Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction

When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal an...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 2; p. 670
Main Authors Duan, Jiehao, Li, Changjun, Jin, Jin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en15020670

Cover

Abstract When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal analysis of the tubing, the coupling effect of the fluid and the tubing needs to be considered at the same time. In this paper, a single tubing is taken as an example to simulate and analyze the modal changes of the tubing under dry mode and wet mode respectively, and the effects of fluid solid coupling effect, inlet pressure, and ambient temperature on the modal of the tubing are discussed. After considering the fluid–structure interaction effect, the natural frequency of tubing decreases, but the displacement is slightly larger. The greater the pressure in the tubing, the greater the equivalent stress on the tubing body, so the natural frequency is lower. Furthermore, after considering the fluid–solid coupling effect, the pressure in the tubing is the true pulsating pressure of the fluid. The prestress applied to the tubing wall changes with time, and the pressures at different parts are different. At this time, the tubing is changed at different frequencies. Vibration is prone to occur, that is, the natural frequency is smaller than the dry mode. The higher the temperature, the lower the rigidity of the tubing and the faster the strength attenuation, so the natural frequency is lower, and tubing is more prone to vibration. Both the stress intensity and the elastic strain increase with the increase of temperature, so the displacement of the tubing also increases.
AbstractList When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal analysis of the tubing, the coupling effect of the fluid and the tubing needs to be considered at the same time. In this paper, a single tubing is taken as an example to simulate and analyze the modal changes of the tubing under dry mode and wet mode respectively, and the effects of fluid solid coupling effect, inlet pressure, and ambient temperature on the modal of the tubing are discussed. After considering the fluid–structure interaction effect, the natural frequency of tubing decreases, but the displacement is slightly larger. The greater the pressure in the tubing, the greater the equivalent stress on the tubing body, so the natural frequency is lower. Furthermore, after considering the fluid–solid coupling effect, the pressure in the tubing is the true pulsating pressure of the fluid. The prestress applied to the tubing wall changes with time, and the pressures at different parts are different. At this time, the tubing is changed at different frequencies. Vibration is prone to occur, that is, the natural frequency is smaller than the dry mode. The higher the temperature, the lower the rigidity of the tubing and the faster the strength attenuation, so the natural frequency is lower, and tubing is more prone to vibration. Both the stress intensity and the elastic strain increase with the increase of temperature, so the displacement of the tubing also increases.
Author Duan, Jiehao
Li, Changjun
Jin, Jin
Author_xml – sequence: 1
  givenname: Jiehao
  surname: Duan
  fullname: Duan, Jiehao
– sequence: 2
  givenname: Changjun
  surname: Li
  fullname: Li, Changjun
– sequence: 3
  givenname: Jin
  surname: Jin
  fullname: Jin, Jin
BookMark eNptkcFqGzEQhkVxIYnjS55gIbeC05G0K62OxiStwaWFuGchjyRXZrNKJO0ht7xD37BPknVcmlAyl_kZvvl_mDkjkz72jpALClecK_jsetoAAyHhAzmlSok5Bcknb_QJmeW8h7E4p5zzU_LjW7Smqxa96R5zyFX01WbYhn5XLWOfg3XpoMsvV11777AcgJtuCPbP0-_bkgYsQ3LVqi8uGSwh9ufkozdddrO_fUp-3lxvll_n6-9fVsvFeo5c0DJnssWmRgmWKbOVaFFZUHJrVOudMpQrY6EBUJ61Xsna1g2TAhvKaoCtRz4lq6OvjWav71O4M-lRRxP0yyCmnTapBOyc9hKReUMFCqzrMcNYLrxv6xaUss6OXpdHr_sUHwaXi97HIY0nyZoJRlnLGyZG6tORwhRzTs7_S6WgDw_Qrw8YYfgPxlDM4UAlmdC9t_IM0XuKBA
CitedBy_id crossref_primary_10_3390_app14072767
crossref_primary_10_3390_en16186640
crossref_primary_10_3390_en16196812
crossref_primary_10_3390_jmse11091667
crossref_primary_10_1063_5_0122436
crossref_primary_10_1016_j_net_2023_08_010
crossref_primary_10_1177_16878132231176190
crossref_primary_10_1016_j_measurement_2023_112513
crossref_primary_10_3390_aerospace10100900
Cites_doi 10.1088/1757-899X/481/1/012019
10.21203/rs.3.rs-627588/v1
10.4236/wjet.2021.91010
10.1016/j.ast.2017.05.027
10.1016/j.egyr.2021.05.035
10.1016/S1876-3804(20)60081-7
10.1016/j.apm.2019.09.057
10.3390/en14010229
10.1016/j.ijmultiphaseflow.2021.103667
10.21595/vp.2018.20307
10.1007/978-3-030-59509-8_30
10.1016/j.jngse.2015.05.023
10.1016/j.cja.2020.04.007
10.1016/j.physleta.2019.02.019
10.1016/j.engfailanal.2021.105431
10.2516/ogst/2021035
10.1007/s13369-021-05359-3
10.1016/j.engfailanal.2021.105709
10.3390/en13153849
10.1016/j.est.2021.102909
10.1016/j.jfluidstructs.2020.103083
10.3390/en14072015
10.1016/j.apor.2020.102468
10.3390/en14061518
10.3390/en14206855
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15020670
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_f7cc2fa16c6c447baad36ff848099ded
10_3390_en15020670
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-278c54c70d29ab7cdc9d097ba98fe9a139ad05009f28f974d45276c512400bfc3
IEDL.DBID 8FG
ISSN 1996-1073
IngestDate Wed Aug 27 01:30:04 EDT 2025
Mon Jun 30 10:59:13 EDT 2025
Tue Jul 01 01:27:41 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-278c54c70d29ab7cdc9d097ba98fe9a139ad05009f28f974d45276c512400bfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2621283526?pq-origsite=%requestingapplication%
PQID 2621283526
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_f7cc2fa16c6c447baad36ff848099ded
proquest_journals_2621283526
crossref_primary_10_3390_en15020670
crossref_citationtrail_10_3390_en15020670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
ref_12
ref_30
Guo (ref_18) 2020; 106
Zhang (ref_10) 2017; 68
Jiang (ref_19) 2021; 129
Tian (ref_20) 2018; 38
ref_16
Zhang (ref_7) 2021; 76
Zhang (ref_3) 2020; 47
Jun (ref_5) 2020; 81
Xu (ref_9) 2021; 7
Mohmmed (ref_25) 2020; 97
Alkhamis (ref_1) 2021; 46
Wu (ref_17) 2019; 383
ref_23
Lian (ref_28) 2018; 38
Zheng (ref_24) 2021; 141
Mou (ref_29) 2018; 14
Liu (ref_6) 2021; 41
ref_21
Lubecki (ref_14) 2021; 125
ref_27
Zhang (ref_2) 2015; 25
ref_26
Luo (ref_22) 2021; 9
ref_8
Chai (ref_15) 2020; 33
ref_4
Jiang (ref_11) 2018; 21
References_xml – ident: ref_16
  doi: 10.1088/1757-899X/481/1/012019
– ident: ref_23
  doi: 10.21203/rs.3.rs-627588/v1
– volume: 9
  start-page: 128
  year: 2021
  ident: ref_22
  article-title: The Study of Tubing Vibration Mechanism in High Pressure Gas Well
  publication-title: World J. Eng. Technol.
  doi: 10.4236/wjet.2021.91010
– ident: ref_26
– volume: 68
  start-page: 441
  year: 2017
  ident: ref_10
  article-title: Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.05.027
– volume: 7
  start-page: 3011
  year: 2021
  ident: ref_9
  article-title: The study on erosion of buckling tubing string in HTHP ultra-deep wells considering fluid–solid coupling
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.05.035
– volume: 47
  start-page: 642
  year: 2020
  ident: ref_3
  article-title: Effects of instantaneous shut-in of high production gas well on fluid flow in tubing
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(20)60081-7
– volume: 81
  start-page: 50
  year: 2020
  ident: ref_5
  article-title: Bi-nonlinear vibration model of tubing string in oil & gas well and its experimental verification
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.09.057
– ident: ref_21
  doi: 10.3390/en14010229
– volume: 141
  start-page: 103667
  year: 2021
  ident: ref_24
  article-title: Fluid-structure interactions in a flexible pipe conveying two-phase flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2021.103667
– volume: 21
  start-page: 42
  year: 2018
  ident: ref_11
  article-title: Modal analysis of liquid-filled tubing under fluid-structure interaction by simulation and experiment methods
  publication-title: Vibroeng. Procedia
  doi: 10.21595/vp.2018.20307
– ident: ref_12
  doi: 10.1007/978-3-030-59509-8_30
– volume: 25
  start-page: 347
  year: 2015
  ident: ref_2
  article-title: Evaluation of wellbore integrity for HTHP gas wells under solid-temperature coupling using a new analytical model
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.05.023
– volume: 33
  start-page: 3253
  year: 2020
  ident: ref_15
  article-title: A dynamic modeling approach for nonlinear vibration analysis of the L-type tubing system with clamps
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.04.007
– volume: 383
  start-page: 1555
  year: 2019
  ident: ref_17
  article-title: Global dynamics of a pipe conveying pulsating fluid in primary parametrical resonance: Analytical and numerical results from the nonlinear wave equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2019.02.019
– volume: 125
  start-page: 105431
  year: 2021
  ident: ref_14
  article-title: Analysis of selected dynamic properties of the composite hydraulic microhose
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105431
– volume: 76
  start-page: 54
  year: 2021
  ident: ref_7
  article-title: Research on the influence of production fluctuation of high-production gas well on service security of tubing string
  publication-title: Oil Gas Sci. Technol. Revue d’IFP Energies Nouv.
  doi: 10.2516/ogst/2021035
– volume: 38
  start-page: 1234
  year: 2018
  ident: ref_20
  article-title: Vibration Fatigue Characteristic of High-Pressure Fuel Pipe Based on Fluid-Solid Coupling Model
  publication-title: J. Vib. Meas. Diagn.
– volume: 14
  start-page: 109
  year: 2018
  ident: ref_29
  article-title: Study on influence of centralizer on buckling behavior of tubing string in ultra-deep gas well
  publication-title: J. Saf. Sci. Technol.
– volume: 46
  start-page: 6131
  year: 2021
  ident: ref_1
  article-title: A Simple Classification of Wellbore Integrity Problems Related to Fluids Migration
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05359-3
– volume: 129
  start-page: 105709
  year: 2021
  ident: ref_19
  article-title: Blasting vibration effect on the buried tubing: A brief overview
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105709
– volume: 38
  start-page: 89
  year: 2018
  ident: ref_28
  article-title: Buckling behaviors of tubing strings in HTHP ultra-deep wells
  publication-title: Nat. Gas Ind.
– ident: ref_4
  doi: 10.3390/en13153849
– volume: 41
  start-page: 102909
  year: 2021
  ident: ref_6
  article-title: Nonlinear flow-induced vibration response characteristics of leaching tubing in salt cavern underground gas storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102909
– ident: ref_13
– volume: 97
  start-page: 103083
  year: 2020
  ident: ref_25
  article-title: One-way coupled fluid-structure interaction of gas-liquid slug flow in a horizontal pipe: Experiments and simulations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.103083
– ident: ref_8
  doi: 10.3390/en14072015
– volume: 106
  start-page: 102468
  year: 2020
  ident: ref_18
  article-title: Nonlinear flow-induced vibration response characteristics of a tubing string in HPHT oil & gas well
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102468
– ident: ref_27
  doi: 10.3390/en14061518
– ident: ref_30
  doi: 10.3390/en14206855
SSID ssj0000331333
Score 2.357472
Snippet When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 670
SubjectTerms Finite element analysis
fluid-structure interaction
Hydraulics
inlet pressure
Load
Mechanical properties
Mechanics
modal analysis
Natural gas
Simulation
Stress analysis
temperature
tubing
Vibration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xWCejFQ2i6u9nNHlUsRagIttBb2N3ZFaGkou3d_-A_9Jc4u0lrRcGLt5AMSZjJzry3ZN4Qcq5BBdltkxrObYoVD1ItsiLFRGik8syxPPQOD-5Ef8Rvx_l4ZdRX-CeslgeuHdfx0lrqdVdYYTneQGtgwvuCF4htwEHIvpnKVshUzMGMIflitR4pQ17fcRVCn6BVnn2rQFGo_0cejsWlt022GlSYXNZvs0PWXLVLNle0AvfI_WAKwaQREUmmPhnOkdY-JouZm-EY4VxSCxIHg95k_gQfb-8PUSR2_uKSuAFY9zLsk1HvZnjdT5txCKllojtLqSxszq3MgCptpAWrIFPoEVV4pzRCOQ1ZjpjJ08IjTQCeUyksVnRcp8ZbdkDWq2nlDkmC9gqvdwG84V46BQJ5ktLUYP6TQrfIxcJFpW20wsPIikmJnCG4s_xyZ4ucLW2fa4WMX62ugqeXFkHVOp7AWJdNrMu_Yt0i7UWcymapvZZUYPUNOFIc_cczjskGDR0OcZelTdYxQO4EccfMnMZP7BOWythI
  priority: 102
  providerName: Directory of Open Access Journals
Title Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction
URI https://www.proquest.com/docview/2621283526
https://doaj.org/article/f7cc2fa16c6c447baad36ff848099ded
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XvQgPrFaS0AvHkKT3WQ3exIrrUVQRFvoLexThNL46t3_4D_0lzi72VZF8RJCdk6T3Znvm2S-QehYaO5kt2Uss0zFkPF0LGhSxBAIJeOWGJK73uGrazoYZZfjfBwKbi_ht8p5TPSBWlfK1cg7mEKQdXCBnj4-xW5qlPu6GkZoLKOVFEOudZ3i_YtFjSUhBCgYqVVJCbD7jpkCAHKK5cmPPOTl-n9FY59i-htoPWDD6Kx-mZtoyUy30No3xcBtdHNVaWcSpESiykbDGZDb-2g-edPdA6iLalliZ9CfzB70x9v7nZeKnT2byJcB646GHTTq94bngzgMRYgVoelrjFmh8kyxRGMuJFNacZ1wJgUvrOECAJ3QSQ7IyeLCAlnQWY4ZVZDX4bRKq8guakyrqdlDEdhzWE-1tjKzzHBNgS1xgSVEQUZFE53MXVSqoBjuBldMSmAOzp3llzub6Ghh-1jrZPxp1XWeXlg4bWv_oHq-L8NRKS1TCluRUkVVBltGCE2otUVWAJrVRjdRa_6eynDgXsqv7bH___IBWsWug8FXUVqoAa43h4ArXmXbb542Wun2rm9u256dw_VinH4CEd7RjQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VOWlbl9EAg4comZtx44PVdXXaku7qwq2Um_Bzwqp2vS1Qtz4D_yf_hh-CePE2VIVcestikc5jMcz30w83wC8V1YG2m2dasZMihHPpopnRYqOUAvpqaN56B0ejvjghH06zU_n4LbthQnXKlufWDtqW5lQI98gHJ1sgAt86-IyDVOjwt_VdoSGiqMV7GZNMRYbOw7dj--Ywl1vHuzhfn8gpL8_3h2kccpAaijv3aREFCZnRmSWSKWFsUbaTAqtZOGdVIiQlM1yhCKeFB7Rt2U5EdxgoETz195Q_O4TmGehgNKB-Z390fHnWZUnoxSTQNrwolIqsw03QQgWONOze5GwHhjwIB7UQa6_CAsRnSbbjTm9gDk3eQnP_-IsfAXHw8oGkUhmklQ-GU8xvT5L2tmf4RlhZdIQIweB_vn0m_3989eXmqx2euWSuhDZ9FS8hpNHUdgb6EyqiVuCBOUlrves9Zp54aTlmK9JRTT6YcFVFz62KipN5CwPozPOS8xdgjrLO3V24d1M9qJh6vin1E7Q9EwisGvXL6qrszIe1tILY4hXPW64YWi0SlnKvS9YgXjaOtuF1Xafynjkr8s7A13-__JbeDoYD4_Ko4PR4Qo8I6Gfoq7prEIHt8GtIcq50evRlBL4-tjW-wdbCREL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkKpyqEp_xLYUIrU99BBt1k7s-IBQKayglNWqBYlbantshIQ2FFhVvfEOvBWP0SfpOHGWola9cYviUQ7j8cw3E883AG81qkC7bVKT5zaliIepFlmZkiM0UnnueBF6h_dHYucw_3RUHM3BTdcLE65Vdj6xcdRY21Aj7zNBTjbABdH38VrEeGu4cfY9DROkwp_WbpyGjmMWcL2hG4tNHnvu5w9K5y7Wd7do798xNtw--LiTxokDqeVicJkyWdoitzJDprSRFq3CTEmjVemd0oSWNGYFwRLPSk9IHPOCSWEpaNJRMN5y-u4DWJAU9SkRXNjcHo2_zCo-GeeUEPKWI5VzlfXdhOBY4E_P7kTFZnjAX7GhCXjDJ_A4ItXkQ2taSzDnJk9h8Q_-wmcw3q8xiERik6T2ycGUUu3jpJsDGp4JYiYtSXIQGJ5OT_DX1fXXhrh2eu6SpijZ9lc8h8N7UdgLmJ_UE7cMCckrWh8gepN76RQKyt2UZoZ8shS6B-87FVU28peHMRqnFeUxQZ3VrTp78GYme9aydvxTajNoeiYRmLabF_X5cRUPbuWltczrgbDC5mTAWiMX3pd5SdgaHfZgpdunKh7_i-rWWF_-f3kNHpIVV593R3uv4BELrRVNeWcF5mkX3GsCPJdmNVpSAt_u23h_A-6nFU8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modal+Analysis+of+Tubing+Considering+the+Effect+of+Fluid%E2%80%93Structure+Interaction&rft.jtitle=Energies+%28Basel%29&rft.au=Duan%2C+Jiehao&rft.au=Li%2C+Changjun&rft.au=Jin%2C+Jin&rft.date=2022-01-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=2&rft.spage=670&rft_id=info:doi/10.3390%2Fen15020670&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15020670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon