Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction
When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal an...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 2; p. 670 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en15020670 |
Cover
Abstract | When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal analysis of the tubing, the coupling effect of the fluid and the tubing needs to be considered at the same time. In this paper, a single tubing is taken as an example to simulate and analyze the modal changes of the tubing under dry mode and wet mode respectively, and the effects of fluid solid coupling effect, inlet pressure, and ambient temperature on the modal of the tubing are discussed. After considering the fluid–structure interaction effect, the natural frequency of tubing decreases, but the displacement is slightly larger. The greater the pressure in the tubing, the greater the equivalent stress on the tubing body, so the natural frequency is lower. Furthermore, after considering the fluid–solid coupling effect, the pressure in the tubing is the true pulsating pressure of the fluid. The prestress applied to the tubing wall changes with time, and the pressures at different parts are different. At this time, the tubing is changed at different frequencies. Vibration is prone to occur, that is, the natural frequency is smaller than the dry mode. The higher the temperature, the lower the rigidity of the tubing and the faster the strength attenuation, so the natural frequency is lower, and tubing is more prone to vibration. Both the stress intensity and the elastic strain increase with the increase of temperature, so the displacement of the tubing also increases. |
---|---|
AbstractList | When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will easily cause the tubing to vibrate or even resonate, affecting the integrity of the wellbore and safe production. In the structural modal analysis of the tubing, the coupling effect of the fluid and the tubing needs to be considered at the same time. In this paper, a single tubing is taken as an example to simulate and analyze the modal changes of the tubing under dry mode and wet mode respectively, and the effects of fluid solid coupling effect, inlet pressure, and ambient temperature on the modal of the tubing are discussed. After considering the fluid–structure interaction effect, the natural frequency of tubing decreases, but the displacement is slightly larger. The greater the pressure in the tubing, the greater the equivalent stress on the tubing body, so the natural frequency is lower. Furthermore, after considering the fluid–solid coupling effect, the pressure in the tubing is the true pulsating pressure of the fluid. The prestress applied to the tubing wall changes with time, and the pressures at different parts are different. At this time, the tubing is changed at different frequencies. Vibration is prone to occur, that is, the natural frequency is smaller than the dry mode. The higher the temperature, the lower the rigidity of the tubing and the faster the strength attenuation, so the natural frequency is lower, and tubing is more prone to vibration. Both the stress intensity and the elastic strain increase with the increase of temperature, so the displacement of the tubing also increases. |
Author | Duan, Jiehao Li, Changjun Jin, Jin |
Author_xml | – sequence: 1 givenname: Jiehao surname: Duan fullname: Duan, Jiehao – sequence: 2 givenname: Changjun surname: Li fullname: Li, Changjun – sequence: 3 givenname: Jin surname: Jin fullname: Jin, Jin |
BookMark | eNptkcFqGzEQhkVxIYnjS55gIbeC05G0K62OxiStwaWFuGchjyRXZrNKJO0ht7xD37BPknVcmlAyl_kZvvl_mDkjkz72jpALClecK_jsetoAAyHhAzmlSok5Bcknb_QJmeW8h7E4p5zzU_LjW7Smqxa96R5zyFX01WbYhn5XLWOfg3XpoMsvV11777AcgJtuCPbP0-_bkgYsQ3LVqi8uGSwh9ufkozdddrO_fUp-3lxvll_n6-9fVsvFeo5c0DJnssWmRgmWKbOVaFFZUHJrVOudMpQrY6EBUJ61Xsna1g2TAhvKaoCtRz4lq6OvjWav71O4M-lRRxP0yyCmnTapBOyc9hKReUMFCqzrMcNYLrxv6xaUss6OXpdHr_sUHwaXi97HIY0nyZoJRlnLGyZG6tORwhRzTs7_S6WgDw_Qrw8YYfgPxlDM4UAlmdC9t_IM0XuKBA |
CitedBy_id | crossref_primary_10_3390_app14072767 crossref_primary_10_3390_en16186640 crossref_primary_10_3390_en16196812 crossref_primary_10_3390_jmse11091667 crossref_primary_10_1063_5_0122436 crossref_primary_10_1016_j_net_2023_08_010 crossref_primary_10_1177_16878132231176190 crossref_primary_10_1016_j_measurement_2023_112513 crossref_primary_10_3390_aerospace10100900 |
Cites_doi | 10.1088/1757-899X/481/1/012019 10.21203/rs.3.rs-627588/v1 10.4236/wjet.2021.91010 10.1016/j.ast.2017.05.027 10.1016/j.egyr.2021.05.035 10.1016/S1876-3804(20)60081-7 10.1016/j.apm.2019.09.057 10.3390/en14010229 10.1016/j.ijmultiphaseflow.2021.103667 10.21595/vp.2018.20307 10.1007/978-3-030-59509-8_30 10.1016/j.jngse.2015.05.023 10.1016/j.cja.2020.04.007 10.1016/j.physleta.2019.02.019 10.1016/j.engfailanal.2021.105431 10.2516/ogst/2021035 10.1007/s13369-021-05359-3 10.1016/j.engfailanal.2021.105709 10.3390/en13153849 10.1016/j.est.2021.102909 10.1016/j.jfluidstructs.2020.103083 10.3390/en14072015 10.1016/j.apor.2020.102468 10.3390/en14061518 10.3390/en14206855 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15020670 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_f7cc2fa16c6c447baad36ff848099ded 10_3390_en15020670 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c361t-278c54c70d29ab7cdc9d097ba98fe9a139ad05009f28f974d45276c512400bfc3 |
IEDL.DBID | 8FG |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:30:04 EDT 2025 Mon Jun 30 10:59:13 EDT 2025 Tue Jul 01 01:27:41 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c361t-278c54c70d29ab7cdc9d097ba98fe9a139ad05009f28f974d45276c512400bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2621283526?pq-origsite=%requestingapplication% |
PQID | 2621283526 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7cc2fa16c6c447baad36ff848099ded proquest_journals_2621283526 crossref_primary_10_3390_en15020670 crossref_citationtrail_10_3390_en15020670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_13 ref_12 ref_30 Guo (ref_18) 2020; 106 Zhang (ref_10) 2017; 68 Jiang (ref_19) 2021; 129 Tian (ref_20) 2018; 38 ref_16 Zhang (ref_7) 2021; 76 Zhang (ref_3) 2020; 47 Jun (ref_5) 2020; 81 Xu (ref_9) 2021; 7 Mohmmed (ref_25) 2020; 97 Alkhamis (ref_1) 2021; 46 Wu (ref_17) 2019; 383 ref_23 Lian (ref_28) 2018; 38 Zheng (ref_24) 2021; 141 Mou (ref_29) 2018; 14 Liu (ref_6) 2021; 41 ref_21 Lubecki (ref_14) 2021; 125 ref_27 Zhang (ref_2) 2015; 25 ref_26 Luo (ref_22) 2021; 9 ref_8 Chai (ref_15) 2020; 33 ref_4 Jiang (ref_11) 2018; 21 |
References_xml | – ident: ref_16 doi: 10.1088/1757-899X/481/1/012019 – ident: ref_23 doi: 10.21203/rs.3.rs-627588/v1 – volume: 9 start-page: 128 year: 2021 ident: ref_22 article-title: The Study of Tubing Vibration Mechanism in High Pressure Gas Well publication-title: World J. Eng. Technol. doi: 10.4236/wjet.2021.91010 – ident: ref_26 – volume: 68 start-page: 441 year: 2017 ident: ref_10 article-title: Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.05.027 – volume: 7 start-page: 3011 year: 2021 ident: ref_9 article-title: The study on erosion of buckling tubing string in HTHP ultra-deep wells considering fluid–solid coupling publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.05.035 – volume: 47 start-page: 642 year: 2020 ident: ref_3 article-title: Effects of instantaneous shut-in of high production gas well on fluid flow in tubing publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60081-7 – volume: 81 start-page: 50 year: 2020 ident: ref_5 article-title: Bi-nonlinear vibration model of tubing string in oil & gas well and its experimental verification publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.09.057 – ident: ref_21 doi: 10.3390/en14010229 – volume: 141 start-page: 103667 year: 2021 ident: ref_24 article-title: Fluid-structure interactions in a flexible pipe conveying two-phase flow publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2021.103667 – volume: 21 start-page: 42 year: 2018 ident: ref_11 article-title: Modal analysis of liquid-filled tubing under fluid-structure interaction by simulation and experiment methods publication-title: Vibroeng. Procedia doi: 10.21595/vp.2018.20307 – ident: ref_12 doi: 10.1007/978-3-030-59509-8_30 – volume: 25 start-page: 347 year: 2015 ident: ref_2 article-title: Evaluation of wellbore integrity for HTHP gas wells under solid-temperature coupling using a new analytical model publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.05.023 – volume: 33 start-page: 3253 year: 2020 ident: ref_15 article-title: A dynamic modeling approach for nonlinear vibration analysis of the L-type tubing system with clamps publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.04.007 – volume: 383 start-page: 1555 year: 2019 ident: ref_17 article-title: Global dynamics of a pipe conveying pulsating fluid in primary parametrical resonance: Analytical and numerical results from the nonlinear wave equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2019.02.019 – volume: 125 start-page: 105431 year: 2021 ident: ref_14 article-title: Analysis of selected dynamic properties of the composite hydraulic microhose publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105431 – volume: 76 start-page: 54 year: 2021 ident: ref_7 article-title: Research on the influence of production fluctuation of high-production gas well on service security of tubing string publication-title: Oil Gas Sci. Technol. Revue d’IFP Energies Nouv. doi: 10.2516/ogst/2021035 – volume: 38 start-page: 1234 year: 2018 ident: ref_20 article-title: Vibration Fatigue Characteristic of High-Pressure Fuel Pipe Based on Fluid-Solid Coupling Model publication-title: J. Vib. Meas. Diagn. – volume: 14 start-page: 109 year: 2018 ident: ref_29 article-title: Study on influence of centralizer on buckling behavior of tubing string in ultra-deep gas well publication-title: J. Saf. Sci. Technol. – volume: 46 start-page: 6131 year: 2021 ident: ref_1 article-title: A Simple Classification of Wellbore Integrity Problems Related to Fluids Migration publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05359-3 – volume: 129 start-page: 105709 year: 2021 ident: ref_19 article-title: Blasting vibration effect on the buried tubing: A brief overview publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105709 – volume: 38 start-page: 89 year: 2018 ident: ref_28 article-title: Buckling behaviors of tubing strings in HTHP ultra-deep wells publication-title: Nat. Gas Ind. – ident: ref_4 doi: 10.3390/en13153849 – volume: 41 start-page: 102909 year: 2021 ident: ref_6 article-title: Nonlinear flow-induced vibration response characteristics of leaching tubing in salt cavern underground gas storage publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102909 – ident: ref_13 – volume: 97 start-page: 103083 year: 2020 ident: ref_25 article-title: One-way coupled fluid-structure interaction of gas-liquid slug flow in a horizontal pipe: Experiments and simulations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.103083 – ident: ref_8 doi: 10.3390/en14072015 – volume: 106 start-page: 102468 year: 2020 ident: ref_18 article-title: Nonlinear flow-induced vibration response characteristics of a tubing string in HPHT oil & gas well publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102468 – ident: ref_27 doi: 10.3390/en14061518 – ident: ref_30 doi: 10.3390/en14206855 |
SSID | ssj0000331333 |
Score | 2.357472 |
Snippet | When tubing is in a high-temperature and high-pressure environment, it will be affected by the impact of non-constant fluid and other dynamic loads, which will... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 670 |
SubjectTerms | Finite element analysis fluid-structure interaction Hydraulics inlet pressure Load Mechanical properties Mechanics modal analysis Natural gas Simulation Stress analysis temperature tubing Vibration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET6xWCejFQ2i6u9nNHlUsRagIttBb2N3ZFaGkou3d_-A_9Jc4u0lrRcGLt5AMSZjJzry3ZN4Qcq5BBdltkxrObYoVD1ItsiLFRGik8syxPPQOD-5Ef8Rvx_l4ZdRX-CeslgeuHdfx0lrqdVdYYTneQGtgwvuCF4htwEHIvpnKVshUzMGMIflitR4pQ17fcRVCn6BVnn2rQFGo_0cejsWlt022GlSYXNZvs0PWXLVLNle0AvfI_WAKwaQREUmmPhnOkdY-JouZm-EY4VxSCxIHg95k_gQfb-8PUSR2_uKSuAFY9zLsk1HvZnjdT5txCKllojtLqSxszq3MgCptpAWrIFPoEVV4pzRCOQ1ZjpjJ08IjTQCeUyksVnRcp8ZbdkDWq2nlDkmC9gqvdwG84V46BQJ5ktLUYP6TQrfIxcJFpW20wsPIikmJnCG4s_xyZ4ucLW2fa4WMX62ugqeXFkHVOp7AWJdNrMu_Yt0i7UWcymapvZZUYPUNOFIc_cczjskGDR0OcZelTdYxQO4EccfMnMZP7BOWythI priority: 102 providerName: Directory of Open Access Journals |
Title | Modal Analysis of Tubing Considering the Effect of Fluid–Structure Interaction |
URI | https://www.proquest.com/docview/2621283526 https://doaj.org/article/f7cc2fa16c6c447baad36ff848099ded |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XvQgPrFaS0AvHkKT3WQ3exIrrUVQRFvoLexThNL46t3_4D_0lzi72VZF8RJCdk6T3Znvm2S-QehYaO5kt2Uss0zFkPF0LGhSxBAIJeOWGJK73uGrazoYZZfjfBwKbi_ht8p5TPSBWlfK1cg7mEKQdXCBnj4-xW5qlPu6GkZoLKOVFEOudZ3i_YtFjSUhBCgYqVVJCbD7jpkCAHKK5cmPPOTl-n9FY59i-htoPWDD6Kx-mZtoyUy30No3xcBtdHNVaWcSpESiykbDGZDb-2g-edPdA6iLalliZ9CfzB70x9v7nZeKnT2byJcB646GHTTq94bngzgMRYgVoelrjFmh8kyxRGMuJFNacZ1wJgUvrOECAJ3QSQ7IyeLCAlnQWY4ZVZDX4bRKq8guakyrqdlDEdhzWE-1tjKzzHBNgS1xgSVEQUZFE53MXVSqoBjuBldMSmAOzp3llzub6Ghh-1jrZPxp1XWeXlg4bWv_oHq-L8NRKS1TCluRUkVVBltGCE2otUVWAJrVRjdRa_6eynDgXsqv7bH___IBWsWug8FXUVqoAa43h4ArXmXbb542Wun2rm9u256dw_VinH4CEd7RjQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VOWlbl9EAg4comZtx44PVdXXaku7qwq2Um_Bzwqp2vS1Qtz4D_yf_hh-CePE2VIVcestikc5jMcz30w83wC8V1YG2m2dasZMihHPpopnRYqOUAvpqaN56B0ejvjghH06zU_n4LbthQnXKlufWDtqW5lQI98gHJ1sgAt86-IyDVOjwt_VdoSGiqMV7GZNMRYbOw7dj--Ywl1vHuzhfn8gpL8_3h2kccpAaijv3aREFCZnRmSWSKWFsUbaTAqtZOGdVIiQlM1yhCKeFB7Rt2U5EdxgoETz195Q_O4TmGehgNKB-Z390fHnWZUnoxSTQNrwolIqsw03QQgWONOze5GwHhjwIB7UQa6_CAsRnSbbjTm9gDk3eQnP_-IsfAXHw8oGkUhmklQ-GU8xvT5L2tmf4RlhZdIQIweB_vn0m_3989eXmqx2euWSuhDZ9FS8hpNHUdgb6EyqiVuCBOUlrves9Zp54aTlmK9JRTT6YcFVFz62KipN5CwPozPOS8xdgjrLO3V24d1M9qJh6vin1E7Q9EwisGvXL6qrszIe1tILY4hXPW64YWi0SlnKvS9YgXjaOtuF1Xafynjkr8s7A13-__JbeDoYD4_Ko4PR4Qo8I6Gfoq7prEIHt8GtIcq50evRlBL4-tjW-wdbCREL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB5RkKpyqEp_xLYUIrU99BBt1k7s-IBQKayglNWqBYlbantshIQ2FFhVvfEOvBWP0SfpOHGWola9cYviUQ7j8cw3E883AG81qkC7bVKT5zaliIepFlmZkiM0UnnueBF6h_dHYucw_3RUHM3BTdcLE65Vdj6xcdRY21Aj7zNBTjbABdH38VrEeGu4cfY9DROkwp_WbpyGjmMWcL2hG4tNHnvu5w9K5y7Wd7do798xNtw--LiTxokDqeVicJkyWdoitzJDprSRFq3CTEmjVemd0oSWNGYFwRLPSk9IHPOCSWEpaNJRMN5y-u4DWJAU9SkRXNjcHo2_zCo-GeeUEPKWI5VzlfXdhOBY4E_P7kTFZnjAX7GhCXjDJ_A4ItXkQ2taSzDnJk9h8Q_-wmcw3q8xiERik6T2ycGUUu3jpJsDGp4JYiYtSXIQGJ5OT_DX1fXXhrh2eu6SpijZ9lc8h8N7UdgLmJ_UE7cMCckrWh8gepN76RQKyt2UZoZ8shS6B-87FVU28peHMRqnFeUxQZ3VrTp78GYme9aydvxTajNoeiYRmLabF_X5cRUPbuWltczrgbDC5mTAWiMX3pd5SdgaHfZgpdunKh7_i-rWWF_-f3kNHpIVV593R3uv4BELrRVNeWcF5mkX3GsCPJdmNVpSAt_u23h_A-6nFU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modal+Analysis+of+Tubing+Considering+the+Effect+of+Fluid%E2%80%93Structure+Interaction&rft.jtitle=Energies+%28Basel%29&rft.au=Duan%2C+Jiehao&rft.au=Li%2C+Changjun&rft.au=Jin%2C+Jin&rft.date=2022-01-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=2&rft.spage=670&rft_id=info:doi/10.3390%2Fen15020670&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en15020670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |