviu.2006.06.004_bib20) 2000; 12
Hester (10.1016/j.cviu.2006.06.004_bib8) 1980; 19
Lu (10.1016/j.cviu.2006.06.004_bib21) 2005; 26
Vijaya Kumar (10.1016/j.cviu.2006.06.004_bib9) 1986
Vijaya Kumar (10.1016/j.cviu.2006.06.004_bib11) 1996; 35
Lu (10.1016/j.cviu.2006.06.004_bib23) 2003; 14
Yu (10.1016/j.cviu.2006.06.004_bib22) 2001; 34
Scholikopf (10.1016/j.cviu.2006.06.004_bib19) 1999; 10
10.1016/j.cviu.2006.06.004_bib17
10.1016/j.cviu.2006.06.004_bib16
10.1016/j.cviu.2006.06.004_bib24
Vijaya Kumar (10.1016/j.cviu.2006.06.004_bib14) 1999; 8
10.1016/j.cviu.2006.06.004_bib15
Mahalanobis (10.1016/j.cviu.2006.06.004_bib6) 1987; 26
Savvides (10.1016/j.cviu.2006.06.004_bib5) 2002; 41
10.1016/j.cviu.2006.06.004_bib1
Land (10.1016/j.cviu.2006.06.004_bib18) 1977
10.1016/j.cviu.2006.06.004_bib2
10.1016/j.cviu.2006.06.004_bib10
References_xml – reference: M.D. Levine, M.R. Gandhi, J. Bhattacharyya, Image Normalization for Illumination Compensation in Facial Images. Department of Electrical & Computer Engineering & Center for Intelligent Machines, McGill University, Montreal, Canada, Unpublished Report, August 2004. See: <
– volume: 35
  start-page: 3127
  year: 1996
  end-page: 3133
  ident: bib11
  article-title: Distance-classifier correlation filters for multiclass target recognition
  publication-title: Appl. Opt.
– reference: V. Blanz, T. Vetter, A morphable model for the synthesis of 3D faces, in: Proceeding of SIGGRAPH’99, Los Angeles, 1999, pp. 187–194.
– volume: 14
  start-page: 117
  year: 2003
  end-page: 126
  ident: bib23
  article-title: Face recognition using Kernel direct discriminant analysis algorithms
  publication-title: IEEE Trans. Neural Networks
– year: 2001
  ident: bib12
  article-title: Face authentication for multiple subjects using eigenflow
  publication-title: Pattern Recogn. (special issue on Biometrics)
– reference: />.
– reference: <
– volume: 41
  start-page: 6829
  year: 2002
  end-page: 6840
  ident: bib5
  article-title: Two-class minimax distance transform correlation filter
  publication-title: Appl. Opt.
– reference: M. Savvides, B.V.K. Vijaya Kumar, Efficient design of advanced correlation filters for robust distortion-tolerant face identification. IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2003, pp. 45–52.
– reference: M. Savvides, K. Venkataramani, B.V.K. Vijaya Kumar, Incremental updating of advanced correlation filter designs, International Conference on Multimedia and Expo, Special Session on Signal Processing and Multimodal Biometric Verification, 2003, pp. 229–232.
– reference: /> Advanced Multimedia Processing Laboratory of the Department of Electrical and Computer Engineering at Carnegie-Mellon University.
– volume: 26
  start-page: 3630
  year: 1987
  end-page: 3633
  ident: bib6
  article-title: Minimum average correlation filters
  publication-title: Appl. Opt.
– start-page: 1579
  year: 1986
  end-page: 1589
  ident: bib9
  article-title: Minimum variance synthetic discriminant functions
  publication-title: J. Opt. Soc. Am
– start-page: 108
  year: 1977
  end-page: 129
  ident: bib18
  article-title: The retinex theory of color vision
  publication-title: Scientific America
– volume: 8
  year: 1999
  ident: bib14
  article-title: Recent advances in composite correlation filter designs
  publication-title: Asian Journal of Physics
– volume: 33
  start-page: 3659
  year: 1994
  end-page: 3751
  ident: bib7
  article-title: Unconstrained correlation filters
  publication-title: Appl. Opt.
– volume: 26
  start-page: 181
  year: 2005
  end-page: 191
  ident: bib21
  article-title: Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
  publication-title: Pattern Recogn. Lett.
– volume: 34
  start-page: 2067
  year: 2001
  end-page: 2070
  ident: bib22
  article-title: A direct LDA algorithm for high-dimensional data with application to face recognition
  publication-title: Pattern Recogn.
– volume: 12
  start-page: 2385
  year: 2000
  end-page: 2404
  ident: bib20
  article-title: Generalized discriminant analysis using a Kernel approach
  publication-title: Neural Comput.
– reference: B.V.K. Vijaya Kumar, M. Savvides, K. Venkataramani, C. Xie, Spatial frequency domain image processing for biometric recognition. Proc. Int. Conf. Image Processing (ICIP) I, 2002, pp. 53–56.
– volume: 10
  start-page: 1299
  year: 1999
  end-page: 1319
  ident: bib19
  article-title: Nonlinear component analysis as a Kernel eigenvalue problem
  publication-title: Neural Comput.
– reference: A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose, IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp. 643–660.
– volume: 31
  start-page: 4773
  year: 1992
  end-page: 4801
  ident: bib13
  article-title: Tutorial survey of composite filter designs for optical correlators
  publication-title: Appl. Opt.
– volume: 19
  start-page: 1758
  year: 1980
  end-page: 1761
  ident: bib8
  article-title: Multivariate technique for multiclass pattern recognition
  publication-title: Appl. Opt.
– reference: M. Savvides, B.V.K. Vijaya Kumar, P.K. Khosla, Face verification using correlation filters, Proceedings of the Third IEEE Automatic Identification Advanced Technologies, pp. 56–61, Tarrytown, NY, March 2002.
– ident: 10.1016/j.cviu.2006.06.004_bib10
– volume: 35
  start-page: 3127
  year: 1996
  ident: 10.1016/j.cviu.2006.06.004_bib11
  article-title: Distance-classifier correlation filters for multiclass target recognition
  publication-title: Appl. Opt.
  doi: 10.1364/AO.35.003127
– volume: 19
  start-page: 1758
  year: 1980
  ident: 10.1016/j.cviu.2006.06.004_bib8
  article-title: Multivariate technique for multiclass pattern recognition
  publication-title: Appl. Opt.
  doi: 10.1364/AO.19.001758
– ident: 10.1016/j.cviu.2006.06.004_bib1
  doi: 10.1109/ICIP.2002.1037957
– ident: 10.1016/j.cviu.2006.06.004_bib16
– volume: 31
  start-page: 4773
  year: 1992
  ident: 10.1016/j.cviu.2006.06.004_bib13
  article-title: Tutorial survey of composite filter designs for optical correlators
  publication-title: Appl. Opt.
  doi: 10.1364/AO.31.004773
– volume: 10
  start-page: 1299
  year: 1999
  ident: 10.1016/j.cviu.2006.06.004_bib19
  article-title: Nonlinear component analysis as a Kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 14
  start-page: 117
  issue: 1
  year: 2003
  ident: 10.1016/j.cviu.2006.06.004_bib23
  article-title: Face recognition using Kernel direct discriminant analysis algorithms
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2002.806629
– volume: 26
  start-page: 181
  issue: 2
  year: 2005
  ident: 10.1016/j.cviu.2006.06.004_bib21
  article-title: Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2004.09.014
– volume: 26
  start-page: 3630
  year: 1987
  ident: 10.1016/j.cviu.2006.06.004_bib6
  article-title: Minimum average correlation filters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.26.003633
– volume: 8
  issue: 3
  year: 1999
  ident: 10.1016/j.cviu.2006.06.004_bib14
  article-title: Recent advances in composite correlation filter designs
  publication-title: Asian Journal of Physics
– ident: 10.1016/j.cviu.2006.06.004_bib15
  doi: 10.1109/34.927464
– ident: 10.1016/j.cviu.2006.06.004_bib3
– ident: 10.1016/j.cviu.2006.06.004_bib17
  doi: 10.1145/311535.311556
– volume: 34
  start-page: 2067
  year: 2001
  ident: 10.1016/j.cviu.2006.06.004_bib22
  article-title: A direct LDA algorithm for high-dimensional data with application to face recognition
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(00)00162-X
– ident: 10.1016/j.cviu.2006.06.004_bib24
– start-page: 1579
  year: 1986
  ident: 10.1016/j.cviu.2006.06.004_bib9
  article-title: Minimum variance synthetic discriminant functions
  publication-title: J. Opt. Soc. Am
  doi: 10.1364/JOSAA.3.001579
– start-page: 108
  year: 1977
  ident: 10.1016/j.cviu.2006.06.004_bib18
  article-title: The retinex theory of color vision
  publication-title: Scientific America
  doi: 10.1038/scientificamerican1277-108
– year: 2001
  ident: 10.1016/j.cviu.2006.06.004_bib12
  article-title: Face authentication for multiple subjects using eigenflow
  publication-title: Pattern Recogn. (special issue on Biometrics)
– ident: 10.1016/j.cviu.2006.06.004_bib2
  doi: 10.1109/AVSS.2003.1217900
– ident: 10.1016/j.cviu.2006.06.004_bib4
  doi: 10.1109/ICME.2003.1221290
– volume: 33
  start-page: 3659
  year: 1994
  ident: 10.1016/j.cviu.2006.06.004_bib7
  article-title: Unconstrained correlation filters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.003751
– volume: 12
  start-page: 2385
  year: 2000
  ident: 10.1016/j.cviu.2006.06.004_bib20
  article-title: Generalized discriminant analysis using a Kernel approach
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014980
– volume: 41
  start-page: 6829
  year: 2002
  ident: 10.1016/j.cviu.2006.06.004_bib5
  article-title: Two-class minimax distance transform correlation filter
  publication-title: Appl. Opt.
  doi: 10.1364/AO.41.006829
SSID ssj0011491
Score 1.9606136
Snippet In this paper, we have selected some recent advanced correlation filters: minimum average correlation filter (MACE), unconstrained MACE filter (UMACE),...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Correlation filter
Energy peak
Exact sciences and technology
Face recognition
Pattern recognition. Digital image processing. Computational geometry
Phase-only
Recognition
Software
Verification
Title Face recognition subject to variations in facial expression, illumination and pose using correlation filters
URI https://dx.doi.org/10.1016/j.cviu.2006.06.004
https://www.proquest.com/docview/19456374
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH5qpxcQYikghmXwgRuEieMlybGqGA0geoFKvUVeUVCVjMhMxYnfjl_sDFSIHrhasRz52W_9_D6AV7bMhXYly6SteAhQqMqUkkXmc0y4ecmox0Dx05lcn_MPF-LiAE6ntzAIq0y6P-r0UVunkWXazeWmbZefQ-BSMsqLXEZDeghHwf5U1QyOTt5_XJ_tiwkhCKAReogpOV6ktzMR5mWu2l2qSWBZgv_LPt3ZqCHsmo90F39p7tEcre7D3eRHkpP4qw_gwHXHcC_5lCTd2CEMTbQN09gx3P6jB-FDuFwp48geR9R3ZNhpTM6QbU-uQiQdU3qk7YhXmF8n7kcCz3ZvSItEyW3MKBLVWbLpB0cQTP-VGCT-iFA74lusyg-P4Hz17svpOksUDJlhkm4zJpxw1FDva6by2sna6LxSQcLciLLQrBCVdcHC6eAqWEOpVlXJpCtKbTlyxzyGWdd37gkQboLvIK1nua-xzX0tbK2rimmXc2dNMQc6bXxjUn9ypMm4bCYg2rcGhYXEmbIZ0Xh8Dq_3czaxO8eNX4tJns21M9YE83HjvMU14f9eClvtsFrM4eV0GppwO7HkojrX74aG1sFBZSV_-p9LP4NbY85nRA8-h9n2-869CF7QVi_g8O1Pukhn_Rc_gAgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgCEeBQQy6P1gRuEjeNHkiOqWC3Q9kIr9WbZjl0FVcmK7Fac-O14YmehQvTA1XLkyGPP8_N8AG-aMhfGlSyTTcVDgEJ1prUsMp9jws1LRj0GiscncnnGP5-L8x04nN7CIKwy6f6o00dtnUbmaTfnq7adfw2BS8koL3IZDektuM1FUWIE9v7nFucR_P2RNg9nZzg9vZyJIC971W5SRQKLEvxf1un-Sg9hz3wku_hLb4_GaPEIHiQvknyIP_oYdly3Bw-TR0nSfR3C0ETaMI3twb0_OhA-gcuFto5sUUR9R4aNwdQMWffkKsTRMaFH2o54jdl14n4k6Gz3jrRIk9zGfCLRXUNW_eAIQukviEXajwi0I77FmvzwFM4WH08Pl1kiYMgsk3SdMeGEo5Z6XzOd107W1uSVDvLlVpSFYYWoGhfsmwmOQmMpNboqmXRFaRqOzDHPYLfrO_ccCLfBc5CNZ7mvscl9LZraVBUzLueuscUM6LTxyqbu5EiScakmGNo3hcJC2kypRiwen8Hb7Ter2Jvjxtlikqe6dsJUMB43frd_Tfi_l8JGO6wWMziYToMKdxMLLrpz_WZQtA7uKSv5i_9c-gDuLE-Pj9TRp5MvL-HumP0ZcYSvYHf9feNeB39obfbH8_4Ld_II2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+recognition+subject+to+variations+in+facial+expression%2C+illumination+and+pose+using+correlation+filters&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Levine%2C+Martin+David&rft.au=Yu%2C+Yingfeng&rft.date=2006-10-01&rft.issn=1077-3142&rft.volume=104&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.cviu.2006.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2006_06_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon