Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing
With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing, which provides cloud-like computation and/or storage capabilities at the network edge, is envisioned to reduce computation latency as well as...
Saved in:
| Published in | IEEE transactions on communications Vol. 67; no. 6; pp. 4193 - 4207 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0090-6778 1558-0857 |
| DOI | 10.1109/TCOMM.2019.2903088 |
Cover
| Abstract | With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing, which provides cloud-like computation and/or storage capabilities at the network edge, is envisioned to reduce computation latency as well as to conserve energy for wireless devices (WDs). This paper studies a novel device-to-device (D2D)-enabled multi-helper MEC system, in which a local user solicits its nearby WDs serving as helpers for cooperative computation. We assume a time division multiple access (TDMA) transmission protocol, under which the local user offloads the tasks to multiple helpers and downloads the results from them over orthogonal pre-scheduled time slots. Under this setup, we minimize the computation latency by optimizing the local user's task assignment jointly with the time and rate for task offloading and results downloading, as well as the computation frequency for task execution, subject to individual energy and computation capacity constraints at the local user and the helpers. However, the formulated problem is a mixed-integer non-linear program (MINLP) that is difficult to solve. To tackle this challenge, we propose an efficient algorithm by first relaxing the original problem into a convex one, and then constructing a suboptimal task assignment solution based on the obtained optimal one. Furthermore, we consider a benchmark scheme that endows the WDs with their maximum computation capacities. To further reduce the implementation complexity, we also develop a heuristic scheme based on the greedy task assignment. Finally, the numerical results validate the effectiveness of our proposed algorithm, as compared against the heuristic scheme and other benchmark ones without either joint optimization of radio and computation resources or task assignment design. |
|---|---|
| AbstractList | With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing, which provides cloud-like computation and/or storage capabilities at the network edge, is envisioned to reduce computation latency as well as to conserve energy for wireless devices (WDs). This paper studies a novel device-to-device (D2D)-enabled multi-helper MEC system, in which a local user solicits its nearby WDs serving as helpers for cooperative computation. We assume a time division multiple access (TDMA) transmission protocol, under which the local user offloads the tasks to multiple helpers and downloads the results from them over orthogonal pre-scheduled time slots. Under this setup, we minimize the computation latency by optimizing the local user’s task assignment jointly with the time and rate for task offloading and results downloading, as well as the computation frequency for task execution, subject to individual energy and computation capacity constraints at the local user and the helpers. However, the formulated problem is a mixed-integer non-linear program (MINLP) that is difficult to solve. To tackle this challenge, we propose an efficient algorithm by first relaxing the original problem into a convex one, and then constructing a suboptimal task assignment solution based on the obtained optimal one. Furthermore, we consider a benchmark scheme that endows the WDs with their maximum computation capacities. To further reduce the implementation complexity, we also develop a heuristic scheme based on the greedy task assignment. Finally, the numerical results validate the effectiveness of our proposed algorithm, as compared against the heuristic scheme and other benchmark ones without either joint optimization of radio and computation resources or task assignment design. |
| Author | Xing, Hong Xu, Jie Nallanathan, Arumugam Liu, Liang |
| Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0001-5206-1225 surname: Xing fullname: Xing, Hong email: helen881005@gmail.com organization: College of Information Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Liang orcidid: 0000-0002-6509-9609 surname: Liu fullname: Liu, Liang email: eleliu@nus.edu.sg organization: Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong – sequence: 3 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: jiexu@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Arumugam orcidid: 0000-0001-8337-5884 surname: Nallanathan fullname: Nallanathan, Arumugam email: nallanathan@ieee.org organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, London, U.K |
| BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEuuUsV3HzrJKy0utKkFZR4kzrlxSu8Tpgr8nfYgFC1ajke6ZxxmQnvMOCbmlMKIU0odVtlwsRgxoOmIpcFDqgvSpECoGJWSP9AFSiBMp1RUZhLABgDFw3ifvr966NloV4TOahGDXbotdX7gqesPg943GaFLXXhet9S4yvommbBrPXFHWWEULX9oa41m1xijz292-tW59TS5NUQe8Odch-XicrbLneL58eskm81jzhLYxNUZQ1NJUUiBHDUoLhCqh2vAqLYwwRhnGGBWlqYBrJilTLDGpKhOU3fVDcn-au2v81x5Dm2-6g123MmdszJmUNJVdSp1SuvEhNGhybdvjN21T2DqnkB8U5keF-UFhflbYoewPumvstmi-_4fuTpBFxF9AJQlIEPwH5-5-eg |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3514881 crossref_primary_10_1109_TWC_2023_3291198 crossref_primary_10_1364_JOCN_446747 crossref_primary_10_1155_2021_9732171 crossref_primary_10_1109_ACCESS_2020_3032033 crossref_primary_10_1016_j_comcom_2023_06_008 crossref_primary_10_1155_2021_9938325 crossref_primary_10_1155_2022_5143640 crossref_primary_10_1109_TVT_2022_3168503 crossref_primary_10_1016_j_comcom_2021_01_026 crossref_primary_10_3390_iot1020015 crossref_primary_10_1109_JIOT_2020_3010533 crossref_primary_10_3390_info11020083 crossref_primary_10_1109_JIOT_2022_3196908 crossref_primary_10_1109_JSYST_2020_3017710 crossref_primary_10_1109_JSAC_2022_3227088 crossref_primary_10_1109_TVT_2021_3093630 crossref_primary_10_1155_2021_9977700 crossref_primary_10_1155_2022_2954987 crossref_primary_10_1109_TSC_2022_3180067 crossref_primary_10_1016_j_future_2024_01_015 crossref_primary_10_1016_j_comnet_2024_110352 crossref_primary_10_1109_TMC_2024_3406721 crossref_primary_10_1109_JIOT_2021_3110319 crossref_primary_10_1109_TMC_2021_3133306 crossref_primary_10_1109_ACCESS_2021_3059029 crossref_primary_10_1109_TWC_2021_3086521 crossref_primary_10_1142_S0218126621502820 crossref_primary_10_1016_j_comcom_2023_06_022 crossref_primary_10_3390_electronics12020366 crossref_primary_10_1109_ACCESS_2023_3294256 crossref_primary_10_1109_LCOMM_2019_2931719 crossref_primary_10_1155_2022_9948451 crossref_primary_10_1186_s13634_021_00785_9 crossref_primary_10_1109_ACCESS_2019_2946683 crossref_primary_10_1109_JSAC_2023_3234706 crossref_primary_10_1016_j_adhoc_2023_103277 crossref_primary_10_1109_JIOT_2023_3341062 crossref_primary_10_1109_TNET_2021_3133022 crossref_primary_10_1016_j_future_2022_07_001 crossref_primary_10_3390_app12063189 crossref_primary_10_1016_j_sysarc_2020_101799 crossref_primary_10_1145_3514242 crossref_primary_10_1109_MNET_001_2000004 crossref_primary_10_1109_TSC_2023_3293048 crossref_primary_10_1109_JIOT_2022_3144571 crossref_primary_10_1007_s12083_021_01081_x crossref_primary_10_1109_TMC_2021_3140080 crossref_primary_10_1109_ACCESS_2022_3220694 crossref_primary_10_1109_TGCN_2022_3190085 crossref_primary_10_1109_TVT_2021_3093892 crossref_primary_10_1109_TITS_2022_3205175 crossref_primary_10_32604_cmc_2024_050921 crossref_primary_10_1109_TNSM_2022_3201470 crossref_primary_10_1109_TWC_2021_3052887 crossref_primary_10_1109_JIOT_2022_3188928 crossref_primary_10_1186_s13638_020_01865_4 crossref_primary_10_3390_s25072039 crossref_primary_10_1109_TMC_2023_3323350 crossref_primary_10_1109_TCOMM_2023_3262833 crossref_primary_10_1109_TSC_2022_3190276 crossref_primary_10_3390_network1020012 crossref_primary_10_1109_JSAC_2022_3213358 crossref_primary_10_1109_TWC_2021_3074810 crossref_primary_10_1109_COMST_2021_3106401 crossref_primary_10_3390_electronics13101889 crossref_primary_10_1007_s12530_021_09379_0 crossref_primary_10_1007_s11042_024_18322_9 crossref_primary_10_1109_TGCN_2023_3247810 crossref_primary_10_1016_j_comcom_2020_07_008 crossref_primary_10_1109_JIOT_2020_3001218 crossref_primary_10_1109_TCOMM_2020_3011990 crossref_primary_10_1109_ACCESS_2019_2956749 crossref_primary_10_1155_2021_9978701 crossref_primary_10_1109_TNSM_2021_3103533 crossref_primary_10_1007_s11235_019_00595_3 crossref_primary_10_1109_ACCESS_2022_3158319 crossref_primary_10_1007_s11227_024_06364_7 crossref_primary_10_3390_s25020535 crossref_primary_10_1109_JIOT_2020_3004165 crossref_primary_10_1109_TCOMM_2023_3349166 crossref_primary_10_1186_s13634_024_01142_2 crossref_primary_10_1109_TSC_2022_3197676 crossref_primary_10_2514_1_I011120 crossref_primary_10_1109_TNET_2023_3288558 crossref_primary_10_1016_j_comcom_2020_12_020 crossref_primary_10_1109_TCOMM_2021_3064333 crossref_primary_10_1109_TWC_2023_3244391 crossref_primary_10_1109_JSYST_2021_3132952 crossref_primary_10_1142_S0218126623501864 crossref_primary_10_1109_TNSM_2020_3020249 crossref_primary_10_1109_TMC_2024_3455417 crossref_primary_10_1109_TVT_2020_3036489 crossref_primary_10_32604_cmes_2022_021394 crossref_primary_10_1109_JIOT_2020_3041082 crossref_primary_10_1109_TVT_2022_3174530 crossref_primary_10_1007_s11227_024_06448_4 crossref_primary_10_1016_j_eswa_2023_123023 crossref_primary_10_1007_s11036_020_01593_5 crossref_primary_10_1007_s11227_022_04928_z crossref_primary_10_1007_s11227_025_06921_8 crossref_primary_10_1109_JSYST_2022_3222790 crossref_primary_10_1109_JIOT_2021_3125953 crossref_primary_10_1109_JIOT_2023_3327392 crossref_primary_10_1109_JSYST_2020_3020474 crossref_primary_10_1109_TNSM_2023_3258191 crossref_primary_10_1016_j_comcom_2021_11_007 crossref_primary_10_1109_JIOT_2024_3459098 crossref_primary_10_1109_ACCESS_2019_2935545 crossref_primary_10_1109_ACCESS_2019_2953172 crossref_primary_10_1109_LCOMM_2021_3078519 crossref_primary_10_1016_j_adhoc_2023_103109 crossref_primary_10_3390_s23052565 crossref_primary_10_1016_j_adhoc_2024_103743 crossref_primary_10_1007_s11277_022_09968_5 crossref_primary_10_1016_j_comnet_2024_111030 crossref_primary_10_1186_s13677_023_00415_9 crossref_primary_10_1016_j_comnet_2022_108900 crossref_primary_10_1109_TWC_2022_3224045 crossref_primary_10_1016_j_future_2020_05_025 crossref_primary_10_1016_j_comcom_2023_04_004 crossref_primary_10_1109_TVT_2021_3121096 crossref_primary_10_1016_j_comnet_2021_107916 crossref_primary_10_1007_s11227_023_05816_w crossref_primary_10_1016_j_adhoc_2019_101938 crossref_primary_10_1016_j_comcom_2022_11_012 crossref_primary_10_1016_j_comnet_2023_109572 crossref_primary_10_1109_ACCESS_2022_3232073 crossref_primary_10_1109_JIOT_2021_3097754 crossref_primary_10_1002_cpe_7956 crossref_primary_10_1109_TWC_2020_3033843 crossref_primary_10_1038_s41598_021_96284_w |
| Cites_doi | 10.1109/LWC.2017.2696539 10.1109/JSAC.2016.2624118 10.1109/LWC.2018.2845882 10.1109/ICC.2018.8422777 10.1145/2248371.2248394 10.1109/TSIPN.2015.2448520 10.1109/TWC.2017.2785305 10.1109/JSAC.2017.2725519 10.1109/IPDPS.2005.199 10.1109/GLOCOM.2018.8647282 10.1109/TMC.2017.2679712 10.1109/COMST.2017.2745201 10.1109/JIOT.2018.2875246 10.1109/TWC.2018.2821664 10.1109/COMST.2017.2682318 10.1145/990308.990310 10.1007/BF02124750 10.1109/WCNC.2017.7925615 10.1109/TVT.2018.2881191 10.1109/MWC.2017.1600321 10.1109/MSP.2014.2334709 10.1109/TWC.2016.2633522 10.1109/TVT.2014.2372852 10.1109/TMC.2018.2815533 10.1109/TCOMM.2018.2881725 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2019.2903088 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 4207 |
| ExternalDocumentID | 10_1109_TCOMM_2019_2903088 8660705 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871137; 61871136 funderid: 10.13039/501100001809 – fundername: Department of Education of Guangdong Province grantid: 2017KZDXM028 funderid: 10.13039/501100010226 – fundername: Southeast University grantid: 2019D08 funderid: 10.13039/501100008081 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c361t-1ff51ec7fd75e3ec08c5e0d61cf3d9af5ff8f22215bfd03c2712826f98b6e7033 |
| IEDL.DBID | RIE |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:15:28 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Oct 01 03:32:23 EDT 2025 Wed Aug 27 05:56:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-1ff51ec7fd75e3ec08c5e0d61cf3d9af5ff8f22215bfd03c2712826f98b6e7033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4854-8839 0000-0002-6509-9609 0000-0001-8337-5884 0000-0001-5206-1225 |
| PQID | 2243277197 |
| PQPubID | 85472 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TCOMM_2019_2903088 ieee_primary_8660705 crossref_citationtrail_10_1109_TCOMM_2019_2903088 proquest_journals_2243277197 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref5) 2015 ref12 ref15 ref14 ref31 ref30 ref11 ref10 boyd (ref28) 0 ref2 ref1 ref17 ref16 ref19 ref18 (ref4) 2014 grant (ref26) 2014 ref24 ref23 ref25 ref20 murty (ref29) 1983 ref22 ref21 ref27 (ref6) 2018 ref8 ref7 ref9 ref3 |
| References_xml | – ident: ref15 doi: 10.1109/LWC.2017.2696539 – ident: ref24 doi: 10.1109/JSAC.2016.2624118 – ident: ref18 doi: 10.1109/LWC.2018.2845882 – ident: ref1 doi: 10.1109/ICC.2018.8422777 – ident: ref19 doi: 10.1145/2248371.2248394 – year: 2018 ident: ref6 publication-title: System Architecture for the 5G System (Release 15) – ident: ref10 doi: 10.1109/TSIPN.2015.2448520 – year: 1983 ident: ref29 publication-title: Linear Programming – ident: ref17 doi: 10.1109/TWC.2017.2785305 – ident: ref31 doi: 10.1109/JSAC.2017.2725519 – ident: ref23 doi: 10.1109/IPDPS.2005.199 – ident: ref16 doi: 10.1109/GLOCOM.2018.8647282 – ident: ref21 doi: 10.1109/TMC.2017.2679712 – year: 2015 ident: ref5 article-title: Fog computing and the Internet of Things: Extend the cloud to where the things are (White Paper) – ident: ref3 doi: 10.1109/COMST.2017.2745201 – ident: ref9 doi: 10.1109/JIOT.2018.2875246 – ident: ref12 doi: 10.1109/TWC.2018.2821664 – year: 2014 ident: ref4 publication-title: Mobile-Edge Computing-Introductory Technical White Paper – year: 2014 ident: ref26 publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 1 – ident: ref25 doi: 10.1109/COMST.2017.2682318 – ident: ref30 doi: 10.1145/990308.990310 – ident: ref27 doi: 10.1007/BF02124750 – ident: ref7 doi: 10.1109/WCNC.2017.7925615 – ident: ref22 doi: 10.1109/TVT.2018.2881191 – ident: ref20 doi: 10.1109/MWC.2017.1600321 – ident: ref2 doi: 10.1109/MSP.2014.2334709 – ident: ref13 doi: 10.1109/TWC.2016.2633522 – ident: ref8 doi: 10.1109/TVT.2014.2372852 – ident: ref11 doi: 10.1109/TMC.2018.2815533 – year: 0 ident: ref28 publication-title: Lecture Notes for EE364B Convex Optimization II – ident: ref14 doi: 10.1109/TCOMM.2018.2881725 |
| SSID | ssj0004033 |
| Score | 2.6478474 |
| Snippet | With the proliferation of computation-extensive and latency-critical applications in the 5G and beyond networks, mobile-edge computing (MEC) or fog computing,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4193 |
| SubjectTerms | Algorithms Benchmarks Cloud computing computation offloading Edge computing Energy conservation fog computing Mobile computing Mobile-edge computing (MEC) OFDM Optimization Protocols Resource allocation Resource management Servers Task analysis task assignment Time Division Multiple Access Wireless communication Wireless networks |
| Title | Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing |
| URI | https://ieeexplore.ieee.org/document/8660705 https://www.proquest.com/docview/2243277197 |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TuwwEB0BFRSXt-7ykgu6Sxbbcey4RLAIIQWKu0h0UfxCCJRFbLbh67GdZHkK0aWwLcszmZk455wBOGRES6pM4G0FSg6vZKKY9r4ssaoqXwJTHsjJxRW_uGGXt9ntAhzNuTDW2gg-s8PwGP_lm4mehauy45xz76HZIiyKnLdcrTcOJE47xckAZxd5T5DB8nh8el0UAcUlh1QGfZb8QxKKXVW-hOKYX85Xoeh31sJKHoazRg31yyfRxt9ufQ3-dIUmOmk9Yx0WbL0BK-_kBzfh_-Xkvm7QuJo-IG-m-7uIDEBVbVB_q49OHkO2C9ZDvrxFZ_QsGUW6lUHFRPmQkozMnUVtcwi_6hbcnI_GpxdJ12Qh0SknTUKcy4jVwhmR2dRqnOvMYsOJdqmRlcucy50vIkimnMGppsJnNMqdzBW3Plyk27BUT2r7F5CjzDottMFWMKZoblhFmFK6chYTzQZA-lMvdadAHhphPJbxSwTLMlqqDJYqO0sN4N98zlOrv_Hj6M1w9POR3akPYK83btm9otPS1y4pFYJIsfP9rF1YDmu3uLA9WGqeZ3bfVyCNOoiu9wpN6da3 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLQcCi1FbAutD721WWzHH_ERwaItJXBgkbhF8RdCoGxVspf--tpOsqUUod5ysBPLbzLz4sybAfjMiFFU26jbipIcUatMMxNsWWFd14ECUxHFyeWZmF6ykyt-tQJfl1oY51xKPnPjeJn-5du5WcSjsv1CiGCh_AWsccYY79Raf1SQOO9rTsaEdlkMEhms9meH52UZ87jUmKpYoaX4Kwylvir_OOMUYY43oBzW1iWW3I4XrR6bX4_KNv7v4jfhdU810UFnG29gxTVvYf1BAcItuDiZ3zQtmtX3tygAdXOdcgNQ3Vg0nOujg7sY7yJ-KBBcdESPskkSXFlUznVwKtnEXjvUtYcId30Hl8eT2eE069ssZCYXpM2I95w4I72V3OXO4MJwh60gxudW1Z57X_hAIwjX3uLcUBliGhVeFVq44DDybVht5o3bAeQpc95IY7GTjGlaWFYTprWpvcPEsBGQYdcr09cgj60w7qr0LYJVlZCqIlJVj9QIvizn_OgqcDw7eitu_XJkv-sj2B3ArfqX9L4K7CWnUhIl3z896xO8nM7K0-r029n3D_AqPqfLEtuF1fbnwu0FPtLqj8kMfwO1PtoE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Task+Assignment+and+Resource+Allocation+for+D2D-Enabled+Mobile-Edge+Computing&rft.jtitle=IEEE+transactions+on+communications&rft.au=Xing%2C+Hong&rft.au=Liu%2C+Liang&rft.au=Xu%2C+Jie&rft.au=Nallanathan%2C+Arumugam&rft.date=2019-06-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=6&rft.spage=4193&rft.epage=4207&rft_id=info:doi/10.1109%2FTCOMM.2019.2903088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2903088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |