Novel multi‐domain attention for abstractive summarisation

The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the summary generated by models lacks the cover of the subject of source document due to models' small perspective. In order to make up thes...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 8; no. 3; pp. 796 - 806
Main Authors Qu, Chunxia, Lu, Ling, Wang, Aijuan, Yang, Wu, Chen, Yinong
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.09.2023
Wiley
Subjects
Online AccessGet full text
ISSN2468-2322
2468-2322
DOI10.1049/cit2.12117

Cover

Abstract The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the summary generated by models lacks the cover of the subject of source document due to models' small perspective. In order to make up these disadvantages, a multi‐domain attention pointer (MDA‐Pointer) abstractive summarisation model is proposed in this work. First, the model uses bidirectional long short‐term memory to encode, respectively, the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level. Furthermore, the multi‐domain attention mechanism between the semantic representations and the summary word is established, and the proposed model can generate summary words under the proposed attention mechanism based on the words and sentences. Then, the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary, and the coverage mechanism is introduced, respectively, into word and sentence level to reduce the redundancy of summary content. Finally, experiment validation is conducted on CNN/Daily Mail dataset. ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively, and the results verify the validation of model proposed by this paper.
AbstractList The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the summary generated by models lacks the cover of the subject of source document due to models' small perspective. In order to make up these disadvantages, a multi‐domain attention pointer (MDA‐Pointer) abstractive summarisation model is proposed in this work. First, the model uses bidirectional long short‐term memory to encode, respectively, the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level. Furthermore, the multi‐domain attention mechanism between the semantic representations and the summary word is established, and the proposed model can generate summary words under the proposed attention mechanism based on the words and sentences. Then, the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary, and the coverage mechanism is introduced, respectively, into word and sentence level to reduce the redundancy of summary content. Finally, experiment validation is conducted on CNN/Daily Mail dataset. ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively, and the results verify the validation of model proposed by this paper.
Abstract The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the summary generated by models lacks the cover of the subject of source document due to models' small perspective. In order to make up these disadvantages, a multi‐domain attention pointer (MDA‐Pointer) abstractive summarisation model is proposed in this work. First, the model uses bidirectional long short‐term memory to encode, respectively, the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level. Furthermore, the multi‐domain attention mechanism between the semantic representations and the summary word is established, and the proposed model can generate summary words under the proposed attention mechanism based on the words and sentences. Then, the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary, and the coverage mechanism is introduced, respectively, into word and sentence level to reduce the redundancy of summary content. Finally, experiment validation is conducted on CNN/Daily Mail dataset. ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively, and the results verify the validation of model proposed by this paper.
The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the summary generated by models lacks the cover of the subject of source document due to models' small perspective. In order to make up these disadvantages, a multi‐domain attention pointer (MDA‐Pointer) abstractive summarisation model is proposed in this work. First, the model uses bidirectional long short‐term memory to encode, respectively, the word and sentence sequence of source document for obtaining the semantic representations at word and sentence level. Furthermore, the multi‐domain attention mechanism between the semantic representations and the summary word is established, and the proposed model can generate summary words under the proposed attention mechanism based on the words and sentences. Then, the words are extracted from the vocabulary or the original word sequences through the pointer network to form the summary, and the coverage mechanism is introduced, respectively, into word and sentence level to reduce the redundancy of summary content. Finally, experiment validation is conducted on CNN/Daily Mail dataset. ROUGE evaluation indexes of the model without and with the coverage mechanism are improved respectively, and the results verify the validation of model proposed by this paper.
Author Chen, Yinong
Yang, Wu
Wang, Aijuan
Lu, Ling
Qu, Chunxia
Author_xml – sequence: 1
  givenname: Chunxia
  orcidid: 0000-0002-3341-810X
  surname: Qu
  fullname: Qu, Chunxia
  organization: College of Computer Science and Engineering Chongqing University of Technology Chongqing China
– sequence: 2
  givenname: Ling
  surname: Lu
  fullname: Lu, Ling
  organization: College of Computer Science and Engineering Chongqing University of Technology Chongqing China
– sequence: 3
  givenname: Aijuan
  surname: Wang
  fullname: Wang, Aijuan
  organization: College of Computer Science and Engineering Chongqing University of Technology Chongqing China
– sequence: 4
  givenname: Wu
  surname: Yang
  fullname: Yang, Wu
  organization: College of Computer Science and Engineering Chongqing University of Technology Chongqing China
– sequence: 5
  givenname: Yinong
  orcidid: 0000-0002-8780-3994
  surname: Chen
  fullname: Chen, Yinong
  organization: School of Computing and Augmented Intelligence Arizona State University Tempe Arizona USA
BookMark eNptkMlKBDEQhoMouM3FJ2jwJoxWlklPgRcRNxC96DlUpxPJ0NPRJCN48xF8Rp_EnhkREU-1_fVX8e2yzT72jrEDDsccFJ7YUMQxF5zXG2xHKD0dCynE5q98m41yngEAR8SJrHfY6V18dV01X3QlfL5_tHFOoa-oFNeXEPvKx1RRk0siW8Krq_JiPqcUMi2n-2zLU5fd6DvuscfLi4fz6_Ht_dXN-dnt2ErNy1g05Mgj194pBATNhdZNLUGAHGqJLREX0tbosAHpa1I4Ja2V9XwKZOUeu1n7tpFm5jmF4YU3EymYVSOmJ0OpBNs5o5tGtNB6FNgqPsGpVtI6B16CFsq6wetw7fWc4svC5WJmcZH64X0jATlqVAoH1dFaZVPMOTn_c5WDWcI2S9hmBXsQwx_xMFwBGrCF7r-VL_lbg6o
CitedBy_id crossref_primary_10_3390_app13179771
crossref_primary_10_1080_02533839_2025_2466647
crossref_primary_10_7717_peerj_cs_1496
crossref_primary_10_1016_j_engappai_2024_108148
crossref_primary_10_1109_TBME_2023_3280987
crossref_primary_10_3390_s24248103
Cites_doi 10.18653/v1/D15-1044
10.13053/cys-21-4-2855
10.18653/v1/P16-1008
10.18653/v1/K17-1045
10.18653/v1/P18-2027
10.3115/1073445.1073465
10.18653/v1/P16-1154
10.1016/j.neunet.2020.07.025
10.1007/s10831-020-09214-8
10.18653/v1/K16-1028
10.1109/ASRU.2015.7404790
10.18653/v1/P17-1099
10.18653/v1/P18-1061
10.1145/3368926.3369728
10.18653/v1/D16-1112
10.1016/j.neunet.2019.12.024
10.14569/IJACSA.2017.081052
10.18653/v1/P18-1014
10.18653/v1/N16-1012
10.18653/v1/D19-1304
10.18653/v1/2021.findings-acl.298
10.3115/v1/D14-1179
10.1609/aaai.v32i1.11987
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/cit2.12117
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals - NZ
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 806
ExternalDocumentID oai_doaj_org_article_6bb2d0df929d41598643cee0f30624ce
10_1049_cit2_12117
GroupedDBID 0R~
1OC
24P
AAEDW
AAHJG
AAJGR
AALRI
AAMMB
AAXUO
AAYWO
AAYXX
ABMAC
ABQXS
ACCMX
ACESK
ACGFS
ACVFH
ACXQS
ADBBV
ADCNI
ADMLS
ADVLN
AEFGJ
AEUPX
AEXQZ
AFKRA
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
ICD
IDLOA
ITC
K7-
M41
M43
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
ROL
RUI
SSZ
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-2baeaf916fe4909061266b73020390939daa123c79e9b03f7a498a664cf180ac3
IEDL.DBID DOA
ISSN 2468-2322
IngestDate Wed Aug 27 01:22:33 EDT 2025
Sat Jul 26 00:21:02 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Wed Oct 01 06:40:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-2baeaf916fe4909061266b73020390939daa123c79e9b03f7a498a664cf180ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3341-810X
0000-0002-8780-3994
OpenAccessLink https://doaj.org/article/6bb2d0df929d41598643cee0f30624ce
PQID 3091969449
PQPubID 6852857
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_6bb2d0df929d41598643cee0f30624ce
proquest_journals_3091969449
crossref_primary_10_1049_cit2_12117
crossref_citationtrail_10_1049_cit2_12117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-00
20230901
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-00
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
Vaswani A. (e_1_2_10_18_1) 2017
Sutskever I. (e_1_2_10_13_1) 2014
Mihalcea R. (e_1_2_10_5_1) 2004
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
Duchi J. (e_1_2_10_31_1) 2011; 12
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
Vinyals O. (e_1_2_10_20_1) 2015
Liu J.Y. (e_1_2_10_2_1) 2017; 35
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_8_1
  doi: 10.18653/v1/D15-1044
– ident: e_1_2_10_10_1
  doi: 10.13053/cys-21-4-2855
– ident: e_1_2_10_25_1
  doi: 10.18653/v1/P16-1008
– ident: e_1_2_10_30_1
– ident: e_1_2_10_6_1
  doi: 10.18653/v1/K17-1045
– ident: e_1_2_10_26_1
  doi: 10.18653/v1/P18-2027
– ident: e_1_2_10_32_1
  doi: 10.3115/1073445.1073465
– ident: e_1_2_10_24_1
  doi: 10.18653/v1/P16-1154
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neunet.2020.07.025
– volume: 12
  start-page: 2121
  year: 2011
  ident: e_1_2_10_31_1
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res
– ident: e_1_2_10_4_1
  doi: 10.1007/s10831-020-09214-8
– start-page: 3104
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_10_13_1
– ident: e_1_2_10_7_1
  doi: 10.18653/v1/K16-1028
– ident: e_1_2_10_16_1
  doi: 10.1109/ASRU.2015.7404790
– ident: e_1_2_10_9_1
  doi: 10.18653/v1/P17-1099
– start-page: 6000
  volume-title: Proceedings of the 2017 31st International Conference on Neural Information Processing Systems
  year: 2017
  ident: e_1_2_10_18_1
– start-page: 2692
  volume-title: Proceedings of the 2015 28th International Conference on Neural Information Processing Systems
  year: 2015
  ident: e_1_2_10_20_1
– ident: e_1_2_10_12_1
  doi: 10.18653/v1/P18-1061
– ident: e_1_2_10_29_1
– ident: e_1_2_10_34_1
– ident: e_1_2_10_33_1
  doi: 10.1145/3368926.3369728
– ident: e_1_2_10_15_1
  doi: 10.18653/v1/D16-1112
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neunet.2019.12.024
– ident: e_1_2_10_3_1
  doi: 10.14569/IJACSA.2017.081052
– ident: e_1_2_10_21_1
  doi: 10.18653/v1/P18-1014
– ident: e_1_2_10_19_1
  doi: 10.18653/v1/N16-1012
– start-page: 404
  volume-title: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
  year: 2004
  ident: e_1_2_10_5_1
– ident: e_1_2_10_17_1
– ident: e_1_2_10_22_1
  doi: 10.18653/v1/D19-1304
– ident: e_1_2_10_23_1
  doi: 10.18653/v1/2021.findings-acl.298
– volume: 35
  start-page: 154
  issue: 7
  year: 2017
  ident: e_1_2_10_2_1
  article-title: A review of automatic text summarization research in recent 70 years
  publication-title: Inf. Sci
– ident: e_1_2_10_14_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_10_11_1
  doi: 10.1609/aaai.v32i1.11987
SSID ssj0001999537
Score 2.293157
Snippet The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary, and the...
Abstract The existing abstractive text summarisation models only consider the word sequence correlations between the source document and the reference summary,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 796
SubjectTerms abstracting
convolutional neural nets
Datasets
Documents
Information retrieval
Library and information science
Neural networks
Readability
recurrent neural nets
Redundancy
Representations
Semantics
Sentences
text analysis
word processing
Words (language)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV2xTsMwELWgLCwIBIhCQZFgYYiaxI4TS0gIEKVi6ESlbpHt2AipNKUNzHwC38iXcOc47QBijOPJ9t17dz6_I-SCAqwnSvBQljaHAEXbEEDYhkpFscnSTBnrqi1GfDhmj5N04hNuS19W2fpE56jLSmOOvE8B2AQXjInr-VuIXaPwdtW30NgkW3ECJwlfig8e1jkWYD8pzVpVUib6-qVOUFDB9Sdb45CT6__ljR3EDHbJjueGwU2zmXtkw8z2ydWo-jDTwBX-fX9-ldUrxPIBqmK6OsUASGcgFSYsnOcKmtdovkjngIwH9093w9C3PAg15XEdJkoaaYGyWcNEJJB_cK7ACpOIwjcVpZSANToTRqiI2kwykUvOmbZxHklND0lnVs3MEQlSQG-hpbuLwygmF5JSiXJjmOqJVZdctgtQaK8Hjm0ppoW7l2YCR5PCLVaXnK_mzhsVjD9n3eI6rmagcrUbqBbPhTeEgiuVlFFp4USUQB5QHZ4CUEcWYpeEadMlvXYXCm9Oy2K9-cf__z4h29gPvikC65FOvXg3p8AaanXmjsYPLcPCAA
  priority: 102
  providerName: ProQuest
Title Novel multi‐domain attention for abstractive summarisation
URI https://www.proquest.com/docview/3091969449
https://doaj.org/article/6bb2d0df929d41598643cee0f30624ce
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: ADMLS
  dateStart: 20200901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: IDLOA
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AKRWK
  dateStart: 20160101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: AVUZU
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA46L15EUXE6R0EvHsraJk0b8LLp5hAdog52K0magDA70erZn-Bv9Jf4XtrNgYIXT6UltOW95n3fS16_R8gxBViPlOC-zG0KCYq2PoCw9ZUKQpPEiTLWVVuM-HDMLifxZKnVF9aEVfLAleE6XKkoD3ILd8gBbFBNnEJgDyxw3Yhpg9EXYGwpmXKrK8B7YprM9UiZ6OiHMkIpBdeZ7BuBnFD_jzjswGWwSTZqVuh1q7fZIium2Cano9mbmXqu5O_z_SOfPUIW76EepqtQ9IBuelLhUoWLWV71H1pdnrNDxoP-_dnQr5sd-JrysPQjJY20QNasYSIQyDw4VzD_ooDCORW5lIAyOhFGqIDaRDKRSs6ZtmEaSE13SaOYFWaPeDHgttDS7cJh_pIKSalEoTFc5AlVk5zMDZDpWgkcG1JMM7cjzQRejTJnrCY5Wox9qvQvfh3VQzsuRqBmtbsAnsxqT2Z_ebJJWnMvZPVEesko8BnBBWNi_z-ecUDWsV98VSTWIo3y-dUcAqsoVZuspoOLNlnrnl9f3cGx1x_d3LbdZ_UFBQrOmw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BPcClAhXEtgtEKhw4RGRtrxNLrRC03S5_ewKJW7AdGyHRDbBLEbc-Ak_CQ_EkzDgJeyjixtUZ5TAez3wzHn8DsM4xrDOjZKwLn2GCYn2MQdjHxiQdl3ZT43zothjI_onYP-2eTsFj8xaG2iobnxgcdVFaqpFvcQxsSioh1PbVdUxTo-h2tRmhUZnFgbu_w5Rt9H3vJ-7vBmO9X8c_-nE9VSC2XHbGMTPaaY-oyDuhEkUhXkqDhs4SzP8VV4XW6M5tqpwyCfepFirTUgrrO1miLcf_TsMHwTknrv6s93tS00G01eVpw4Iq1Ja9GDMicAjz0CZxL4wH-M_7h5DWm4ePNRaNdirjWYApN_wE3wblX3cZhUbDp38PRflHXwwjYuEMfZERgtxIGyqQBE8ZVa_f6qagRTh5F2UswcywHLpliLqIFpTV4e6PsqZMac410ZtRaaljWrDZKCC3Nf84jcG4zMM9uFC0yvKgrBZ8fZG9qlg3XpXaJT2-SBBTdlgob87z-uDl0hhWJIVHCywQrBAbPUdgkHjMlZiwrgXtZhfy-viO8omxfX778xrM9o-PDvPDvcHBF5ijWfRVA1obZsY3t24FEcvYrAYzieDsve3yGaRc_Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+multi%E2%80%90domain+attention+for+abstractive+summarisation&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Qu%2C+Chunxia&rft.au=Lu%2C+Ling&rft.au=Wang%2C+Aijuan&rft.au=Yang%2C+Wu&rft.date=2023-09-01&rft.issn=2468-2322&rft.eissn=2468-2322&rft.volume=8&rft.issue=3&rft.spage=796&rft.epage=806&rft_id=info:doi/10.1049%2Fcit2.12117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cit2_12117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon