Iterative application of generative adversarial networks for improved buried pipe detection from images obtained by ground‐penetrating radar

Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 38; no. 17; pp. 2472 - 2490
Main Authors Chun, Pang Jo, Suzuki, M., Kato, Y.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
DOI10.1111/mice.13070

Cover

Abstract Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F ‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F ‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy.
AbstractList Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy.
Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F ‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F ‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy.
Author Chun, Pang Jo
Suzuki, M.
Kato, Y.
Author_xml – sequence: 1
  givenname: Pang Jo
  surname: Chun
  fullname: Chun, Pang Jo
  organization: Department of Civil Engineering The University of Tokyo Tokyo Japan
– sequence: 2
  givenname: M.
  surname: Suzuki
  fullname: Suzuki, M.
  organization: Department of Civil Engineering The University of Tokyo Tokyo Japan
– sequence: 3
  givenname: Y.
  surname: Kato
  fullname: Kato, Y.
  organization: Canaan Geo Research, Ltd. Ehime Japan
BookMark eNptkM9KxDAQxoMoqKsXnyDgTeiaNGnaHEX8B4IXPZe0mZSsu0lNsivefALxGX0Ss7viQZzLNzDfzDf8DtGu8w4QOqFkSnOdL2wPU8pITXbQAeWiLhoh6t3cE8kKKZp6Hx3GOCO5OGcH6OMuQVDJrgCrcZzbPvfeYW_wAO53olcQogpWzbGD9OrDc8TGB2wXY_Ar0LhbBptltCNgDQn6zRUT_CJ71AAR-y4p69bWNzwEv3T66_1zzBlpHeIGHJRW4QjtGTWPcPyjE_R0ffV4eVvcP9zcXV7cFz0TNBUUpNFCSEF1SUwHglHTCcYl4V1dVayUFQhgpCdGqp5rqWpV60pQqoEr2rAJOt3ezf-_LCGmduaXweXItmwaLnhZyjK7yNbVBx9jANP2Nm0A5aftvKWkXVNv19TbDfW8cvZnZQyZQHj7z_wNRZyKSQ
CitedBy_id crossref_primary_10_1111_mice_13111
crossref_primary_10_1111_mice_13231
crossref_primary_10_1109_TGRS_2024_3458452
crossref_primary_10_1111_mice_13194
crossref_primary_10_1111_mice_13392
crossref_primary_10_3390_app13169388
crossref_primary_10_1111_mice_13109
crossref_primary_10_1111_mice_13406
crossref_primary_10_1111_mice_13417
crossref_primary_10_1088_1742_6596_2887_1_012022
crossref_primary_10_1109_TITS_2024_3403144
crossref_primary_10_1111_mice_13117
crossref_primary_10_1111_mice_13315
crossref_primary_10_1111_mice_13348
crossref_primary_10_1016_j_jweia_2024_105698
crossref_primary_10_1016_j_jappgeo_2024_105287
crossref_primary_10_1142_S0129065724500576
Cites_doi 10.1109/ACCESS.2021.3064205
10.1109/TNNLS.2017.2682102
10.1117/12.2307261
10.1111/mice.12757
10.1111/mice.12771
10.1177/1475921720902700
10.1016/j.autcon.2019.102839
10.1016/j.engstruct.2019.02.031
10.1111/mice.12741
10.1080/10298436.2018.1559317
10.1016/j.tust.2018.04.002
10.1016/j.engstruct.2017.10.070
10.1109/TGRS.2015.2462727
10.1109/ICGPR.2018.8441641
10.1109/TGRS.2016.2592679
10.1109/IGARSS47720.2021.9554318
10.1007/s00521-019-04359-7
10.1109/RADAR.2008.4720763
10.1680/jfoen.18.00019
10.1111/mice.12595
10.1016/S0926-9851(99)00055-5
10.1111/1467-8667.00302
10.1109/TGRS.2020.3030079
10.3390/s22176412
10.1111/mice.12367
10.1111/mice.12677
10.1111/mice.12793
10.1111/mice.12519
10.1111/mice.12749
10.3846/jcem.2018.6186
10.1061/(ASCE)CO.1943-7862.0001570
10.20965/jrm.2020.p1244
10.1109/IGARSS.2018.8517683
10.1061/JTEPBS.TEENG-7461
10.1111/mice.12759
10.1109/36.842008
10.48550/arXiv.1406.2661
10.3390/su12030830
10.1080/15732479.2022.2131845
10.1142/S012906572250054X
10.1111/mice.12425
10.1007/978-3-319-24574-4_28
10.1111/mice.12387
10.1007/978-3-030-01234-2_49
10.1007/s00521-019-04146-4
10.3390/rs14153665
10.1111/mice.12550
10.1111/mice.12776
10.1111/mice.12686
10.1111/mice.12561
10.1109/AICERA-ICMiCR.2013.6576024
10.1111/mice.12798
10.1002/tal.1400
10.3233/ICA-220681
10.1142/S0129065722500393
10.1155/2022/9221211
10.1111/mice.12532
10.23919/EUSIPCO.2017.8081259
10.1111/mice.12501
10.3233/ICA-200636
10.3233/ICA-220675
10.14359/51689485
10.1109/CVPR.2016.91
10.14359/51689560
10.1111/mice.12564
10.1051/matecconf/202030903027
10.1109/TNNLS.2022.3190448
10.1016/j.soildyn.2017.05.013
10.1109/TMECH.2021.3106867
10.1111/mice.12497
10.1111/mice.12811
10.1111/j.1467-8667.2004.00336.x
10.1111/j.1467-8667.2007.00516.x
10.1109/TGRS.2018.2799586
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.13070
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 2490
ExternalDocumentID 10_1111_mice_13070
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-1e9fd66961d20fbe631fb634904b7553295e6e30c0f9ac4d9a7a7d5611de4a183
ISSN 1093-9687
IngestDate Fri Jul 25 04:56:00 EDT 2025
Tue Jul 01 03:36:35 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-1e9fd66961d20fbe631fb634904b7553295e6e30c0f9ac4d9a7a7d5611de4a183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13070
PQID 2884642292
PQPubID 2045171
PageCount 19
ParticipantIDs proquest_journals_2884642292
crossref_citationtrail_10_1111_mice_13070
crossref_primary_10_1111_mice_13070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Asad M. H. (e_1_2_9_4_1) 2022; 2022
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
Karina C. N. N. (e_1_2_9_31_1) 2017; 24
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Karras T. (e_1_2_9_32_1) 2020; 33
Xiang D. (e_1_2_9_74_1) 2018; 16
Zong Z. (e_1_2_9_89_1) 2019; 42
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
El‐Qady G. (e_1_2_9_18_1) 2005; 67
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_85_1
  doi: 10.1109/ACCESS.2021.3064205
– ident: e_1_2_9_53_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_9_72_1
  doi: 10.1117/12.2307261
– ident: e_1_2_9_83_1
  doi: 10.1111/mice.12757
– ident: e_1_2_9_87_1
  doi: 10.1111/mice.12771
– ident: e_1_2_9_34_1
  doi: 10.1177/1475921720902700
– ident: e_1_2_9_38_1
  doi: 10.1016/j.autcon.2019.102839
– volume: 42
  start-page: 293
  year: 2019
  ident: e_1_2_9_89_1
  article-title: A deep learning approach for urban underground objects detection from vehicle‐borne ground penetrating radar data in real‐time. The International Archives of Photogrammetry
  publication-title: Remote Sensing and Spatial Information Sciences
– ident: e_1_2_9_24_1
  doi: 10.1016/j.engstruct.2019.02.031
– ident: e_1_2_9_21_1
  doi: 10.1111/mice.12741
– ident: e_1_2_9_35_1
  doi: 10.1080/10298436.2018.1559317
– ident: e_1_2_9_26_1
  doi: 10.1016/j.tust.2018.04.002
– ident: e_1_2_9_54_1
  doi: 10.1016/j.engstruct.2017.10.070
– ident: e_1_2_9_46_1
  doi: 10.1109/TGRS.2015.2462727
– ident: e_1_2_9_64_1
  doi: 10.1109/ICGPR.2018.8441641
– ident: e_1_2_9_17_1
  doi: 10.1109/TGRS.2016.2592679
– ident: e_1_2_9_78_1
  doi: 10.1109/IGARSS47720.2021.9554318
– ident: e_1_2_9_3_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_9_65_1
  doi: 10.1109/RADAR.2008.4720763
– ident: e_1_2_9_10_1
  doi: 10.1680/jfoen.18.00019
– ident: e_1_2_9_84_1
  doi: 10.1111/mice.12595
– ident: e_1_2_9_2_1
  doi: 10.1016/S0926-9851(99)00055-5
– ident: e_1_2_9_67_1
  doi: 10.1111/1467-8667.00302
– ident: e_1_2_9_77_1
  doi: 10.1109/TGRS.2020.3030079
– ident: e_1_2_9_36_1
  doi: 10.3390/s22176412
– ident: e_1_2_9_76_1
  doi: 10.1111/mice.12367
– ident: e_1_2_9_82_1
  doi: 10.1111/mice.12677
– ident: e_1_2_9_14_1
  doi: 10.1111/mice.12793
– ident: e_1_2_9_30_1
  doi: 10.1111/mice.12519
– ident: e_1_2_9_63_1
  doi: 10.1111/mice.12749
– ident: e_1_2_9_71_1
– ident: e_1_2_9_69_1
  doi: 10.3846/jcem.2018.6186
– ident: e_1_2_9_56_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_9_11_1
  doi: 10.20965/jrm.2020.p1244
– ident: e_1_2_9_50_1
  doi: 10.1109/IGARSS.2018.8517683
– ident: e_1_2_9_39_1
  doi: 10.1061/JTEPBS.TEENG-7461
– ident: e_1_2_9_47_1
  doi: 10.1111/mice.12759
– ident: e_1_2_9_33_1
– volume: 16
  start-page: 15
  issue: 1
  year: 2018
  ident: e_1_2_9_74_1
  article-title: Fast prescreening for GPR antipersonnel mine detection via go decomposition
  publication-title: IEEE Geoscience and Remote Sensing Letters
– ident: e_1_2_9_20_1
  doi: 10.1109/36.842008
– ident: e_1_2_9_23_1
  doi: 10.48550/arXiv.1406.2661
– ident: e_1_2_9_15_1
  doi: 10.3390/su12030830
– ident: e_1_2_9_79_1
  doi: 10.1080/15732479.2022.2131845
– ident: e_1_2_9_27_1
  doi: 10.1142/S012906572250054X
– volume: 33
  start-page: 12104
  year: 2020
  ident: e_1_2_9_32_1
  article-title: Training generative adversarial networks with limited data
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_41_1
  doi: 10.1111/mice.12425
– ident: e_1_2_9_62_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_6_1
– ident: e_1_2_9_80_1
  doi: 10.1080/15732479.2022.2131845
– ident: e_1_2_9_44_1
  doi: 10.1111/mice.12387
– ident: e_1_2_9_70_1
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-030-01234-2_49
– ident: e_1_2_9_49_1
  doi: 10.1007/s00521-019-04146-4
– ident: e_1_2_9_73_1
  doi: 10.3390/rs14153665
– ident: e_1_2_9_28_1
  doi: 10.1111/mice.12550
– ident: e_1_2_9_81_1
  doi: 10.1111/mice.12776
– ident: e_1_2_9_43_1
  doi: 10.1111/mice.12686
– ident: e_1_2_9_45_1
  doi: 10.1111/mice.12561
– ident: e_1_2_9_66_1
  doi: 10.1109/AICERA-ICMiCR.2013.6576024
– ident: e_1_2_9_40_1
  doi: 10.1111/mice.12798
– ident: e_1_2_9_55_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_9_51_1
  doi: 10.1002/tal.1400
– ident: e_1_2_9_8_1
  doi: 10.3233/ICA-220681
– ident: e_1_2_9_75_1
  doi: 10.1142/S0129065722500393
– volume: 2022
  issue: 16
  year: 2022
  ident: e_1_2_9_4_1
  article-title: Pothole detection using deep learning: A real‐time and AI‐on‐the‐edge perspective
  publication-title: Advances in Civil Engineering
  doi: 10.1155/2022/9221211
– ident: e_1_2_9_48_1
  doi: 10.1111/mice.12532
– ident: e_1_2_9_37_1
  doi: 10.23919/EUSIPCO.2017.8081259
– ident: e_1_2_9_86_1
– ident: e_1_2_9_42_1
  doi: 10.1111/mice.12501
– ident: e_1_2_9_7_1
  doi: 10.3233/ICA-200636
– ident: e_1_2_9_19_1
  doi: 10.3233/ICA-220675
– ident: e_1_2_9_58_1
  doi: 10.14359/51689485
– ident: e_1_2_9_60_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_9_57_1
  doi: 10.14359/51689560
– ident: e_1_2_9_13_1
  doi: 10.1111/mice.12564
– ident: e_1_2_9_22_1
  doi: 10.1051/matecconf/202030903027
– ident: e_1_2_9_59_1
  doi: 10.1109/TNNLS.2022.3190448
– volume: 67
  start-page: 174
  issue: 3
  year: 2005
  ident: e_1_2_9_18_1
  article-title: Imaging subsurface cavities using geoelectric tomography and ground‐penetrating radar
  publication-title: Journal of Cave and Karst Studies
– ident: e_1_2_9_52_1
  doi: 10.1016/j.soildyn.2017.05.013
– ident: e_1_2_9_12_1
  doi: 10.1109/TMECH.2021.3106867
– ident: e_1_2_9_16_1
  doi: 10.1111/mice.12497
– ident: e_1_2_9_25_1
  doi: 10.1111/mice.12811
– ident: e_1_2_9_61_1
– ident: e_1_2_9_68_1
  doi: 10.1111/j.1467-8667.2004.00336.x
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1467-8667.2007.00516.x
– ident: e_1_2_9_29_1
– ident: e_1_2_9_88_1
  doi: 10.1109/TGRS.2018.2799586
– volume: 24
  start-page: 635
  year: 2017
  ident: e_1_2_9_31_1
  article-title: Tensile strength prediction of corroded steel plates by using a machine learning approach
  publication-title: Steel and Composite Structures
SSID ssj0000443
Score 2.4886432
Snippet Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2472
SubjectTerms Accuracy
Annotations
Buried pipes
Generative adversarial networks
Ground penetrating radar
Machine learning
Object recognition
Reflected waves
Roads
Title Iterative application of generative adversarial networks for improved buried pipe detection from images obtained by ground‐penetrating radar
URI https://www.proquest.com/docview/2884642292
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoEDjwKipSBLcEGrrBInceIjQqBSqRxQK5XTynYctFKbXe2jEj3xCyp-DL-IX8KMH4kLFSpcopU3D-3Ol5nP9sw3hLwSSrBKqyIBKlslhSzSRBopk1ozmGoLo41d0z38yPePi4OT8mQ0-hFlLW3WaqIvrq0r-R-rwhjYFatk_8Gy_U1hAD6DfeEIFobjjWz8wUoiY-5PtA-N9O-LFZN232DH5ZW0zTk6l_NtJRiwPnI5P0cCil3rmvFitsAaqrVxzcNt3cnsTKIGxFzhAoLjqlgG0jV9jsQCnmSVd23LokYuY7YbWkYkqEPZjPXsfHbq5Z7apXTStbiBYQZRxCHdYNM5hgs3PpgPe1cXG9do-3DSxwppW0GNP0_iJQyW-1q-weumIk8E95HXuDH04DV3vTqCq87rGJJV7HgL1wHIB3GYVKZ_CRBnqNeUobsbwmDY-v8tOvY5i2G2hNdO7bW3yG1WAWNDKv4pEi0rfFmH_1FeFBfzx4bnXqVBV1mApTZHD8g9PyehbxzAHpKR6bbJfT8_od77r2Ao2DOMbZO7kZ7lI3LZA5JGgKTzlg6ApBEgaQAkBUDSAEjqAEkRkLQHJEVAUgdIGgBJ1VfqAPnz2_cIitRC8TE5fv_u6O1-4ht-JDrn2TrJjGgbzgXPGpa2yvA8axXPwZaFqsoyZ6I03OSpTlshddEIWcmqgRlA1phCQnB6Qra6eWeeElpq0wqujeatKLSqa2lS1bZlxVitapHtkNfh_59qr4aPTVlOp3_aeYe87M9dOA2Ya8_aC2aceh-xmrIa-H3BmGC7N7rJM3JneEH2yBa8iOY5sN61emFB9gvq27fr
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+application+of+generative+adversarial+networks+for+improved+buried+pipe+detection+from+images+obtained+by+ground%E2%80%90penetrating+radar&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chun%2C+Pang+Jo&rft.au=Suzuki%2C+M.&rft.au=Kato%2C+Y.&rft.date=2023-11-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=38&rft.issue=17&rft.spage=2472&rft.epage=2490&rft_id=info:doi/10.1111%2Fmice.13070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon