Multivariate Statistical Analysis of Surface Enhanced Raman Spectra of Human Serum for Alzheimer’s Disease Diagnosis
Alzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer’s disease (AD) patients was analyzed by surface-en...
Saved in:
Published in | Applied sciences Vol. 9; no. 16; p. 3256 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app9163256 |
Cover
Abstract | Alzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer’s disease (AD) patients was analyzed by surface-enhanced Raman spectroscopy (SERS) coupled with multivariate statistical analysis. The obtained spectra were compared with spectra from healthy controls (HC) to develop a simple test for AD detection. Serum spectra from AD patients were further compared to spectra from patients with other neurodegenerative dementias (OD). Colloidal silver nanoparticles (AgNPs) were used as the SERS-active substrates. Classification experiments involving serum SERS spectra using artificial neural networks (ANNs) achieved a diagnostic sensitivity around 96% for differentiating AD samples from HC samples in a binary model and 98% for differentiating AD, HC, and OD samples in a tertiary model. The results from this proof-of-concept study demonstrate the great potential of SERS blood serum analysis to be developed further into a novel clinical assay for the effective and accurate diagnosis of AD. |
---|---|
AbstractList | Featured ApplicationIn this research we propose a novel method for detecting Alzheimer’s disease. This method involves the use of surface enhanced Raman spectroscopy in combination with multivariate statistical analysis. Based on the results of the proof-of-concept study, we have successfully demonstrated the potential of the method to identify Alzheimer’s disease through analysis of blood serum. With further work, this method could be developed into a novel clinical assay for the effective and accurate diagnosis of Alzheimer’s disease.AbstractAlzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer’s disease (AD) patients was analyzed by surface-enhanced Raman spectroscopy (SERS) coupled with multivariate statistical analysis. The obtained spectra were compared with spectra from healthy controls (HC) to develop a simple test for AD detection. Serum spectra from AD patients were further compared to spectra from patients with other neurodegenerative dementias (OD). Colloidal silver nanoparticles (AgNPs) were used as the SERS-active substrates. Classification experiments involving serum SERS spectra using artificial neural networks (ANNs) achieved a diagnostic sensitivity around 96% for differentiating AD samples from HC samples in a binary model and 98% for differentiating AD, HC, and OD samples in a tertiary model. The results from this proof-of-concept study demonstrate the great potential of SERS blood serum analysis to be developed further into a novel clinical assay for the effective and accurate diagnosis of AD. Alzheimer's disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and lethal, AD is difficult to diagnose with high levels of accuracy. Blood serum from Alzheimer's disease (AD) patients was analyzed by surface-enhanced Raman spectroscopy (SERS) coupled with multivariate statistical analysis. The obtained spectra were compared with spectra from healthy controls (HC) to develop a simple test for AD detection. Serum spectra from AD patients were further compared to spectra from patients with other neurodegenerative dementias (OD). Colloidal silver nanoparticles (AgNPs) were used as the SERS-active substrates. Classification experiments involving serum SERS spectra using artificial neural networks (ANNs) achieved a diagnostic sensitivity around 96% for differentiating AD samples from HC samples in a binary model and 98% for differentiating AD, HC, and OD samples in a tertiary model. The results from this proof-of-concept study demonstrate the great potential of SERS blood serum analysis to be developed further into a novel clinical assay for the effective and accurate diagnosis of AD. |
Author | Zimmerman, Earl A. Ralbovsky, Nicole M. Quinn, Joseph Lednev, Igor K. Ryzhikova, Elena Celmins, Dzintra Malone, Paula Molho, Eric Halámková, Lenka |
Author_xml | – sequence: 1 givenname: Elena surname: Ryzhikova fullname: Ryzhikova, Elena – sequence: 2 givenname: Nicole M. surname: Ralbovsky fullname: Ralbovsky, Nicole M. – sequence: 3 givenname: Lenka surname: Halámková fullname: Halámková, Lenka – sequence: 4 givenname: Dzintra surname: Celmins fullname: Celmins, Dzintra – sequence: 5 givenname: Paula surname: Malone fullname: Malone, Paula – sequence: 6 givenname: Eric surname: Molho fullname: Molho, Eric – sequence: 7 givenname: Joseph surname: Quinn fullname: Quinn, Joseph – sequence: 8 givenname: Earl A. surname: Zimmerman fullname: Zimmerman, Earl A. – sequence: 9 givenname: Igor K. orcidid: 0000-0002-6504-531X surname: Lednev fullname: Lednev, Igor K. |
BookMark | eNptUU1r3DAQFSWBpkku_QWC3gqbSJZlScclzRekFLrpWYztUaLFa7mSHUhO-Rv5e_klkbOhLSVzecPw5j1m3iey04ceCfnM2ZEQhh3DMBheiUJWH8hewVS1ECVXO__0H8lhSmuWy3ChOdsjd9-nbvR3ED2MSFcjjD6NvoGOLnvo7pNPNDi6mqKDBulpfwt9gy39CRvo6WrAZowwMy6m1wHGaUNdiHTZPdyi32B8fnxK9JtPCAkzwk0fsugB2XXQJTx8w33y6-z0-uRicfXj_PJkebVoRMXHheDcVAK5qowsXanqDKoQrNB1IRFRO9M6UWkjkfG6rEytCyVkrTV3nGst9snlVrcNsLZD9BuI9zaAt6-DEG8sxHxvh7ZtpeOmNFJjXc4NqqZVpWu1MqbUImt92WoNMfyeMI12HaaYv5RsIYWQSmg1O37dspoYUoro_rhyZueY7N-YMpn9R278HEHo81t9997KC0yBlpM |
CitedBy_id | crossref_primary_10_1038_s41598_022_11525_w crossref_primary_10_3389_fnins_2024_1301107 crossref_primary_10_1021_acsnano_4c05200 crossref_primary_10_1007_s11468_025_02760_8 crossref_primary_10_1021_acs_analchem_1c04483 crossref_primary_10_1080_05704928_2021_1913744 crossref_primary_10_1016_j_bios_2020_112511 crossref_primary_10_1039_D4NR01413H crossref_primary_10_3390_cancers14133227 crossref_primary_10_3390_arm92050038 crossref_primary_10_1016_j_saa_2020_119188 crossref_primary_10_3390_ijms241512125 crossref_primary_10_1021_acs_analchem_0c01404 crossref_primary_10_1038_s41598_024_59850_6 crossref_primary_10_3390_ijms242115605 crossref_primary_10_1146_annurev_anchem_061622_012448 crossref_primary_10_31083_j_fbs1403022 crossref_primary_10_3390_diagnostics11030508 crossref_primary_10_1002_advs_202300668 crossref_primary_10_3233_JAD_190675 crossref_primary_10_1364_BOE_455549 crossref_primary_10_1002_jbio_201960033 crossref_primary_10_1016_j_talanta_2020_121642 crossref_primary_10_1039_D1RA00870F crossref_primary_10_1039_D3AY00970J crossref_primary_10_1016_j_saa_2023_123392 crossref_primary_10_1021_acs_jpcc_4c02011 crossref_primary_10_1039_D0CS01019G crossref_primary_10_1080_05704928_2023_2168688 crossref_primary_10_3390_cryst10010038 crossref_primary_10_1016_j_bios_2021_113315 crossref_primary_10_1016_j_saa_2021_119957 crossref_primary_10_3390_genes13081342 crossref_primary_10_1002_mop_33860 crossref_primary_10_1038_s41598_020_68598_8 crossref_primary_10_1016_j_vibspec_2023_103614 |
Cites_doi | 10.1212/01.wnl.0000187889.17253.b1 10.1016/j.saa.2019.04.067 10.1007/s10103-006-0432-8 10.1016/S0197-4580(03)00005-8 10.1002/jms.207 10.1039/b922045c 10.1186/1471-2105-12-77 10.1002/jbio.200810024 10.1016/j.imlet.2008.09.004 10.1002/jbio.201200146 10.1007/s00340-008-3299-5 10.1002/9781118887486 10.1002/jbio.201400060 10.1021/ac0514671 10.1021/jp027460u 10.1080/05704920701551530 10.1016/j.bios.2010.03.033 10.1002/gps.3829 10.1016/0584-8539(95)01573-6 10.1039/c1an15452d 10.1016/j.cbpa.2004.08.014 10.1016/j.aca.2011.12.059 10.1007/s11427-011-4212-8 10.1186/1472-6947-5-3 10.1364/BOE.9.004998 10.1021/ac5026368 10.1001/archneurol.2008.530 10.32614/RJ-2010-006 10.1602/neurorx.1.2.226 10.3233/JAD-2009-1053 10.2217/17520363.2.3.229 10.1162/089976698300017197 10.1093/ajhp/55.suppl_2.S5 10.1586/14737175.8.5.769 10.1366/11-06455 10.1212/WNL.34.7.939 10.1186/1750-1326-8-20 10.1586/14737175.6.9.1293 10.1002/mds.22340 10.1212/WNL.51.6.1546 10.1155/2012/376793 10.1089/152091599317369 10.1016/j.vibspec.2011.08.003 10.1016/j.nano.2011.09.013 10.1002/jrs.1734 10.1002/jbio.201200133 10.1007/s00401-009-0502-7 10.1016/S0933-3657(02)00088-X 10.1117/1.JBO.18.8.087004 10.1016/j.neunet.2003.11.006 10.1007/s00216-003-2266-6 10.1007/s00216-014-7622-1 10.1002/cem.2426 10.1212/WNL.43.11.2412-a 10.1093/oso/9780198538493.001.0001 10.3233/JAD-122041 10.1001/archneurol.2012.1282 10.1038/nrneurol.2010.4 10.1016/j.compbiolchem.2005.10.008 10.1002/mds.10473 10.1016/S0933-3657(03)00056-3 10.1038/nm.3466 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app9163256 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_dd5f194958eb41949e7cd74fd8799483 10_3390_app9163256 |
GeographicLocations | St Louis Missouri United States--US |
GeographicLocations_xml | – name: St Louis Missouri – name: United States--US |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-311963e176954f47b954723028b25eee8f9df36895e01b469b82735b881f11883 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:10:20 EDT 2025 Mon Jun 30 07:30:39 EDT 2025 Tue Jul 01 03:00:54 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-311963e176954f47b954723028b25eee8f9df36895e01b469b82735b881f11883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6504-531X |
OpenAccessLink | https://www.proquest.com/docview/2533573878?pq-origsite=%requestingapplication% |
PQID | 2533573878 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dd5f194958eb41949e7cd74fd8799483 proquest_journals_2533573878 crossref_primary_10_3390_app9163256 crossref_citationtrail_10_3390_app9163256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Smith (ref_52) 2003; 27 Zellner (ref_2) 2009; 118 Larmour (ref_34) 2011; 136 Neary (ref_46) 1998; 51 Leopold (ref_47) 2003; 107 ref_58 ref_55 Dietterich (ref_64) 1998; 10 Koo (ref_17) 1999; 1 Manoharan (ref_15) 1996; 52 Mapstone (ref_9) 2014; 20 ref_51 (ref_20) 2007; 22 Ryzhikova (ref_27) 2015; 8 Wabuyele (ref_36) 2005; 77 McKeith (ref_45) 2005; 65 Teunissen (ref_5) 2003; 24 Sikirzhytski (ref_19) 2012; 718 Guevara (ref_65) 2018; 9 Krafft (ref_31) 2009; 2 Monien (ref_32) 2006; 6 Henry (ref_30) 2013; 28 ref_60 Lee (ref_11) 2008; 121 Basar (ref_24) 2012; 27 Baena (ref_14) 2004; 8 Zhang (ref_48) 2010; 135 Tung (ref_53) 2004; 17 ref_66 Bonifacio (ref_37) 2014; 406 Ralbovsky (ref_21) 2019; 219 Lattermann (ref_25) 2013; 6 Goetz (ref_44) 2008; 23 Das (ref_33) 2011; 57 Chernushevich (ref_57) 2001; 36 Hansson (ref_7) 2013; 8 Negri (ref_35) 2013; 6 Britschgi (ref_8) 2009; 66 Ralbovsky (ref_28) 2018; 4 Solomon (ref_40) 2008; 8 McKhann (ref_42) 1984; 34 Irizarry (ref_3) 2004; 1 Blennow (ref_6) 2010; 6 McLaughlin (ref_18) 2014; 86 Han (ref_23) 2009; 94 Schipper (ref_29) 2008; 2 Sikirzhytski (ref_16) 2011; 65 Burns (ref_10) 2009; 17 Doecke (ref_4) 2012; 69 Feng (ref_38) 2010; 25 Cheng (ref_56) 1994; 9 Morris (ref_41) 1993; 43 ref_43 Krafft (ref_13) 2004; 378 Bispo (ref_22) 2013; 18 Tu (ref_12) 2012; 8 Niazi (ref_50) 2012; 26 Shen (ref_59) 2006; 30 Farlow (ref_1) 1998; 55 Feng (ref_39) 2011; 54 ref_49 Movasaghi (ref_63) 2007; 42 Carmona (ref_26) 2013; 34 Vandenabeele (ref_62) 2007; 38 Guenther (ref_61) 2010; 2 Wall (ref_54) 2003; 28 |
References_xml | – volume: 65 start-page: 1863 year: 2005 ident: ref_45 article-title: Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium publication-title: Neurology doi: 10.1212/01.wnl.0000187889.17253.b1 – volume: 219 start-page: 463 year: 2019 ident: ref_21 article-title: Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.04.067 – volume: 22 start-page: 229 year: 2007 ident: ref_20 article-title: Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients publication-title: Lasers Med. Sci. doi: 10.1007/s10103-006-0432-8 – ident: ref_49 – volume: 24 start-page: 893 year: 2003 ident: ref_5 article-title: Combination of serum markers related to several mechanisms in Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00005-8 – volume: 36 start-page: 849 year: 2001 ident: ref_57 article-title: An introduction to quadrupole–time-of-flight mass spectrometry publication-title: J. Mass Spectrom. doi: 10.1002/jms.207 – volume: 135 start-page: 1138 year: 2010 ident: ref_48 article-title: Baseline correction using adaptive iteratively reweighted penalized least squares publication-title: Analyst doi: 10.1039/b922045c – volume: 9 start-page: 2 year: 1994 ident: ref_56 article-title: Neural Networks: A Review from a Statistical Perspective publication-title: Stat. Sci. – ident: ref_66 doi: 10.1186/1471-2105-12-77 – volume: 2 start-page: 13 year: 2009 ident: ref_31 article-title: Disease recognition by infrared and Raman spectroscopy publication-title: J. Biophotonics doi: 10.1002/jbio.200810024 – volume: 121 start-page: 105 year: 2008 ident: ref_11 article-title: Bioplex analysis of plasma cytokines in Alzheimer’s disease and mild cognitive impairment publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2008.09.004 – volume: 6 start-page: 110 year: 2013 ident: ref_25 article-title: Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging publication-title: J. Biophotonics doi: 10.1002/jbio.201200146 – volume: 94 start-page: 667 year: 2009 ident: ref_23 article-title: Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS) publication-title: Appl. Phys. B doi: 10.1007/s00340-008-3299-5 – ident: ref_55 doi: 10.1002/9781118887486 – volume: 8 start-page: 584 year: 2015 ident: ref_27 article-title: Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics: Specificity relative to other types of dementia publication-title: J. Biophotonics doi: 10.1002/jbio.201400060 – volume: 77 start-page: 7810 year: 2005 ident: ref_36 article-title: Detection of Human Immunodeficiency Virus Type 1 DNA Sequence Using Plasmonics Nanoprobes publication-title: Anal. Chem. doi: 10.1021/ac0514671 – volume: 107 start-page: 5723 year: 2003 ident: ref_47 article-title: A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride publication-title: J. Phys. Chem. B doi: 10.1021/jp027460u – volume: 42 start-page: 493 year: 2007 ident: ref_63 article-title: Raman spectroscopy of biological tissues publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701551530 – volume: 25 start-page: 2414 year: 2010 ident: ref_38 article-title: Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.03.033 – volume: 28 start-page: 331 year: 2013 ident: ref_30 article-title: The development of effective biomarkers for Alzheimer’s disease: A review publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.3829 – volume: 52 start-page: 215 year: 1996 ident: ref_15 article-title: Histochemical analysis of biological tissues using Raman spectroscopy publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/0584-8539(95)01573-6 – volume: 136 start-page: 3831 year: 2011 ident: ref_34 article-title: Surface enhanced optical spectroscopies for bioanalysis publication-title: Analyst doi: 10.1039/c1an15452d – volume: 8 start-page: 534 year: 2004 ident: ref_14 article-title: Raman spectroscopy in chemical bioanalysis publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2004.08.014 – volume: 718 start-page: 78 year: 2012 ident: ref_19 article-title: Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.12.059 – volume: 54 start-page: 828 year: 2011 ident: ref_39 article-title: Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis publication-title: Sci. China Life Sci. doi: 10.1007/s11427-011-4212-8 – ident: ref_58 doi: 10.1186/1472-6947-5-3 – volume: 9 start-page: 4998 year: 2018 ident: ref_65 article-title: Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.004998 – volume: 86 start-page: 11628 year: 2014 ident: ref_18 article-title: Raman spectroscopy of blood for species identification publication-title: Anal. Chem. doi: 10.1021/ac5026368 – volume: 66 start-page: 161 year: 2009 ident: ref_8 article-title: Blood Protein Signature for the Early Diagnosis of Alzheimer Disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2008.530 – volume: 2 start-page: 30 year: 2010 ident: ref_61 article-title: Neuralnet: Training of Neural Networks publication-title: R J. doi: 10.32614/RJ-2010-006 – volume: 1 start-page: 226 year: 2004 ident: ref_3 article-title: Biomarkers of Alzheimer disease in plasma publication-title: NeuroRX doi: 10.1602/neurorx.1.2.226 – volume: 17 start-page: 391 year: 2009 ident: ref_10 article-title: Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-2009-1053 – volume: 2 start-page: 229 year: 2008 ident: ref_29 article-title: Spectroscopy of human plasma for diagnosis of idiopathic Parkinson’s disease publication-title: Biomark. Med. doi: 10.2217/17520363.2.3.229 – volume: 10 start-page: 1895 year: 1998 ident: ref_64 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Comput. doi: 10.1162/089976698300017197 – volume: 55 start-page: S5 year: 1998 ident: ref_1 article-title: Etiology and pathogenesis of Alzheimer’s disease publication-title: Am. J. Health Pharm. doi: 10.1093/ajhp/55.suppl_2.S5 – volume: 8 start-page: 769 year: 2008 ident: ref_40 article-title: Early diagnosis and treatment of Alzheimer’s disease publication-title: Expert Rev. Neurother. doi: 10.1586/14737175.8.5.769 – volume: 65 start-page: 1223 year: 2011 ident: ref_16 article-title: Multidimensional Raman Spectroscopic Signatures as a Tool for Forensic Identification of Body Fluid Traces: A Review publication-title: Appl. Spectrosc. doi: 10.1366/11-06455 – volume: 34 start-page: 939 year: 1984 ident: ref_42 article-title: Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 8 start-page: 20 year: 2013 ident: ref_7 article-title: Fluid biomarkers in Alzheimer’s disease—Current concepts publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-8-20 – volume: 6 start-page: 1293 year: 2006 ident: ref_32 article-title: Early diagnostics and therapeutics for Alzheimer’s disease—How early can we get there? publication-title: Expert Rev. Neurother. doi: 10.1586/14737175.6.9.1293 – volume: 23 start-page: 2129 year: 2008 ident: ref_44 article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results publication-title: Mov. Disord. doi: 10.1002/mds.22340 – volume: 51 start-page: 1546 year: 1998 ident: ref_46 article-title: Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria publication-title: Neurology doi: 10.1212/WNL.51.6.1546 – volume: 27 start-page: 239 year: 2012 ident: ref_24 article-title: Investigation of Preeclampsia Using Raman Spectroscopy publication-title: Spectrosc. Int. J. doi: 10.1155/2012/376793 – volume: 1 start-page: 153 year: 1999 ident: ref_17 article-title: Reagentless Blood Analysis by Near-Infrared Raman Spectroscopy publication-title: Diabetes Technol. Ther. doi: 10.1089/152091599317369 – volume: 57 start-page: 163 year: 2011 ident: ref_33 article-title: Raman spectroscopy: Recent advancements, techniques and applications publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2011.08.003 – volume: 8 start-page: 545 year: 2012 ident: ref_12 article-title: Diagnostic applications of Raman spectroscopy publication-title: Nanomedicine doi: 10.1016/j.nano.2011.09.013 – volume: 38 start-page: 1133 year: 2007 ident: ref_62 article-title: Reference database of Raman spectra of biological molecules publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1734 – volume: 6 start-page: 20 year: 2013 ident: ref_35 article-title: Ag nanorod based surface-enhanced Raman spectroscopy applied to bioanalytical sensing publication-title: J. Biophotonics doi: 10.1002/jbio.201200133 – volume: 118 start-page: 181 year: 2009 ident: ref_2 article-title: The role of proteomics in dementia and Alzheimer’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-009-0502-7 – volume: 27 start-page: 1 year: 2003 ident: ref_52 article-title: Evaluation of inherent performance of intelligent medical decision support systems: Utilising neural networks as an example publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(02)00088-X – volume: 18 start-page: 087004 year: 2013 ident: ref_22 article-title: Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.8.087004 – volume: 17 start-page: 567 year: 2004 ident: ref_53 article-title: GenSo-EWS: A novel neural-fuzzy based early warning system for predicting bank failures publication-title: Neural Netw. doi: 10.1016/j.neunet.2003.11.006 – volume: 378 start-page: 60 year: 2004 ident: ref_13 article-title: Bioanalytical applications of Raman spectroscopy publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-003-2266-6 – volume: 4 start-page: 33 year: 2018 ident: ref_28 article-title: Raman hyperspectroscopy shows promise for diagnosis of Alzheimer’s publication-title: Biophotonics – volume: 406 start-page: 2355 year: 2014 ident: ref_37 article-title: Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: A systematic study publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-014-7622-1 – volume: 26 start-page: 345 year: 2012 ident: ref_50 article-title: Genetic algorithms in chemometrics publication-title: J. Chemom. doi: 10.1002/cem.2426 – volume: 43 start-page: 2412 year: 1993 ident: ref_41 article-title: The Clinical Dementia Rating (CDR): Current version and scoring rules publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – ident: ref_51 doi: 10.1093/oso/9780198538493.001.0001 – volume: 34 start-page: 911 year: 2013 ident: ref_26 article-title: Discrimination Analysis of Blood Plasma Associated with Alzheimer’s Disease Using Vibrational Spectroscopy publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-122041 – volume: 69 start-page: 1318 year: 2012 ident: ref_4 article-title: Blood-based protein biomarkers for diagnosis of Alzheimer disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2012.1282 – volume: 6 start-page: 131 year: 2010 ident: ref_6 article-title: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2010.4 – volume: 30 start-page: 63 year: 2006 ident: ref_59 article-title: Reducing multiclass cancer classification to binary by output coding and SVM publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2005.10.008 – ident: ref_43 doi: 10.1002/mds.10473 – volume: 28 start-page: 191 year: 2003 ident: ref_54 article-title: Explaining the output of ensembles in medical decision support on a case by case basis publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(03)00056-3 – ident: ref_60 – volume: 20 start-page: 415 year: 2014 ident: ref_9 article-title: Plasma phospholipids identify antecedent memory impairment in older adults publication-title: Nat. Med. doi: 10.1038/nm.3466 |
SSID | ssj0000913810 |
Score | 2.3657813 |
Snippet | Alzheimer’s disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and... Featured ApplicationIn this research we propose a novel method for detecting Alzheimer’s disease. This method involves the use of surface enhanced Raman... Alzheimer's disease (AD) is the most common form of dementia worldwide and is characterized by progressive cognitive decline. Along with being incurable and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3256 |
SubjectTerms | Alzheimer's disease artificial neural networks Biomarkers blood serum differential diagnosis genetic algorithm Parkinson's disease silver colloidal nanoparticles Spectrum analysis surface enhanced Raman spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQLSAKBVmCgQ4RTWLH9ligVcXAAFTqFsXJtVqpTVFfAxO_we_xJVw7aakEEgtTougqiXwfPid2ziXkSipmUomJBK3UeAyY8STTiQeJMkIogxzC7fJ9jHp99jDgg61WX3ZPWCEPXAzcTZZxg0RbcQma2RMQaSaYyaRQikmn84nT2BaZcjVY-Va6qtAjDZHX2_VgREJhYDtVb81ATqj_Rx12k0v3gOyXqJC2i7epkh3Ia2RvSyuwRqplFs7pdSkV3TwkK_f_7Ar5LkJGaoGj0122tyrFRujU0OflzCQp0E4-dOv99CmZJDm1recXs8RauE_5FOvGckIRxdL2-G0IownMPt8_5vS-WMTBo9uWN5ofkX6383LX88pOCl4aRv4CC61NNPBFpDgzTGg8CCQfgdQBBwBpVGbCSCoOLV8jY9YSYQ3XUvoGGYgMj0kln-ZwQqgFLCmLQiZ1htQOVJJwrJFGKZOyQJs6aa5HN05LmXHb7WIcI92wnoi_PVEnlxvb10Jc41erW-ukjYUVxHYXMEziMkziv8KkThprF8dlls7jALEuF6EU8vQ_nnFGdhFOqWJ7YINUFrMlnCNkWegLF51fUvbqFg priority: 102 providerName: Directory of Open Access Journals |
Title | Multivariate Statistical Analysis of Surface Enhanced Raman Spectra of Human Serum for Alzheimer’s Disease Diagnosis |
URI | https://www.proquest.com/docview/2533573878 https://doaj.org/article/dd5f194958eb41949e7cd74fd8799483 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELWgvcAB0QJioawswYEeIjaJE49PqIVdKg4VKlTqLYqdMa3UzbbJbg-c-A1-jy9hxvFuK4E4JUpGOWQ84_fG9hsh3oBR3gEFEk6cTxQqn4CydYK18VobTxwi7PI9Lo9O1eez4iwW3Pq4rXKdE0OibhaOa-TvMsIlhc5Bw_ur64S7RvHqamyhcV9spxmNJD4pPvu0qbGw5iWkk0GVNCd2z6vChIfyjPtV35mHglz_X9k4TDGzx-JRxIbyYHDmjriH7a54eEcxcFfsxFjs5dsoGL3_RNyEU7Q3xHoJOEqGj0F9mT8VJUfkwsuvq87XDuW0PQ-r_vKkntet5Ab0y65mi1DQl5Q9VnNJWFYeXP44x4s5dr9__urlx2Eph65hc95F_1SczqbfPhwlsZ9C4vIyXVK65XDDVJemUF5pSxdNFCQDmxWICN40Pi_BFDhJLfFmCwRuCguQeuIhkD8TW-2ixedCMmxxqswV2IYIHpq6LihTemO8U5n1I7G__ruVi2Lj3PPisiLSwZ6obj0xEq83tleDxMY_rQ7ZSRsLlsUODxbd9ypGWdU0hU8NcT5Aq_gGtWu08g1oYxTkI7G3dnEVY7WvbkfWi_-_fikeEFwyw_a_PbG17Fb4iiDJ0o7DuBuL7cPp8ZeTcSD2fwDsq-R- |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VcgAOiBYQCwUsARI9RGxiJ7YPCBXaZUtLD9BKvYXYsWmlbrYku0Vw4jf4CT6KL2HGSbaVQNx6SpSMfPCMx2884zcAT5UW3ipcSG5ofSSc8JESpohcob2U2mMMEap897LxgXh3mB4uwa_-LgyVVfY-MTjqcmrpjPxFgrgklVxJ9er0S0Rdoyi72rfQaM1ix337iiFb83J7E_X7LElGW_tvxlHXVSCyPItn6HTI6FwsM50KL6TBh0QgniiTpM455XXpeaZ06oaxwejRKNziU6NU7BGNK47jXoGrgnNOXP1q9HZxpkMcmyoetiyonOshZaERf_GE-mNf2PdCe4C_vH_Y0ka34GaHRdlGazwrsOSqVbhxgaFwFVa6td-w5x1B9fptOAu3ds8wykagygiuBrZnGqqjOGFTzz7Oa19Yx7aqo1BlwD4Uk6Ji1PB-VhckERIIDL3VfMIQO7ONk-9H7nji6t8_fjZss00d4TMUAx43d-DgUmb6LixX08rdA0YwyYqMC2VKDCidLooUPbPX2luRGD-A9X52c9uRm1OPjZMcgxzSRH6uiQE8WcietpQe_5R6TUpaSBANd_gwrT_n3arOyzL1scYYUzkj6MVJW0rhSyW1FooPYK1Xcd75hiY_t-T7___9GK6N99_v5rvbezsP4DpCNd2WHq7B8qyeu4cIh2bmUbBBBp8u2-j_ACVBG5Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VrYTggGgBsbSAJUCih6ibxIntQ4VadlctRauqpVJvIU5sWqmbbTe7RXDiN_glPoMvYcZxtpVA3HpKlFg-eMbjN56ZNwCvpeK2kLiRTK-wATfcBpLrPDC5skIoiz6Ey_IdpbvH_MNJcrIEv9paGEqrbG2iM9TlpKA78s0IcUkiYinkpvVpEQf94buLy4A6SFGktW2nkfs2C-WWoxvzRR775ttXdOfqrb0-yv5NFA0Hn97vBr7jQFDEaThDg0QKaUKRqoRbLjQ-BIL0SOooMcZIq0obp1Ilphdq9Cy1xOM_0VKGFpG6jHHeO7AsqF60A8s7g9HB4eLGhxg4ZdhrOFLjWPUoRo3oLI6oe_aNU9E1D_jrbHAH3vAhPPBIlW03qrUCS6Zahfs3-AtXYcVbhpq99fTVG4_gytX0XqEPjjCWEZh1XNA0lSdAYRPLjuZTmxeGDapTl4PADvNxXrEjKvyc5jTChRcY2rL5mCGyZtvn30_N2dhMf__4WbN-E1jCp0sVPKsfw_GtrPUT6FSTyjwFRiCq4GnMpS7R3TQqzxO021YpW_BI2y5stKubFZ76nDpwnGfoApEksmtJdOHVYuxFQ_jxz1E7JKTFCCLpdh8m0y-Z3_NZWSY2VOiBSqM5vRhRlILbUgqluIy7sN6KOPOWo86u9fzZ_3-_hLu4AbKPe6P9NbiHOE41eYnr0JlN5-Y5YqWZfuGVkMHn29b7P7vuJnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Statistical+Analysis+of+Surface+Enhanced+Raman+Spectra+of+Human+Serum+for+Alzheimer%E2%80%99s+Disease+Diagnosis&rft.jtitle=Applied+sciences&rft.au=Ryzhikova%2C+Elena&rft.au=Ralbovsky%2C+Nicole+M&rft.au=Hal%C3%A1mkov%C3%A1%2C+Lenka&rft.au=Celmins%2C+Dzintra&rft.date=2019-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=16&rft.spage=3256&rft_id=info:doi/10.3390%2Fapp9163256&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |