Horticultural Image Feature Matching Algorithm Based on Improved ORB and LK Optical Flow
To solve the low accuracy of image feature matching in horticultural robot visual navigation, an innovative and effective image feature matching algorithm was proposed combining the improved Oriented FAST and Rotated BRIEF (ORB) and Lucas–Kanade (LK) optical flow algorithm. First, image feature poin...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 18; p. 4465 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs14184465 |
Cover
| Abstract | To solve the low accuracy of image feature matching in horticultural robot visual navigation, an innovative and effective image feature matching algorithm was proposed combining the improved Oriented FAST and Rotated BRIEF (ORB) and Lucas–Kanade (LK) optical flow algorithm. First, image feature points were extracted according to the adaptive threshold calculated using the Michelson contrast. Then, the extracted feature points were uniformed by the quadtree structure, which can reduce the calculated amount of feature matching, and the uniform ORB feature points were roughly matched to estimate the position of the feature points in the matched image using the improved LK optical flow. Finally, the Hamming distance between rough matching points was calculated for precise matching. Feature extraction and matching experiments were performed in four typical scenes: normal light, low light, high texture, and low texture. Compared with the traditional algorithm, the uniformity and accuracy of the feature points extracted by the proposed algorithm were enhanced by 0.22 and 50.47%, respectively. Meanwhile, the results revealed that the matching accuracy of the proposed algorithm increased by 14.59%, whereas the matching time and total time decreased by 39.18% and 44.79%, respectively. The proposed algorithm shows great potential for application in the visual simultaneous localization and mapping (V-SLAM) of horticultural robots to achieve higher accuracy of real-time positioning and map construction. |
|---|---|
| AbstractList | To solve the low accuracy of image feature matching in horticultural robot visual navigation, an innovative and effective image feature matching algorithm was proposed combining the improved Oriented FAST and Rotated BRIEF (ORB) and Lucas–Kanade (LK) optical flow algorithm. First, image feature points were extracted according to the adaptive threshold calculated using the Michelson contrast. Then, the extracted feature points were uniformed by the quadtree structure, which can reduce the calculated amount of feature matching, and the uniform ORB feature points were roughly matched to estimate the position of the feature points in the matched image using the improved LK optical flow. Finally, the Hamming distance between rough matching points was calculated for precise matching. Feature extraction and matching experiments were performed in four typical scenes: normal light, low light, high texture, and low texture. Compared with the traditional algorithm, the uniformity and accuracy of the feature points extracted by the proposed algorithm were enhanced by 0.22 and 50.47%, respectively. Meanwhile, the results revealed that the matching accuracy of the proposed algorithm increased by 14.59%, whereas the matching time and total time decreased by 39.18% and 44.79%, respectively. The proposed algorithm shows great potential for application in the visual simultaneous localization and mapping (V-SLAM) of horticultural robots to achieve higher accuracy of real-time positioning and map construction. |
| Author | Yao, Lijian Xu, Taotao Liu, Yu Yang, Yankun Chen, Qinhan Yang, Yuncong Xu, Lijun |
| Author_xml | – sequence: 1 givenname: Qinhan orcidid: 0000-0002-6869-9300 surname: Chen fullname: Chen, Qinhan – sequence: 2 givenname: Lijian surname: Yao fullname: Yao, Lijian – sequence: 3 givenname: Lijun orcidid: 0000-0002-2169-5230 surname: Xu fullname: Xu, Lijun – sequence: 4 givenname: Yankun surname: Yang fullname: Yang, Yankun – sequence: 5 givenname: Taotao surname: Xu fullname: Xu, Taotao – sequence: 6 givenname: Yuncong surname: Yang fullname: Yang, Yuncong – sequence: 7 givenname: Yu surname: Liu fullname: Liu, Yu |
| BookMark | eNp9kMtKAzEUhoMoeN34BAF3SjWZpMnMUsVqsVIQBXfhNJc6JZ3UTEbp25taURExm3Phywfn30WbTWgsQoeUnDJWkbPYUk5LzkV_A-0URBY9XlTF5o9-Gx207YzkxxitCN9BTzchplp3PnURPB7OYWrxwEIeLb6DpJ_rZorP_TTEOj3P8QW01uDQZHIRw2vux_cXGBqDR7d4vMiqbBn48LaPthz41h581j30OLh6uLzpjcbXw8vzUU8zQVOP0YkV2siSUeu4pP1Cmz6xBStNNSFi4grJpdaMSdBUG82lqYyj2vG-JY4TtoeGa68JMFOLWM8hLlWAWn0sQpwqWF3oraIlMSBKTS0XHCpScmZL5wQ3oKUjVXadrF1ds4DlG3j_JaRErTJW3xln-mhN5yBeOtsmNQtdbPKxqpBUCCIEWzmP15SOoW2jdf8ryS9Y1wlSHZoUofZ_fXkH3ZWZSA |
| CitedBy_id | crossref_primary_10_1007_s40998_024_00722_0 crossref_primary_10_3390_app14167097 crossref_primary_10_1111_phor_12511 crossref_primary_10_3233_JIFS_231730 crossref_primary_10_3390_app122211548 crossref_primary_10_3788_LOP241164 crossref_primary_10_3390_mi13112006 crossref_primary_10_1007_s10489_024_05330_3 crossref_primary_10_1007_s12205_024_2254_2 |
| Cites_doi | 10.1016/j.eswa.2013.07.083 10.3390/rs14143256 10.1016/j.ins.2018.02.036 10.1016/j.appet.2013.08.012 10.1145/358669.358692 10.1016/j.jss.2017.06.023 10.1109/ICCV.2011.6126544 10.1016/j.ijleo.2020.165421 10.1016/j.cageo.2014.01.011 10.1109/IROS.2013.6696514 10.1006/cviu.1998.0719 10.1016/j.ijleo.2014.02.033 10.1109/ROBIO.2015.7418829 10.3390/rs14030706 10.1016/j.measurement.2021.110043 10.1016/j.knosys.2020.105871 10.1016/j.compag.2021.106237 10.1109/PIC.2014.6972325 10.1016/j.compag.2016.05.005 10.1109/TRO.2015.2463671 10.3390/rs14133175 10.1016/j.cviu.2017.08.012 10.1007/978-3-642-15561-1_56 10.1080/21681163.2016.1152201 10.1016/j.image.2015.12.001 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.3390/rs14184465 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_180da68c1e464a90843e8ff64dac7f09 10.3390/rs14184465 10_3390_rs14184465 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c361t-31be6cd7831ef47152cd50e238d9b06bf2747cc337ac1cdc47d9df1cf45e0f403 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 14:45:26 EDT 2025 Sun Oct 26 04:03:41 EDT 2025 Fri Jul 25 09:32:49 EDT 2025 Thu Oct 16 04:43:58 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-31be6cd7831ef47152cd50e238d9b06bf2747cc337ac1cdc47d9df1cf45e0f403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6869-9300 0000-0002-2169-5230 |
| OpenAccessLink | https://doaj.org/article/180da68c1e464a90843e8ff64dac7f09 |
| PQID | 2716606639 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_180da68c1e464a90843e8ff64dac7f09 unpaywall_primary_10_3390_rs14184465 proquest_journals_2716606639 crossref_primary_10_3390_rs14184465 crossref_citationtrail_10_3390_rs14184465 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xu (ref_8) 2016; 41 Bruno (ref_20) 2013; 71 ref_10 Huang (ref_7) 2014; 125 ref_18 ref_17 Cai (ref_9) 2021; 227 Chen (ref_2) 2021; 187 Himanshu (ref_25) 2014; 41 ref_21 Shi (ref_12) 2017; 162 Bayh (ref_23) 2006; 110 Rosin (ref_27) 1999; 73 Montiel (ref_1) 2015; 31 Zhang (ref_11) 2014; 66 ref_3 Chen (ref_13) 2018; 442–443 Guan (ref_24) 2021; 185 Pang (ref_14) 2020; 197 ref_28 Saleem (ref_15) 2016; 126 Tafti (ref_22) 2018; 6 ref_26 Fischler (ref_16) 1981; 24 ref_5 ref_4 Furkan (ref_19) 2018; 136 ref_6 |
| References_xml | – volume: 41 start-page: 588 year: 2014 ident: ref_25 article-title: Iris recognition using combined support vector machine and Hamming distance approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.07.083 – ident: ref_18 doi: 10.3390/rs14143256 – volume: 442–443 start-page: 173 year: 2018 ident: ref_13 article-title: Local multi-feature hashing based fast matching for aerial images publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.02.036 – volume: 71 start-page: 307 year: 2013 ident: ref_20 article-title: The effect of the color red on consuming food does not depend on achromatic (Michelson) contrast and extends to rubbing cream on the skin publication-title: Appetite doi: 10.1016/j.appet.2013.08.012 – ident: ref_26 – volume: 24 start-page: 381 year: 1981 ident: ref_16 article-title: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 136 start-page: 266 year: 2018 ident: ref_19 article-title: VISOR: A fast image processing pipeline with scaling and translation invariance for test oracle automation of visual output system publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.06.023 – ident: ref_5 doi: 10.1109/ICCV.2011.6126544 – volume: 227 start-page: 165421 year: 2021 ident: ref_9 article-title: An improved visual SLAM based on affine transformation for ORB feature extraction publication-title: Optik doi: 10.1016/j.ijleo.2020.165421 – volume: 66 start-page: 54 year: 2014 ident: ref_11 article-title: GPU-accelerated large-size VHR images registration via coarse-to-fine matching publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.01.011 – ident: ref_21 doi: 10.1109/IROS.2013.6696514 – volume: 110 start-page: 404 year: 2006 ident: ref_23 article-title: SURF: Speeded up robust features publication-title: Comput. Vis. Image Underst. – volume: 73 start-page: 291 year: 1999 ident: ref_27 article-title: Measuring Corner Properties publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1998.0719 – volume: 125 start-page: 4434 year: 2014 ident: ref_7 article-title: A real-time image matching algorithm for integrated navigation system publication-title: Optik doi: 10.1016/j.ijleo.2014.02.033 – ident: ref_3 doi: 10.1109/ROBIO.2015.7418829 – ident: ref_4 doi: 10.3390/rs14030706 – volume: 185 start-page: 110043 year: 2021 ident: ref_24 article-title: A dual-mode automatic switching feature points matching algorithm fusing IMU data publication-title: Measurement doi: 10.1016/j.measurement.2021.110043 – volume: 197 start-page: 105871 year: 2020 ident: ref_14 article-title: Weakly supervised learning for image keypoint matching using graph convolutional networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105871 – volume: 187 start-page: 106237 year: 2021 ident: ref_2 article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106237 – ident: ref_6 doi: 10.1109/PIC.2014.6972325 – volume: 126 start-page: 12 year: 2016 ident: ref_15 article-title: Towards feature points based image matching between satellite imagery and aerial photographs of agriculture land publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.05.005 – volume: 31 start-page: 1147 year: 2015 ident: ref_1 article-title: ORBSLAM: A Versatile and Accurate Monocular SLAM System publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – ident: ref_10 doi: 10.3390/rs14133175 – volume: 162 start-page: 57 year: 2017 ident: ref_12 article-title: A local feature with multiple line descriptors and its speeded-up matching algorithm publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.08.012 – ident: ref_28 doi: 10.1007/978-3-642-15561-1_56 – ident: ref_17 – volume: 6 start-page: 17 year: 2018 ident: ref_22 article-title: A comparative study on the application of SIFT, SURF, BRIEF and ORB for 3D surface reconstruction of electron microscopy images publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2016.1152201 – volume: 41 start-page: 61 year: 2016 ident: ref_8 article-title: DFOB: Detecting and describing features by octagon filter bank for fast image matching publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2015.12.001 |
| SSID | ssj0000331904 |
| Score | 2.4110277 |
| Snippet | To solve the low accuracy of image feature matching in horticultural robot visual navigation, an innovative and effective image feature matching algorithm was... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4465 |
| SubjectTerms | Accuracy Algorithms Feature extraction feature matching algorithm horticultural image horticultural robot Horticulture improved ORB algorithm Localization Matching Mathematical analysis Optical flow (image analysis) optical flow method Robots Simultaneous localization and mapping Texture |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3R5UAvVT_VBVpZKpceIuzYcZwDQmzFamnLUqEi7S1y_AGHkGzDrhD_Hk822aUS4hZFVpTM2PPeTOw3AAcyZdZnRkc2ToooIEQRFVSIqLDUIKA6p_C88_lUTq7Ez1ky24JpfxYGt1X2MbEN1LY2WCM_jAOxR7LNs-P5vwi7RuHf1b6Fhu5aK9ijVmLsFWzHqIw1gO3R6fTP5brqQnmYclSsdEp5yPcPmzsmQpYjEF2eIFMr4P8f69xZVnP9cK_L8gkAjd_Cm445kpOVq9_Blqvew07XxPzm4QPMJnWzkdIgZ7chVBCkeMvGkfMQcrHYRE7K6_BZi5tbMgoAZkldkVVhIVxfXI6Iriz5_YtczNsiNxmX9f1HuBqf_v0xibrGCZHhki1CXC2cNDZVnDkf0CeJjU2oC-hss4LKwmMqagznqTbMWCNSm1nPjBeJo15Q_gkGVV25z0CKzCunpFJMovi8VjTQcee4MDyE7MwN4XtvtNx0quLY3KLMQ3aBBs43Bh7Ct_XY-UpL49lRI7T9egTqX7c36uY675ZTzhS1WirDnJBCZ1QJ7pT3UlhtUk-zIez3nsu7RXmXb6bQEA7W3nzhVXZffsoevI7xMES742wfBotm6b4EirIovnbz7hFwZuV_ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigX3qiBglaiFw6ud73r9fqEEkQUHm0RIlI4WftsK1I7ch2q8uuZtZ00IISQuFn2WLI1s_PNN9r9BqEDkVHrc6Mim6Q6AoTQkSacR9oSEwDVORnOOx8di-mMv5-n861T_GFbJVDx8zZJJyRLojBPKaY8pjIO4l7x0vrX3_teEhVQjycZmN1GOyKFanyAdmbHn0Zfw0y59dudKikDdh_Xl5QDp-EBS7ZwqJXr_6XG3F2VS3V9pRaLLbiZ3ENq_aHdLpNvh6tGH5ofv2k4_s-f3Ed3-1oUj7rgeYBuufIh2u3Hop9dP0LzaVXfiHPgdxeQfHAoGle1w0eQxEP7Co8Wp1V93pxd4DFAosVVibtWBVyffB5jVVr88QM-WbZtczxZVFeP0Wzy9subadSPYogME7SBTK2dMDaTjDoPeJYmxqbEAd7bXBOhfSC3xjCWKUONNTyzufXUeJ464jlhT9CgrEq3h7DOvXRSSElFkLNXkkCB7xzjhgEI5G6IXq0dU5hepzyMy1gUwFeCE4sbJw7Ry43tslPn-KPVOPh3YxEUtdsbVX1a9Au0oJJYJaShjguuciI5c9J7wa0ymSf5EO2vo6Pol_llkQDbDAyQweODTcT85VOe_pvZM3QnCccs2r1s-2jQ1Cv3HIqfRr_o4_snZWH9Ag priority: 102 providerName: Unpaywall |
| Title | Horticultural Image Feature Matching Algorithm Based on Improved ORB and LK Optical Flow |
| URI | https://www.proquest.com/docview/2716606639 https://www.mdpi.com/2072-4292/14/18/4465/pdf?version=1662627072 https://doaj.org/article/180da68c1e464a90843e8ff64dac7f09 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYKPcAF0QciPCJL5dLDCjv2er3HBEjTlgREGymcVn7CYdmNQiLEv2e8u4RUquDCaV8-WDPe-eYb2d8gdCQSan1qVGQ7sY4AIXSkCeeRtsQEQHVOhvPOw5EYjPmvSTxZafUV9oTV8sC14Y6pJFYJaajjgquUSM6c9F5wq0zi66N7RKYrZKqKwQyWFuG1HikDXn88u6cc2AwPKLKCQJVQ_z_Z5caimKrHB5XnK0DT30ZbTYaIu_XMPqEPrviMNppm5bePX9BkUM5eJDPwzzsICTikcouZw0MIraGohLv5TQnE__YO9wCoLC4LXBcQ4P7iqodVYfH5b3wxrYrZuJ-XD1_RuH_292QQNQ0SIsMEnUP81E4Ym0hGnQeUiTvGxsQBCttUE6F9oJzGMJYoQ401PLGp9dR4HjviOWE7aL0oC7eLsE69dFJISUUQmVeSQNrtHOOGQWhOXQt9fzZaZhr18NDEIs-ARQQDZy8GbqFvy7HTWjPjv6N6wfbLEUHnunoB3s8a72dveb-FDp49lzU_333WAQ4YeBmDz0dLb74ylb33mMo-2uyEoxHV_rMDtD6fLdwhJCxz3UZrsv-jjT52T4fnf-DaOxtdXrWrFQtP49Fl9_oJ4l7taA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbSZHCXok_UadoSaDp0EEKJFEUOQRG3Mez6kSJIAG8qxUcyKJIr2zD85_rbepRlOwWKbNkEgRCE4-n7vjvx7hA65klonNQqMFGcBcAQWZARxoLMEO0J1Vrh651HY967Zj8m8WQP_dnUwvhjlRtMrIHalNrnyE8iEPZebFP5dfo78FOj_N_VzQgN1YxWMKd1i7GmsGNgV0sI4Wan_e-w35-jqHt-9a0XNFMGAk15OAcQyizXJhE0tA6gOo60iYkFKjMyIzxzPm7TmtJE6VAbzRIjjQu1Y7EljhEKz32CDhhlEoK_g875-OflNstDKLg4Yeu-qJRKclLNQgZRFfNsdo8J64EB_6jc1qKYqtVS5fk9wus-R88apYrP1q71Au3Z4iVqNUPTb1ev0KRXVrvWHbh_B9CEvaRcVBaPAOJ9cguf5TdgxvntHe4AYRpcFnidyIDri8sOVoXBwwG-mNZJddzNy-VrdP0oJnyD9ouysG8RzqQTVnAhQu6b3StBQP5bS5mmQBHSttGXjdFS3XQx98M08hSiGW_gdGfgNvq0XTtd9-7476qOt_12he-3Xd8oq5u0-XzTUBCjuNChZZwpSQSjVjjHmVE6cUS20dFm59IGBGbpzmXb6Hi7mw-8yuHDT_mIWr2r0TAd9seDd-hp5Asx6tNuR2h_Xi3se5BH8-xD44MY_Xpst_8LFx8jWg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VItETKi8RKLAS5cDBytq7Xq8PFWooJiF9IESl3Iy9j_bg2sFJFOWv8euYsZ2kSKi33ixrtbJmv53vm_HuDCGHMvKNi3XmmSDMPWCI3MuZEF5umEZCtVbhfeezczm8FN8m4WSH_FnfhcFjlWuf2DhqU2nMkfcDEPYotnncd92xiO8nyafpbw87SOGf1nU7jRYiY7taQvg2OxqdwFp_CILky8_PQ6_rMOBpLv05OKDcSm0ixX3rwE2HgTYhs0BjJs6ZzB3GbFpzHmXa10aLyMTG-dqJ0DInGId5H5CHEVZxx1vqyddNfodxADcTbUVUzmPWr2e-gHhKII_d4sCmVcA_-nZvUU6z1TIriltUl-yTx51GpcctqJ6QHVs-JXtdu_Tr1TMyGVb1tmgHHd2AU6IoJhe1pWfg3DGtRY-LKzDa_PqGDoAqDa1K2qYw4Pnix4BmpaGnY3oxbdLpNCmq5XNyeS8GfEF2y6q0LwnNY6eskkr5EsvcZ4qB8LeWC82BHGLbIx_XRkt1V78c22gUKcQxaOB0a-Aeeb8ZO22rdvx31ABtvxmBlbabF1V9lXYbN_UVM5lU2rdCiixmSnCrnJPCZDpyLO6Rg_XKpd32n6VbsPbI4WY17_iUV3fP8o48ArCnp6Pz8WvMLGAKCI-5HZDdeb2wb0AXzfO3DQAp-XXfiP8LICcg7w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BeigX3qiBglaiFw6ud73r9fqEEkQUHm0RIlI4WftsK1I7ch2q8uuZtZ00IISQuFn2WLI1s_PNN9r9BqEDkVHrc6Mim6Q6AoTQkSacR9oSEwDVORnOOx8di-mMv5-n861T_GFbJVDx8zZJJyRLojBPKaY8pjIO4l7x0vrX3_teEhVQjycZmN1GOyKFanyAdmbHn0Zfw0y59dudKikDdh_Xl5QDp-EBS7ZwqJXr_6XG3F2VS3V9pRaLLbiZ3ENq_aHdLpNvh6tGH5ofv2k4_s-f3Ed3-1oUj7rgeYBuufIh2u3Hop9dP0LzaVXfiHPgdxeQfHAoGle1w0eQxEP7Co8Wp1V93pxd4DFAosVVibtWBVyffB5jVVr88QM-WbZtczxZVFeP0Wzy9subadSPYogME7SBTK2dMDaTjDoPeJYmxqbEAd7bXBOhfSC3xjCWKUONNTyzufXUeJ464jlhT9CgrEq3h7DOvXRSSElFkLNXkkCB7xzjhgEI5G6IXq0dU5hepzyMy1gUwFeCE4sbJw7Ry43tslPn-KPVOPh3YxEUtdsbVX1a9Au0oJJYJaShjguuciI5c9J7wa0ymSf5EO2vo6Pol_llkQDbDAyQweODTcT85VOe_pvZM3QnCccs2r1s-2jQ1Cv3HIqfRr_o4_snZWH9Ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Horticultural+Image+Feature+Matching+Algorithm+Based+on+Improved+ORB+and+LK+Optical+Flow&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qinhan+Chen&rft.au=Lijian+Yao&rft.au=Lijun+Xu&rft.au=Yankun+Yang&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=18&rft.spage=4465&rft_id=info:doi/10.3390%2Frs14184465&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_180da68c1e464a90843e8ff64dac7f09 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |