Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients

This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance par...

Full description

Saved in:
Bibliographic Details
Published inOptimal control applications & methods Vol. 25; no. 5; pp. 211 - 233
Main Authors Zhao, Yiyuan J., Qi, Ying Celia
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.09.2004
Subjects
Online AccessGet full text
ISSN0143-2087
1099-1514
DOI10.1002/oca.744

Cover

Abstract This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non‐linear optimal control problems. For a jet‐engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller‐driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients. Copyright © 2004 John Wiley & Sons, Ltd.
AbstractList This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non‐linear optimal control problems. For a jet‐engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller‐driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients. Copyright © 2004 John Wiley & Sons, Ltd.
This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low-altitude wind gradients for reducing fuel consumptions. Three-dimensional point-mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non-linear optimal control problems. For a jet-engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller-driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients.
Author Zhao, Yiyuan J.
Qi, Ying Celia
Author_xml – sequence: 1
  givenname: Yiyuan J.
  surname: Zhao
  fullname: Zhao, Yiyuan J.
  email: gyyz@aem.umn.edu
  organization: University of Minnesota, Minneapolis, MN 55455, U.S.A
– sequence: 2
  givenname: Ying Celia
  surname: Qi
  fullname: Qi, Ying Celia
  email: yqi@aem.umn.edu
  organization: University of Minnesota, Minneapolis, MN 55455, U.S.A
BookMark eNp90F1PFDEUBuCGYOKCxL_QKzUxg_2a6fSSbBAIKEo0BG-abucUq512bWdc1l_PLEu8MOrVSc558ubk3UO7MUVA6Dklh5QQ9iZZcyiF2EEzSpSqaE3FLpoRKnjFSCufor1SvhFCJOVshm7e-ej7scduhICXaQUZOtyto-m9xSWZ7OMtTg6PsTcxTjcD2ZuAf8JXbwMUPA4--F8btfKxw7fZdB7iUJ6hJ86EAgePcx99fnv8aX5aXVyenM2PLirLGyqqxhlQrWsdEK7qrrGWKQu2dYuFEMpY2UgjpXKMOPqwE8w2i9rWLbesEZLvoxfb3GVOP0Yog-59sRCCiZDGopnirVKST_DVfyFtJGW8bdkms9pSm1MpGZy2fjCDT3HIxgdNid50raeu9dT15F_-4ZfZ9yav_yJfb-XKB1j_i-nL-dFWP_7hywB3v7XJ33Ujuaz19fsTzU4_yC_zq4_6nN8D6sOfNQ
CitedBy_id crossref_primary_10_3390_app7101061
crossref_primary_10_2514_1_42133
crossref_primary_10_3390_electronics11182801
crossref_primary_10_1017_S0373463310000378
crossref_primary_10_2514_1_52236
crossref_primary_10_2514_1_C031114
crossref_primary_10_1098_rsfs_2016_0080
crossref_primary_10_2514_1_44779
crossref_primary_10_3390_electronics10182250
crossref_primary_10_1177_0954410013496699
crossref_primary_10_2514_1_37735
crossref_primary_10_1109_ACCESS_2022_3199004
crossref_primary_10_2514_1_C036013
crossref_primary_10_1260_1756_8293_7_3_213
crossref_primary_10_1088_1748_3190_aa547c
crossref_primary_10_2514_1_C037105
crossref_primary_10_3182_20120213_3_IN_4034_00025
crossref_primary_10_3390_app12115411
crossref_primary_10_1007_s11071_018_4493_6
crossref_primary_10_1088_1748_3190_ac1918
crossref_primary_10_2514_1_43270
crossref_primary_10_1186_s40462_021_00247_9
crossref_primary_10_3182_20100906_5_JP_2022_00009
crossref_primary_10_1109_ACCESS_2018_2841376
crossref_primary_10_2514_1_C031940
crossref_primary_10_1109_TCST_2007_908207
crossref_primary_10_1177_0954410015572267
crossref_primary_10_2514_1_C033122
crossref_primary_10_1007_s11071_018_4540_3
crossref_primary_10_3390_drones8120709
crossref_primary_10_1088_1757_899X_211_1_012010
crossref_primary_10_1016_j_conengprac_2013_06_003
crossref_primary_10_1063_5_0147263
crossref_primary_10_1016_j_ast_2018_05_024
crossref_primary_10_1017_aer_2020_79
crossref_primary_10_2514_1_36533
crossref_primary_10_1016_j_ejor_2018_10_057
crossref_primary_10_1007_s42405_018_0086_3
crossref_primary_10_1007_s10957_021_01999_5
crossref_primary_10_1155_2015_141906
crossref_primary_10_1126_sciadv_abo0200
crossref_primary_10_1177_0954410011418881
Cites_doi 10.1080/03052157808902389
10.1002/nme.1620121111
10.2514/3.21695
10.1002/oca.4660010302
10.1002/oca.739
10.21236/ADA169115
10.2514/2.4033
10.1017/S0001925900007976
10.2514/3.46415
10.1007/BFb0036412
10.1007/978-94-009-3027-8
10.2514/3.58520
10.2514/3.25333
10.2514/3.59886
10.1093/oso/9780195062397.001.0001
10.1002/oca.4660060206
10.2514/2.4398
10.1002/oca.4660060205
ContentType Journal Article
Copyright Copyright © 2004 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2004 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
H8D
L7M
7TB
FR3
DOI 10.1002/oca.744
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Engineering Research Database
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1514
EndPage 233
ExternalDocumentID 10_1002_oca_744
OCA744
ark_67375_WNG_2HP7ZCRQ_K
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AEUQT
AFPWT
RWI
UCJ
WRC
WWI
AAYXX
CITATION
7SP
8FD
H8D
L7M
7TB
FR3
ID FETCH-LOGICAL-c3614-6fae98f8fe0395d6cc29cec8fbb449ac767a779f20f1fbb4442c6b5c583c26473
IEDL.DBID DR2
ISSN 0143-2087
IngestDate Thu Jul 10 23:00:34 EDT 2025
Fri Jul 11 09:28:06 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Oct 01 03:32:06 EDT 2025
Wed Jan 22 17:06:07 EST 2025
Sun Sep 21 06:16:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3614-6fae98f8fe0395d6cc29cec8fbb449ac767a779f20f1fbb4442c6b5c583c26473
Notes ark:/67375/WNG-2HP7ZCRQ-K
ArticleID:OCA744
istex:B35A3482B394389A73543D2BEE0E4F47904EA934
Graduate Student.
Associate Professor.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1671238827
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_29389973
proquest_miscellaneous_1671238827
crossref_citationtrail_10_1002_oca_744
crossref_primary_10_1002_oca_744
wiley_primary_10_1002_oca_744_OCA744
istex_primary_ark_67375_WNG_2HP7ZCRQ_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-09
September/October 2004
2004-09-00
20040901
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Optimal control applications & methods
PublicationTitleAlternate Optim. Control Appl. Meth
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Pierson BL, Chen I. Minimum-time soaring through a specified vertical wind distribution. Lecture Notes in Control and Information Sciences 1980; 22:350-357.
Speyer JL. Periodic optimal flight. Journal of Guidance Control and Dynamics 1996; 19(4):745-754.
Bridges PD. Alternative solution to optimum gliding velocity in a steady head wind to tail wind. Journal of Aircraft 1993; 30(5):795-797.
Hull D. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance Control and Dynamics 1997; 20(1):57-60.
Litt FX, Sander G. Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints. Technical Soaring 1981; 6(2):23-28.
Anderson JD Jr. Introduction to Flight (5th edn), McGraw Hill: New York; 394-414.
de Jong JL. Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere. Optimal Control Applications and Methods 1985; 6:113-124.
Sachs G, Knoll A, Lesch K. Optimal utilization of wind energy for dynamic soaring. Technical Soaring 1991; 15(2):49-55.
Pierson BL, Chen I. Minimum altitude-loss soaring in a sinusoidal vertical wind distribution. Optimal Control Applications and Methods 1980; 1(3):205-215.
Lorenz J. Numerical solution of the minimum-time flight of a glider through a thermal by use of multiple shooting methods. Optimal Control Applications and Methods 1985; 6:125-140.
Jenkins SA, Wasyl J. Optimization of glides for constant wind fields and course headings. Journal of Aircraft 1990; 27(7):632-638.
Pierson BL. Maximum altitude sailplane winch launch trajectories. Aeronautical Quarterly 1977; 28:75-81.
Arho R. Some notes on soaring flight optimization theory. Technical Soaring 1976; 4(2):27-30.
Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft 1979; 16:287-288.
Jackson MR, Zhao YJ, Slattery RA. Sensitivity of trajectory prediction in air traffic management. Journal of Guidance Control and Dynamics 1999; 22(2):219-228.
Zhao YJ. Optimal patterns of glider dynamic soaring. Optimal Control Applications and Methods 2004; 25:67-89.
Pierson BL, de Jong JL. Cross-country sailplane flight as a dynamic optimization problem. International Journal for Numerical Methods in Engineering 1978; 12:1743-1759.
Genalo LJ, Pierson BL. A singular-arc approximation to a dynamic sailplane flight path optimization problem. Engineering Optimization 1978; 3(4):175-182.
de Jong JL. The 'convex-combination approach'. A geometric approach to the optimization of sailplane trajectories. Technical Soaring 1983; 8(3):98-117.
Arho R. Optimal dolphin soaring as a variational problem. Technical Soaring 1973; 3(1):20-26.
Metzger DE, Hedrick JK. Optimal flight paths for soaring flight. Journal of Aircraft 1975; 12(11):867-871.
Kawabe H, Goto N. Modified direct optimization method for optimal control problems. Theoretical and Applied Mechanics 1999; 48:225-234.
1979; 16
1991; 15
1996; 19
1978; 12
1990; 27
1977; 28
1997; 20
2004; 25
1980; 1
1980; 22
1999; 48
1985; 6
1993; 30
1942
1975; 12
1981; 6
1986
1983; 8
1999; 22
1978; 3
1994
1973; 3
1976; 4
1988
Anderson JD (e_1_2_1_21_2)
Kaimal JC (e_1_2_1_23_2) 1994
Lange KO (e_1_2_1_2_2) 1942
Litt FX (e_1_2_1_13_2) 1981; 6
Arho R (e_1_2_1_5_2) 1976; 4
e_1_2_1_22_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Sachs G (e_1_2_1_19_2) 1991; 15
de Jong JL (e_1_2_1_14_2) 1983; 8
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
Kawabe H (e_1_2_1_20_2) 1999; 48
Arho R (e_1_2_1_4_2) 1973; 3
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Jackson MR, Zhao YJ, Slattery RA. Sensitivity of trajectory prediction in air traffic management. Journal of Guidance Control and Dynamics 1999; 22(2):219-228.
– reference: Pierson BL, de Jong JL. Cross-country sailplane flight as a dynamic optimization problem. International Journal for Numerical Methods in Engineering 1978; 12:1743-1759.
– reference: Metzger DE, Hedrick JK. Optimal flight paths for soaring flight. Journal of Aircraft 1975; 12(11):867-871.
– reference: Arho R. Some notes on soaring flight optimization theory. Technical Soaring 1976; 4(2):27-30.
– reference: de Jong JL. Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere. Optimal Control Applications and Methods 1985; 6:113-124.
– reference: Lorenz J. Numerical solution of the minimum-time flight of a glider through a thermal by use of multiple shooting methods. Optimal Control Applications and Methods 1985; 6:125-140.
– reference: Kawabe H, Goto N. Modified direct optimization method for optimal control problems. Theoretical and Applied Mechanics 1999; 48:225-234.
– reference: Jenkins SA, Wasyl J. Optimization of glides for constant wind fields and course headings. Journal of Aircraft 1990; 27(7):632-638.
– reference: Litt FX, Sander G. Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints. Technical Soaring 1981; 6(2):23-28.
– reference: Anderson JD Jr. Introduction to Flight (5th edn), McGraw Hill: New York; 394-414.
– reference: Sachs G, Knoll A, Lesch K. Optimal utilization of wind energy for dynamic soaring. Technical Soaring 1991; 15(2):49-55.
– reference: Arho R. Optimal dolphin soaring as a variational problem. Technical Soaring 1973; 3(1):20-26.
– reference: Pierson BL. Maximum altitude sailplane winch launch trajectories. Aeronautical Quarterly 1977; 28:75-81.
– reference: Zhao YJ. Optimal patterns of glider dynamic soaring. Optimal Control Applications and Methods 2004; 25:67-89.
– reference: Speyer JL. Periodic optimal flight. Journal of Guidance Control and Dynamics 1996; 19(4):745-754.
– reference: Genalo LJ, Pierson BL. A singular-arc approximation to a dynamic sailplane flight path optimization problem. Engineering Optimization 1978; 3(4):175-182.
– reference: Bridges PD. Alternative solution to optimum gliding velocity in a steady head wind to tail wind. Journal of Aircraft 1993; 30(5):795-797.
– reference: Hull D. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance Control and Dynamics 1997; 20(1):57-60.
– reference: Pierson BL, Chen I. Minimum altitude-loss soaring in a sinusoidal vertical wind distribution. Optimal Control Applications and Methods 1980; 1(3):205-215.
– reference: de Jong JL. The 'convex-combination approach'. A geometric approach to the optimization of sailplane trajectories. Technical Soaring 1983; 8(3):98-117.
– reference: Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft 1979; 16:287-288.
– reference: Pierson BL, Chen I. Minimum-time soaring through a specified vertical wind distribution. Lecture Notes in Control and Information Sciences 1980; 22:350-357.
– volume: 3
  start-page: 20
  issue: 1
  year: 1973
  end-page: 26
  article-title: Optimal dolphin soaring as a variational problem
  publication-title: Technical Soaring
– volume: 19
  start-page: 745
  issue: 4
  year: 1996
  end-page: 754
  article-title: Periodic optimal flight
  publication-title: Journal of Guidance Control and Dynamics
– start-page: 394
  end-page: 414
– volume: 6
  start-page: 125
  year: 1985
  end-page: 140
  article-title: Numerical solution of the minimum‐time flight of a glider through a thermal by use of multiple shooting methods
  publication-title: Optimal Control Applications and Methods
– volume: 1
  start-page: 205
  issue: 3
  year: 1980
  end-page: 215
  article-title: Minimum altitude‐loss soaring in a sinusoidal vertical wind distribution
  publication-title: Optimal Control Applications and Methods
– volume: 48
  start-page: 225
  year: 1999
  end-page: 234
  article-title: Modified direct optimization method for optimal control problems
  publication-title: Theoretical and Applied Mechanics
– volume: 6
  start-page: 23
  issue: 2
  year: 1981
  end-page: 28
  article-title: Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints
  publication-title: Technical Soaring
– volume: 28
  start-page: 75
  year: 1977
  end-page: 81
  article-title: Maximum altitude sailplane winch launch trajectories
  publication-title: Aeronautical Quarterly
– year: 1942
– volume: 27
  start-page: 632
  issue: 7
  year: 1990
  end-page: 638
  article-title: Optimization of glides for constant wind fields and course headings
  publication-title: Journal of Aircraft
– year: 1994
– volume: 30
  start-page: 795
  issue: 5
  year: 1993
  end-page: 797
  article-title: Alternative solution to optimum gliding velocity in a steady head wind to tail wind
  publication-title: Journal of Aircraft
– volume: 12
  start-page: 1743
  year: 1978
  end-page: 1759
  article-title: Cross‐country sailplane flight as a dynamic optimization problem
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1986
– volume: 4
  start-page: 27
  issue: 2
  year: 1976
  end-page: 30
  article-title: Some notes on soaring flight optimization theory
  publication-title: Technical Soaring
– volume: 22
  start-page: 219
  issue: 2
  year: 1999
  end-page: 228
  article-title: Sensitivity of trajectory prediction in air traffic management
  publication-title: Journal of Guidance Control and Dynamics
– volume: 12
  start-page: 867
  issue: 11
  year: 1975
  end-page: 871
  article-title: Optimal flight paths for soaring flight
  publication-title: Journal of Aircraft
– year: 1988
– volume: 20
  start-page: 57
  issue: 1
  year: 1997
  end-page: 60
  article-title: Conversion of optimal control problems into parameter optimization problems
  publication-title: Journal of Guidance Control and Dynamics
– volume: 22
  start-page: 350
  year: 1980
  end-page: 357
  article-title: Minimum‐time soaring through a specified vertical wind distribution
  publication-title: Lecture Notes in Control and Information Sciences
– volume: 25
  start-page: 67
  year: 2004
  end-page: 89
  article-title: Optimal patterns of glider dynamic soaring
  publication-title: Optimal Control Applications and Methods
– volume: 16
  start-page: 287
  year: 1979
  end-page: 288
  article-title: Minimum landing‐approach distance for a sailplane
  publication-title: Journal of Aircraft
– volume: 3
  start-page: 175
  issue: 4
  year: 1978
  end-page: 182
  article-title: A singular‐arc approximation to a dynamic sailplane flight path optimization problem
  publication-title: Engineering Optimization
– volume: 8
  start-page: 98
  issue: 3
  year: 1983
  end-page: 117
  article-title: The ‘convex‐combination approach’. A geometric approach to the optimization of sailplane trajectories
  publication-title: Technical Soaring
– volume: 15
  start-page: 49
  issue: 2
  year: 1991
  end-page: 55
  article-title: Optimal utilization of wind energy for dynamic soaring
  publication-title: Technical Soaring
– volume: 6
  start-page: 113
  year: 1985
  end-page: 124
  article-title: Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere
  publication-title: Optimal Control Applications and Methods
– ident: e_1_2_1_8_2
  doi: 10.1080/03052157808902389
– ident: e_1_2_1_9_2
  doi: 10.1002/nme.1620121111
– ident: e_1_2_1_25_2
  doi: 10.2514/3.21695
– ident: e_1_2_1_11_2
  doi: 10.1002/oca.4660010302
– volume: 8
  start-page: 98
  issue: 3
  year: 1983
  ident: e_1_2_1_14_2
  article-title: The ‘convex‐combination approach’. A geometric approach to the optimization of sailplane trajectories
  publication-title: Technical Soaring
– ident: e_1_2_1_3_2
  doi: 10.1002/oca.739
– ident: e_1_2_1_27_2
  doi: 10.21236/ADA169115
– ident: e_1_2_1_26_2
  doi: 10.2514/2.4033
– volume: 6
  start-page: 23
  issue: 2
  year: 1981
  ident: e_1_2_1_13_2
  article-title: Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints
  publication-title: Technical Soaring
– ident: e_1_2_1_7_2
  doi: 10.1017/S0001925900007976
– ident: e_1_2_1_18_2
  doi: 10.2514/3.46415
– start-page: 394
  volume-title: Introduction to Flight
  ident: e_1_2_1_21_2
– volume: 3
  start-page: 20
  issue: 1
  year: 1973
  ident: e_1_2_1_4_2
  article-title: Optimal dolphin soaring as a variational problem
  publication-title: Technical Soaring
– ident: e_1_2_1_12_2
  doi: 10.1007/BFb0036412
– ident: e_1_2_1_22_2
  doi: 10.1007/978-94-009-3027-8
– ident: e_1_2_1_10_2
  doi: 10.2514/3.58520
– volume: 48
  start-page: 225
  year: 1999
  ident: e_1_2_1_20_2
  article-title: Modified direct optimization method for optimal control problems
  publication-title: Theoretical and Applied Mechanics
– ident: e_1_2_1_17_2
  doi: 10.2514/3.25333
– volume: 15
  start-page: 49
  issue: 2
  year: 1991
  ident: e_1_2_1_19_2
  article-title: Optimal utilization of wind energy for dynamic soaring
  publication-title: Technical Soaring
– ident: e_1_2_1_6_2
  doi: 10.2514/3.59886
– volume-title: Atmospheric Boundary Layer Flows, Their Structure and Measurement
  year: 1994
  ident: e_1_2_1_23_2
  doi: 10.1093/oso/9780195062397.001.0001
– ident: e_1_2_1_16_2
  doi: 10.1002/oca.4660060206
– ident: e_1_2_1_24_2
  doi: 10.2514/2.4398
– volume-title: The Art of Gliding and Soaring
  year: 1942
  ident: e_1_2_1_2_2
– ident: e_1_2_1_15_2
  doi: 10.1002/oca.4660060205
– volume: 4
  start-page: 27
  issue: 2
  year: 1976
  ident: e_1_2_1_5_2
  article-title: Some notes on soaring flight optimization theory
  publication-title: Technical Soaring
SSID ssj0007132
Score 1.9852109
Snippet This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel...
This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low-altitude wind gradients for reducing fuel...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms dynamic soaring
Dynamics
Mathematical models
non-linear optimal control
Nonlinear dynamics
Optimal control
Optimization
Soaring
Unmanned aerial vehicles
wind gradients
Wind power generation
Title Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients
URI https://api.istex.fr/ark:/67375/WNG-2HP7ZCRQ-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.744
https://www.proquest.com/docview/1671238827
https://www.proquest.com/docview/29389973
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0143-2087
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-h8QIPfCPCp5GmvaVLY8cfj1PFqEAbMDEx9mI5jg3V2nRqG0D76znbbdeBJiGeIjlnxfGdfXfJz78D2Hay4bywMpec1zmrFM2VxIUnfGWsRZdgRTgofHDIh8fs3Ul1slHqK_FDrD-4hZUR9-uwwE09370kDcWtvidYYALtUx6TqaNL4ihMvcoEXqRoB1Kk47Kh5-6y3xU_dDNM6a8rQeZmqBp9zf5dOF2NMkFMznrdou7Ziz8IHP_rNe7BnWUESvaSydyHG659ALc3eAkfwteDUTuadBPiOzcm56GQmmtIk4rXk_nUBDEy9aRrJyZs1MREQyY_3PcIsyNozuPRRZD6iUk_-TaLyLLF_BEc77_5PBjmyxoMuaXouXPujVPSS-8KqqomoKyVdVb6umZMGSu4MEIoXxa-H9tYaXld2UpSi7GWoI9hq5227gkQqaQwmBAV0jNGjauVZLLAVnyQYA3PYGelEW2XBOWhTsZYJ2rlUuNcaZyrDMha8DxxcvwtshNVur5vZmcBwiYq_eXwrS6HH8Xp4OiTfp_B65XONS6s8LfEtG7azXWfC_TqmICIDF5dI4OxEuargmawHXV83XD0h8EeXp7-m9gzuJXwQQHJ9hy2FrPOvcDQZ1G_jFb-G2x6AWU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_B9gA88I3I-JiRpr2lyxLHH49TxShsLTBtYrAHy3FsVq1Np7YBtL-es5N2G2gS4imSc1YS-8535_z8O4ANK0rGEiNiwVgR01xmsRRoeNzl2hh0CYb7g8L9Aesd0Q_H-XGLqvRnYRp-iOWGm7eMsF57A_cb0luXrKG41nc4pbdhlTLMUnxAdHBJHYXJV9rAFzPUBMGbA7O-61bb8ZonWvWD-utamHk1WA3eZvcBnCzeswGZnHXqedExF39QOP7fhzyE-20QSnYarXkEt2z1GO5doSZ8Al_7w2o4rsfE1XZEzn0tNVuSsqlfT2YT7cXIxJG6Gmu_VhMddJn8sKcBaUdQo0fDCy_1E_N-8n0awGXz2VM42n172O3FbRmG2GTovGPmtJXCCWeTTOalB1pLY41wRUGp1IYzrjmXLk3cdmijqWFFbnKRGQy3ePYMVqpJZZ8DEVJwjTlRIhylmbaFFFQk2IoP4rRkEWwupkSZlqPcl8oYqYZdOVU4VgrHKgKyFDxvaDn-FtkMc7q8r6dnHsXGc_Vl8E6lvU_8W_fgs9qL4M1i0hXalv9hois7qWdqm3F07JiD8AjWb5DBcAlTVp5FsBEm-abXUR-7O3hZ-zexdbjTO-zvq_33g70XcLeBC3lg20tYmU9r-wojoXnxOqj8b4D7BYY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJiF44BsRvmakaW_pssSxncepoxTGypiYGPBgOY4N1dq0ahtA--s522m3gSYhniI5Zzmx73x3yc-_A9g0omIs0SIWjJUxzYssLgQaHre50hpdgubuoPDBgPWP6duT_KRFVbqzMIEfYvXBzVmG36-dgZtpZbfPWUNxr-9wSq_DOg4hHJxv7-icOgqTrzTAFzPUBMHDgVnXdbvteMkTrbtJ_XUpzLwYrHpv07sDX5fPGUAmp51mUXb02R8Ujv_3InfhdhuEkt2gNffgmqnvw60L1IQP4PPBsB6OmzGxjRmRqaulZipShfr1ZD5RToxMLGnqsXJ7NVFel8kP890j7Qhq9Gh45qR-Yt5Pvs08uGwxfwjHvVcfu_24LcMQ6wydd8ysMoWwwpokK_LKAa0LbbSwZUlpoTRnXHFe2DSxO76NppqVuc5FpjHc4tkjWKsntXkMRBSCK8yJEmEpzZQpC0FFgq04EKcVi2BruSRStxzlrlTGSAZ25VTiXEmcqwjISnAaaDn-Ftnya7q6r2anDsXGc_lp8Fqm_UP-pXv0Qe5H8HK56BJty_0wUbWZNHO5wzg6dsxBeAQbV8hguIQpK88i2PSLfNXjyPfdXbw8-TexDbhxuNeT794M9p_CzYAWcri2Z7C2mDXmOQZCi_KF1_jfIk8FCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+fuel+powered+dynamic+soaring+of+unmanned+aerial+vehicles+utilizing+wind+gradients&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Zhao%2C+Yiyuan+J.&rft.au=Qi%2C+Ying+Celia&rft.date=2004-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=25&rft.issue=5&rft.spage=211&rft.epage=233&rft_id=info:doi/10.1002%2Foca.744&rft.externalDBID=10.1002%252Foca.744&rft.externalDocID=OCA744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon