Iterative application of generative adversarial networks for improved buried pipe detection from images obtained by ground‐penetrating radar
Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the...
Saved in:
Published in | Computer-aided civil and infrastructure engineering Vol. 38; no. 17; pp. 2472 - 2490 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1093-9687 1467-8667 |
DOI | 10.1111/mice.13070 |
Cover
Abstract | Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically,
F
‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the
F
‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy. |
---|---|
AbstractList | Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy. Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to automatically identify the location of buried pipes from the reflected wave images obtained by GPR. In object detection using machine learning, the accuracy of detection is affected by the quantity and quality of training data, so it is important to expand the training data to improve accuracy. This is especially true in the case of buried pipes that are located underground and whose existence cannot be easily confirmed. Therefore, this study developed a method for increasing training data using you only look once v5 (YOLOv5) and StyleGAN2‐ADA to automate the annotation process. Of particular importance is developing a framework for generating images by generative adversarial networks with an emphasis on images that are challenging to detect buried pipes in YOLOv5 and add them to a training dataset to repeat training recursively, which has greatly improved the detection accuracy. Specifically, F ‐values of 0.915, 0.916, and 0.924 were achieved by automatically generating training images step by step from only 500, 1000, and 2000 training images, respectively. These values exceed the F ‐value of 0.900, which is obtained from training by manually annotating 15,000 images, a much larger number. In addition, we applied the method to a road in Shizuoka Prefecture, Japan, and confirmed that the method can detect the location of buried pipes with high accuracy on a real road. This method can contribute to labor‐saving training data expansion, which is time‐consuming and costly in practice, and as a result, the method contributes to improving detection accuracy. |
Author | Chun, Pang Jo Suzuki, M. Kato, Y. |
Author_xml | – sequence: 1 givenname: Pang Jo surname: Chun fullname: Chun, Pang Jo organization: Department of Civil Engineering The University of Tokyo Tokyo Japan – sequence: 2 givenname: M. surname: Suzuki fullname: Suzuki, M. organization: Department of Civil Engineering The University of Tokyo Tokyo Japan – sequence: 3 givenname: Y. surname: Kato fullname: Kato, Y. organization: Canaan Geo Research, Ltd. Ehime Japan |
BookMark | eNptkM9KxDAQxoMoqKsXnyDgTeiaNGnaHEX8B4IXPZe0mZSsu0lNsivefALxGX0Ss7viQZzLNzDfzDf8DtGu8w4QOqFkSnOdL2wPU8pITXbQAeWiLhoh6t3cE8kKKZp6Hx3GOCO5OGcH6OMuQVDJrgCrcZzbPvfeYW_wAO53olcQogpWzbGD9OrDc8TGB2wXY_Ar0LhbBptltCNgDQn6zRUT_CJ71AAR-y4p69bWNzwEv3T66_1zzBlpHeIGHJRW4QjtGTWPcPyjE_R0ffV4eVvcP9zcXV7cFz0TNBUUpNFCSEF1SUwHglHTCcYl4V1dVayUFQhgpCdGqp5rqWpV60pQqoEr2rAJOt3ezf-_LCGmduaXweXItmwaLnhZyjK7yNbVBx9jANP2Nm0A5aftvKWkXVNv19TbDfW8cvZnZQyZQHj7z_wNRZyKSQ |
CitedBy_id | crossref_primary_10_1111_mice_13111 crossref_primary_10_1111_mice_13231 crossref_primary_10_1109_TGRS_2024_3458452 crossref_primary_10_1111_mice_13194 crossref_primary_10_1111_mice_13392 crossref_primary_10_3390_app13169388 crossref_primary_10_1111_mice_13109 crossref_primary_10_1111_mice_13406 crossref_primary_10_1111_mice_13417 crossref_primary_10_1088_1742_6596_2887_1_012022 crossref_primary_10_1109_TITS_2024_3403144 crossref_primary_10_1111_mice_13117 crossref_primary_10_1111_mice_13315 crossref_primary_10_1111_mice_13348 crossref_primary_10_1016_j_jweia_2024_105698 crossref_primary_10_1016_j_jappgeo_2024_105287 crossref_primary_10_1142_S0129065724500576 |
Cites_doi | 10.1109/ACCESS.2021.3064205 10.1109/TNNLS.2017.2682102 10.1117/12.2307261 10.1111/mice.12757 10.1111/mice.12771 10.1177/1475921720902700 10.1016/j.autcon.2019.102839 10.1016/j.engstruct.2019.02.031 10.1111/mice.12741 10.1080/10298436.2018.1559317 10.1016/j.tust.2018.04.002 10.1016/j.engstruct.2017.10.070 10.1109/TGRS.2015.2462727 10.1109/ICGPR.2018.8441641 10.1109/TGRS.2016.2592679 10.1109/IGARSS47720.2021.9554318 10.1007/s00521-019-04359-7 10.1109/RADAR.2008.4720763 10.1680/jfoen.18.00019 10.1111/mice.12595 10.1016/S0926-9851(99)00055-5 10.1111/1467-8667.00302 10.1109/TGRS.2020.3030079 10.3390/s22176412 10.1111/mice.12367 10.1111/mice.12677 10.1111/mice.12793 10.1111/mice.12519 10.1111/mice.12749 10.3846/jcem.2018.6186 10.1061/(ASCE)CO.1943-7862.0001570 10.20965/jrm.2020.p1244 10.1109/IGARSS.2018.8517683 10.1061/JTEPBS.TEENG-7461 10.1111/mice.12759 10.1109/36.842008 10.48550/arXiv.1406.2661 10.3390/su12030830 10.1080/15732479.2022.2131845 10.1142/S012906572250054X 10.1111/mice.12425 10.1007/978-3-319-24574-4_28 10.1111/mice.12387 10.1007/978-3-030-01234-2_49 10.1007/s00521-019-04146-4 10.3390/rs14153665 10.1111/mice.12550 10.1111/mice.12776 10.1111/mice.12686 10.1111/mice.12561 10.1109/AICERA-ICMiCR.2013.6576024 10.1111/mice.12798 10.1002/tal.1400 10.3233/ICA-220681 10.1142/S0129065722500393 10.1155/2022/9221211 10.1111/mice.12532 10.23919/EUSIPCO.2017.8081259 10.1111/mice.12501 10.3233/ICA-200636 10.3233/ICA-220675 10.14359/51689485 10.1109/CVPR.2016.91 10.14359/51689560 10.1111/mice.12564 10.1051/matecconf/202030903027 10.1109/TNNLS.2022.3190448 10.1016/j.soildyn.2017.05.013 10.1109/TMECH.2021.3106867 10.1111/mice.12497 10.1111/mice.12811 10.1111/j.1467-8667.2004.00336.x 10.1111/j.1467-8667.2007.00516.x 10.1109/TGRS.2018.2799586 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1111/mice.13070 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1467-8667 |
EndPage | 2490 |
ExternalDocumentID | 10_1111_mice_13070 |
GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AGHNM AGQPQ AGYGG AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZZTAW ~IA ~WT 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c361t-1e9fd66961d20fbe631fb634904b7553295e6e30c0f9ac4d9a7a7d5611de4a183 |
ISSN | 1093-9687 |
IngestDate | Fri Jul 25 04:56:00 EDT 2025 Tue Jul 01 03:36:35 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c361t-1e9fd66961d20fbe631fb634904b7553295e6e30c0f9ac4d9a7a7d5611de4a183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13070 |
PQID | 2884642292 |
PQPubID | 2045171 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2884642292 crossref_citationtrail_10_1111_mice_13070 crossref_primary_10_1111_mice_13070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Computer-aided civil and infrastructure engineering |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Asad M. H. (e_1_2_9_4_1) 2022; 2022 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 Karina C. N. N. (e_1_2_9_31_1) 2017; 24 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Karras T. (e_1_2_9_32_1) 2020; 33 Xiang D. (e_1_2_9_74_1) 2018; 16 Zong Z. (e_1_2_9_89_1) 2019; 42 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 El‐Qady G. (e_1_2_9_18_1) 2005; 67 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_85_1 doi: 10.1109/ACCESS.2021.3064205 – ident: e_1_2_9_53_1 doi: 10.1109/TNNLS.2017.2682102 – ident: e_1_2_9_72_1 doi: 10.1117/12.2307261 – ident: e_1_2_9_83_1 doi: 10.1111/mice.12757 – ident: e_1_2_9_87_1 doi: 10.1111/mice.12771 – ident: e_1_2_9_34_1 doi: 10.1177/1475921720902700 – ident: e_1_2_9_38_1 doi: 10.1016/j.autcon.2019.102839 – volume: 42 start-page: 293 year: 2019 ident: e_1_2_9_89_1 article-title: A deep learning approach for urban underground objects detection from vehicle‐borne ground penetrating radar data in real‐time. The International Archives of Photogrammetry publication-title: Remote Sensing and Spatial Information Sciences – ident: e_1_2_9_24_1 doi: 10.1016/j.engstruct.2019.02.031 – ident: e_1_2_9_21_1 doi: 10.1111/mice.12741 – ident: e_1_2_9_35_1 doi: 10.1080/10298436.2018.1559317 – ident: e_1_2_9_26_1 doi: 10.1016/j.tust.2018.04.002 – ident: e_1_2_9_54_1 doi: 10.1016/j.engstruct.2017.10.070 – ident: e_1_2_9_46_1 doi: 10.1109/TGRS.2015.2462727 – ident: e_1_2_9_64_1 doi: 10.1109/ICGPR.2018.8441641 – ident: e_1_2_9_17_1 doi: 10.1109/TGRS.2016.2592679 – ident: e_1_2_9_78_1 doi: 10.1109/IGARSS47720.2021.9554318 – ident: e_1_2_9_3_1 doi: 10.1007/s00521-019-04359-7 – ident: e_1_2_9_65_1 doi: 10.1109/RADAR.2008.4720763 – ident: e_1_2_9_10_1 doi: 10.1680/jfoen.18.00019 – ident: e_1_2_9_84_1 doi: 10.1111/mice.12595 – ident: e_1_2_9_2_1 doi: 10.1016/S0926-9851(99)00055-5 – ident: e_1_2_9_67_1 doi: 10.1111/1467-8667.00302 – ident: e_1_2_9_77_1 doi: 10.1109/TGRS.2020.3030079 – ident: e_1_2_9_36_1 doi: 10.3390/s22176412 – ident: e_1_2_9_76_1 doi: 10.1111/mice.12367 – ident: e_1_2_9_82_1 doi: 10.1111/mice.12677 – ident: e_1_2_9_14_1 doi: 10.1111/mice.12793 – ident: e_1_2_9_30_1 doi: 10.1111/mice.12519 – ident: e_1_2_9_63_1 doi: 10.1111/mice.12749 – ident: e_1_2_9_71_1 – ident: e_1_2_9_69_1 doi: 10.3846/jcem.2018.6186 – ident: e_1_2_9_56_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – ident: e_1_2_9_11_1 doi: 10.20965/jrm.2020.p1244 – ident: e_1_2_9_50_1 doi: 10.1109/IGARSS.2018.8517683 – ident: e_1_2_9_39_1 doi: 10.1061/JTEPBS.TEENG-7461 – ident: e_1_2_9_47_1 doi: 10.1111/mice.12759 – ident: e_1_2_9_33_1 – volume: 16 start-page: 15 issue: 1 year: 2018 ident: e_1_2_9_74_1 article-title: Fast prescreening for GPR antipersonnel mine detection via go decomposition publication-title: IEEE Geoscience and Remote Sensing Letters – ident: e_1_2_9_20_1 doi: 10.1109/36.842008 – ident: e_1_2_9_23_1 doi: 10.48550/arXiv.1406.2661 – ident: e_1_2_9_15_1 doi: 10.3390/su12030830 – ident: e_1_2_9_79_1 doi: 10.1080/15732479.2022.2131845 – ident: e_1_2_9_27_1 doi: 10.1142/S012906572250054X – volume: 33 start-page: 12104 year: 2020 ident: e_1_2_9_32_1 article-title: Training generative adversarial networks with limited data publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_41_1 doi: 10.1111/mice.12425 – ident: e_1_2_9_62_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_6_1 – ident: e_1_2_9_80_1 doi: 10.1080/15732479.2022.2131845 – ident: e_1_2_9_44_1 doi: 10.1111/mice.12387 – ident: e_1_2_9_70_1 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-030-01234-2_49 – ident: e_1_2_9_49_1 doi: 10.1007/s00521-019-04146-4 – ident: e_1_2_9_73_1 doi: 10.3390/rs14153665 – ident: e_1_2_9_28_1 doi: 10.1111/mice.12550 – ident: e_1_2_9_81_1 doi: 10.1111/mice.12776 – ident: e_1_2_9_43_1 doi: 10.1111/mice.12686 – ident: e_1_2_9_45_1 doi: 10.1111/mice.12561 – ident: e_1_2_9_66_1 doi: 10.1109/AICERA-ICMiCR.2013.6576024 – ident: e_1_2_9_40_1 doi: 10.1111/mice.12798 – ident: e_1_2_9_55_1 doi: 10.1061/(ASCE)CO.1943-7862.0001570 – ident: e_1_2_9_51_1 doi: 10.1002/tal.1400 – ident: e_1_2_9_8_1 doi: 10.3233/ICA-220681 – ident: e_1_2_9_75_1 doi: 10.1142/S0129065722500393 – volume: 2022 issue: 16 year: 2022 ident: e_1_2_9_4_1 article-title: Pothole detection using deep learning: A real‐time and AI‐on‐the‐edge perspective publication-title: Advances in Civil Engineering doi: 10.1155/2022/9221211 – ident: e_1_2_9_48_1 doi: 10.1111/mice.12532 – ident: e_1_2_9_37_1 doi: 10.23919/EUSIPCO.2017.8081259 – ident: e_1_2_9_86_1 – ident: e_1_2_9_42_1 doi: 10.1111/mice.12501 – ident: e_1_2_9_7_1 doi: 10.3233/ICA-200636 – ident: e_1_2_9_19_1 doi: 10.3233/ICA-220675 – ident: e_1_2_9_58_1 doi: 10.14359/51689485 – ident: e_1_2_9_60_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_9_57_1 doi: 10.14359/51689560 – ident: e_1_2_9_13_1 doi: 10.1111/mice.12564 – ident: e_1_2_9_22_1 doi: 10.1051/matecconf/202030903027 – ident: e_1_2_9_59_1 doi: 10.1109/TNNLS.2022.3190448 – volume: 67 start-page: 174 issue: 3 year: 2005 ident: e_1_2_9_18_1 article-title: Imaging subsurface cavities using geoelectric tomography and ground‐penetrating radar publication-title: Journal of Cave and Karst Studies – ident: e_1_2_9_52_1 doi: 10.1016/j.soildyn.2017.05.013 – ident: e_1_2_9_12_1 doi: 10.1109/TMECH.2021.3106867 – ident: e_1_2_9_16_1 doi: 10.1111/mice.12497 – ident: e_1_2_9_25_1 doi: 10.1111/mice.12811 – ident: e_1_2_9_61_1 – ident: e_1_2_9_68_1 doi: 10.1111/j.1467-8667.2004.00336.x – ident: e_1_2_9_5_1 doi: 10.1111/j.1467-8667.2007.00516.x – ident: e_1_2_9_29_1 – ident: e_1_2_9_88_1 doi: 10.1109/TGRS.2018.2799586 – volume: 24 start-page: 635 year: 2017 ident: e_1_2_9_31_1 article-title: Tensile strength prediction of corroded steel plates by using a machine learning approach publication-title: Steel and Composite Structures |
SSID | ssj0000443 |
Score | 2.4886432 |
Snippet | Ground‐penetrating radar (GPR) is widely used to determine the location of buried pipes without excavation, and machine learning has been researched to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2472 |
SubjectTerms | Accuracy Annotations Buried pipes Generative adversarial networks Ground penetrating radar Machine learning Object recognition Reflected waves Roads |
Title | Iterative application of generative adversarial networks for improved buried pipe detection from images obtained by ground‐penetrating radar |
URI | https://www.proquest.com/docview/2884642292 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoEDjwKipSBLcEGrrBInceIjQqBSqRxQK5XTynYctFKbXe2jEj3xCyp-DL-IX8KMH4kLFSpcopU3D-3Ol5nP9sw3hLwSSrBKqyIBKlslhSzSRBopk1ozmGoLo41d0z38yPePi4OT8mQ0-hFlLW3WaqIvrq0r-R-rwhjYFatk_8Gy_U1hAD6DfeEIFobjjWz8wUoiY-5PtA-N9O-LFZN232DH5ZW0zTk6l_NtJRiwPnI5P0cCil3rmvFitsAaqrVxzcNt3cnsTKIGxFzhAoLjqlgG0jV9jsQCnmSVd23LokYuY7YbWkYkqEPZjPXsfHbq5Z7apXTStbiBYQZRxCHdYNM5hgs3PpgPe1cXG9do-3DSxwppW0GNP0_iJQyW-1q-weumIk8E95HXuDH04DV3vTqCq87rGJJV7HgL1wHIB3GYVKZ_CRBnqNeUobsbwmDY-v8tOvY5i2G2hNdO7bW3yG1WAWNDKv4pEi0rfFmH_1FeFBfzx4bnXqVBV1mApTZHD8g9PyehbxzAHpKR6bbJfT8_od77r2Ao2DOMbZO7kZ7lI3LZA5JGgKTzlg6ApBEgaQAkBUDSAEjqAEkRkLQHJEVAUgdIGgBJ1VfqAPnz2_cIitRC8TE5fv_u6O1-4ht-JDrn2TrJjGgbzgXPGpa2yvA8axXPwZaFqsoyZ6I03OSpTlshddEIWcmqgRlA1phCQnB6Qra6eWeeElpq0wqujeatKLSqa2lS1bZlxVitapHtkNfh_59qr4aPTVlOp3_aeYe87M9dOA2Ya8_aC2aceh-xmrIa-H3BmGC7N7rJM3JneEH2yBa8iOY5sN61emFB9gvq27fr |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+application+of+generative+adversarial+networks+for+improved+buried+pipe+detection+from+images+obtained+by+ground%E2%80%90penetrating+radar&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chun%2C+Pang+Jo&rft.au=Suzuki%2C+M.&rft.au=Kato%2C+Y.&rft.date=2023-11-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=38&rft.issue=17&rft.spage=2472&rft.epage=2490&rft_id=info:doi/10.1111%2Fmice.13070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_13070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |