Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients
This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance par...
Saved in:
| Published in | Optimal control applications & methods Vol. 25; no. 5; pp. 211 - 233 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.09.2004
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0143-2087 1099-1514 |
| DOI | 10.1002/oca.744 |
Cover
| Abstract | This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non‐linear optimal control problems. For a jet‐engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller‐driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients. Copyright © 2004 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel consumptions. Three‐dimensional point‐mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non‐linear optimal control problems. For a jet‐engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller‐driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients. Copyright © 2004 John Wiley & Sons, Ltd. This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low-altitude wind gradients for reducing fuel consumptions. Three-dimensional point-mass UAV equations of motion are used, and linear wind gradients are assumed. Fundamental UAV performance parameters are identified through the normalization of the equations of motion. In particular, a single wind condition parameter is defined that represents the combined effect of air density, UAV wing loading, and wind gradient slope on UAV flight. An optimal control problem is first used to determine bounds on wind conditions over which optimal powered dynamic soaring is meaningful. Then, powered UAV dynamic soaring flights through wind gradients are formulated as non-linear optimal control problems. For a jet-engined UAV, performance indices are selected to minimize the average thrust required per cycle of powered dynamic soaring that employs either variable or constant thrust. For a propeller-driven UAV, in comparison, performance indices are selected to minimize the average power required per cycle of powered dynamic soaring with either variable or constant power. All problem formulations are subject to UAV equations of motion, UAV operational constraints, proper initial conditions, and terminal conditions that enforce a periodic flight. These optimal control problems are converted into parameter optimization with a collocation method and solved numerically using the parameter optimization software NPSOL. Analytical gradient expressions are derived for the numerical solution process. Extensive numerical solutions are obtained for a wide range of wind conditions and UAV performance parameters. Results reveal basic features of powered dynamic soaring flights through linear wind gradients. |
| Author | Zhao, Yiyuan J. Qi, Ying Celia |
| Author_xml | – sequence: 1 givenname: Yiyuan J. surname: Zhao fullname: Zhao, Yiyuan J. email: gyyz@aem.umn.edu organization: University of Minnesota, Minneapolis, MN 55455, U.S.A – sequence: 2 givenname: Ying Celia surname: Qi fullname: Qi, Ying Celia email: yqi@aem.umn.edu organization: University of Minnesota, Minneapolis, MN 55455, U.S.A |
| BookMark | eNp90F1PFDEUBuCGYOKCxL_QKzUxg_2a6fSSbBAIKEo0BG-abucUq512bWdc1l_PLEu8MOrVSc558ubk3UO7MUVA6Dklh5QQ9iZZcyiF2EEzSpSqaE3FLpoRKnjFSCufor1SvhFCJOVshm7e-ej7scduhICXaQUZOtyto-m9xSWZ7OMtTg6PsTcxTjcD2ZuAf8JXbwMUPA4--F8btfKxw7fZdB7iUJ6hJ86EAgePcx99fnv8aX5aXVyenM2PLirLGyqqxhlQrWsdEK7qrrGWKQu2dYuFEMpY2UgjpXKMOPqwE8w2i9rWLbesEZLvoxfb3GVOP0Yog-59sRCCiZDGopnirVKST_DVfyFtJGW8bdkms9pSm1MpGZy2fjCDT3HIxgdNid50raeu9dT15F_-4ZfZ9yav_yJfb-XKB1j_i-nL-dFWP_7hywB3v7XJ33Ujuaz19fsTzU4_yC_zq4_6nN8D6sOfNQ |
| CitedBy_id | crossref_primary_10_3390_app7101061 crossref_primary_10_2514_1_42133 crossref_primary_10_3390_electronics11182801 crossref_primary_10_1017_S0373463310000378 crossref_primary_10_2514_1_52236 crossref_primary_10_2514_1_C031114 crossref_primary_10_1098_rsfs_2016_0080 crossref_primary_10_2514_1_44779 crossref_primary_10_3390_electronics10182250 crossref_primary_10_1177_0954410013496699 crossref_primary_10_2514_1_37735 crossref_primary_10_1109_ACCESS_2022_3199004 crossref_primary_10_2514_1_C036013 crossref_primary_10_1260_1756_8293_7_3_213 crossref_primary_10_1088_1748_3190_aa547c crossref_primary_10_2514_1_C037105 crossref_primary_10_3182_20120213_3_IN_4034_00025 crossref_primary_10_3390_app12115411 crossref_primary_10_1007_s11071_018_4493_6 crossref_primary_10_1088_1748_3190_ac1918 crossref_primary_10_2514_1_43270 crossref_primary_10_1186_s40462_021_00247_9 crossref_primary_10_3182_20100906_5_JP_2022_00009 crossref_primary_10_1109_ACCESS_2018_2841376 crossref_primary_10_2514_1_C031940 crossref_primary_10_1109_TCST_2007_908207 crossref_primary_10_1177_0954410015572267 crossref_primary_10_2514_1_C033122 crossref_primary_10_1007_s11071_018_4540_3 crossref_primary_10_3390_drones8120709 crossref_primary_10_1088_1757_899X_211_1_012010 crossref_primary_10_1016_j_conengprac_2013_06_003 crossref_primary_10_1063_5_0147263 crossref_primary_10_1016_j_ast_2018_05_024 crossref_primary_10_1017_aer_2020_79 crossref_primary_10_2514_1_36533 crossref_primary_10_1016_j_ejor_2018_10_057 crossref_primary_10_1007_s42405_018_0086_3 crossref_primary_10_1007_s10957_021_01999_5 crossref_primary_10_1155_2015_141906 crossref_primary_10_1126_sciadv_abo0200 crossref_primary_10_1177_0954410011418881 |
| Cites_doi | 10.1080/03052157808902389 10.1002/nme.1620121111 10.2514/3.21695 10.1002/oca.4660010302 10.1002/oca.739 10.21236/ADA169115 10.2514/2.4033 10.1017/S0001925900007976 10.2514/3.46415 10.1007/BFb0036412 10.1007/978-94-009-3027-8 10.2514/3.58520 10.2514/3.25333 10.2514/3.59886 10.1093/oso/9780195062397.001.0001 10.1002/oca.4660060206 10.2514/2.4398 10.1002/oca.4660060205 |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2004 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7SP 8FD H8D L7M 7TB FR3 |
| DOI | 10.1002/oca.744 |
| DatabaseName | Istex CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Engineering Research Database CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1514 |
| EndPage | 233 |
| ExternalDocumentID | 10_1002_oca_744 OCA744 ark_67375_WNG_2HP7ZCRQ_K |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AEUQT AFPWT RWI UCJ WRC WWI AAYXX CITATION 7SP 8FD H8D L7M 7TB FR3 |
| ID | FETCH-LOGICAL-c3614-6fae98f8fe0395d6cc29cec8fbb449ac767a779f20f1fbb4442c6b5c583c26473 |
| IEDL.DBID | DR2 |
| ISSN | 0143-2087 |
| IngestDate | Thu Jul 10 23:00:34 EDT 2025 Fri Jul 11 09:28:06 EDT 2025 Thu Apr 24 23:00:38 EDT 2025 Wed Oct 01 03:32:06 EDT 2025 Wed Jan 22 17:06:07 EST 2025 Sun Sep 21 06:16:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3614-6fae98f8fe0395d6cc29cec8fbb449ac767a779f20f1fbb4442c6b5c583c26473 |
| Notes | ark:/67375/WNG-2HP7ZCRQ-K ArticleID:OCA744 istex:B35A3482B394389A73543D2BEE0E4F47904EA934 Graduate Student. Associate Professor. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1671238827 |
| PQPubID | 23500 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_29389973 proquest_miscellaneous_1671238827 crossref_citationtrail_10_1002_oca_744 crossref_primary_10_1002_oca_744 wiley_primary_10_1002_oca_744_OCA744 istex_primary_ark_67375_WNG_2HP7ZCRQ_K |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2004-09 September/October 2004 2004-09-00 20040901 |
| PublicationDateYYYYMMDD | 2004-09-01 |
| PublicationDate_xml | – month: 09 year: 2004 text: 2004-09 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Optimal control applications & methods |
| PublicationTitleAlternate | Optim. Control Appl. Meth |
| PublicationYear | 2004 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | Pierson BL, Chen I. Minimum-time soaring through a specified vertical wind distribution. Lecture Notes in Control and Information Sciences 1980; 22:350-357. Speyer JL. Periodic optimal flight. Journal of Guidance Control and Dynamics 1996; 19(4):745-754. Bridges PD. Alternative solution to optimum gliding velocity in a steady head wind to tail wind. Journal of Aircraft 1993; 30(5):795-797. Hull D. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance Control and Dynamics 1997; 20(1):57-60. Litt FX, Sander G. Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints. Technical Soaring 1981; 6(2):23-28. Anderson JD Jr. Introduction to Flight (5th edn), McGraw Hill: New York; 394-414. de Jong JL. Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere. Optimal Control Applications and Methods 1985; 6:113-124. Sachs G, Knoll A, Lesch K. Optimal utilization of wind energy for dynamic soaring. Technical Soaring 1991; 15(2):49-55. Pierson BL, Chen I. Minimum altitude-loss soaring in a sinusoidal vertical wind distribution. Optimal Control Applications and Methods 1980; 1(3):205-215. Lorenz J. Numerical solution of the minimum-time flight of a glider through a thermal by use of multiple shooting methods. Optimal Control Applications and Methods 1985; 6:125-140. Jenkins SA, Wasyl J. Optimization of glides for constant wind fields and course headings. Journal of Aircraft 1990; 27(7):632-638. Pierson BL. Maximum altitude sailplane winch launch trajectories. Aeronautical Quarterly 1977; 28:75-81. Arho R. Some notes on soaring flight optimization theory. Technical Soaring 1976; 4(2):27-30. Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft 1979; 16:287-288. Jackson MR, Zhao YJ, Slattery RA. Sensitivity of trajectory prediction in air traffic management. Journal of Guidance Control and Dynamics 1999; 22(2):219-228. Zhao YJ. Optimal patterns of glider dynamic soaring. Optimal Control Applications and Methods 2004; 25:67-89. Pierson BL, de Jong JL. Cross-country sailplane flight as a dynamic optimization problem. International Journal for Numerical Methods in Engineering 1978; 12:1743-1759. Genalo LJ, Pierson BL. A singular-arc approximation to a dynamic sailplane flight path optimization problem. Engineering Optimization 1978; 3(4):175-182. de Jong JL. The 'convex-combination approach'. A geometric approach to the optimization of sailplane trajectories. Technical Soaring 1983; 8(3):98-117. Arho R. Optimal dolphin soaring as a variational problem. Technical Soaring 1973; 3(1):20-26. Metzger DE, Hedrick JK. Optimal flight paths for soaring flight. Journal of Aircraft 1975; 12(11):867-871. Kawabe H, Goto N. Modified direct optimization method for optimal control problems. Theoretical and Applied Mechanics 1999; 48:225-234. 1979; 16 1991; 15 1996; 19 1978; 12 1990; 27 1977; 28 1997; 20 2004; 25 1980; 1 1980; 22 1999; 48 1985; 6 1993; 30 1942 1975; 12 1981; 6 1986 1983; 8 1999; 22 1978; 3 1994 1973; 3 1976; 4 1988 Anderson JD (e_1_2_1_21_2) Kaimal JC (e_1_2_1_23_2) 1994 Lange KO (e_1_2_1_2_2) 1942 Litt FX (e_1_2_1_13_2) 1981; 6 Arho R (e_1_2_1_5_2) 1976; 4 e_1_2_1_22_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 Sachs G (e_1_2_1_19_2) 1991; 15 de Jong JL (e_1_2_1_14_2) 1983; 8 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 Kawabe H (e_1_2_1_20_2) 1999; 48 Arho R (e_1_2_1_4_2) 1973; 3 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Jackson MR, Zhao YJ, Slattery RA. Sensitivity of trajectory prediction in air traffic management. Journal of Guidance Control and Dynamics 1999; 22(2):219-228. – reference: Pierson BL, de Jong JL. Cross-country sailplane flight as a dynamic optimization problem. International Journal for Numerical Methods in Engineering 1978; 12:1743-1759. – reference: Metzger DE, Hedrick JK. Optimal flight paths for soaring flight. Journal of Aircraft 1975; 12(11):867-871. – reference: Arho R. Some notes on soaring flight optimization theory. Technical Soaring 1976; 4(2):27-30. – reference: de Jong JL. Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere. Optimal Control Applications and Methods 1985; 6:113-124. – reference: Lorenz J. Numerical solution of the minimum-time flight of a glider through a thermal by use of multiple shooting methods. Optimal Control Applications and Methods 1985; 6:125-140. – reference: Kawabe H, Goto N. Modified direct optimization method for optimal control problems. Theoretical and Applied Mechanics 1999; 48:225-234. – reference: Jenkins SA, Wasyl J. Optimization of glides for constant wind fields and course headings. Journal of Aircraft 1990; 27(7):632-638. – reference: Litt FX, Sander G. Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints. Technical Soaring 1981; 6(2):23-28. – reference: Anderson JD Jr. Introduction to Flight (5th edn), McGraw Hill: New York; 394-414. – reference: Sachs G, Knoll A, Lesch K. Optimal utilization of wind energy for dynamic soaring. Technical Soaring 1991; 15(2):49-55. – reference: Arho R. Optimal dolphin soaring as a variational problem. Technical Soaring 1973; 3(1):20-26. – reference: Pierson BL. Maximum altitude sailplane winch launch trajectories. Aeronautical Quarterly 1977; 28:75-81. – reference: Zhao YJ. Optimal patterns of glider dynamic soaring. Optimal Control Applications and Methods 2004; 25:67-89. – reference: Speyer JL. Periodic optimal flight. Journal of Guidance Control and Dynamics 1996; 19(4):745-754. – reference: Genalo LJ, Pierson BL. A singular-arc approximation to a dynamic sailplane flight path optimization problem. Engineering Optimization 1978; 3(4):175-182. – reference: Bridges PD. Alternative solution to optimum gliding velocity in a steady head wind to tail wind. Journal of Aircraft 1993; 30(5):795-797. – reference: Hull D. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance Control and Dynamics 1997; 20(1):57-60. – reference: Pierson BL, Chen I. Minimum altitude-loss soaring in a sinusoidal vertical wind distribution. Optimal Control Applications and Methods 1980; 1(3):205-215. – reference: de Jong JL. The 'convex-combination approach'. A geometric approach to the optimization of sailplane trajectories. Technical Soaring 1983; 8(3):98-117. – reference: Pierson BL, Chen I. Minimum landing-approach distance for a sailplane. Journal of Aircraft 1979; 16:287-288. – reference: Pierson BL, Chen I. Minimum-time soaring through a specified vertical wind distribution. Lecture Notes in Control and Information Sciences 1980; 22:350-357. – volume: 3 start-page: 20 issue: 1 year: 1973 end-page: 26 article-title: Optimal dolphin soaring as a variational problem publication-title: Technical Soaring – volume: 19 start-page: 745 issue: 4 year: 1996 end-page: 754 article-title: Periodic optimal flight publication-title: Journal of Guidance Control and Dynamics – start-page: 394 end-page: 414 – volume: 6 start-page: 125 year: 1985 end-page: 140 article-title: Numerical solution of the minimum‐time flight of a glider through a thermal by use of multiple shooting methods publication-title: Optimal Control Applications and Methods – volume: 1 start-page: 205 issue: 3 year: 1980 end-page: 215 article-title: Minimum altitude‐loss soaring in a sinusoidal vertical wind distribution publication-title: Optimal Control Applications and Methods – volume: 48 start-page: 225 year: 1999 end-page: 234 article-title: Modified direct optimization method for optimal control problems publication-title: Theoretical and Applied Mechanics – volume: 6 start-page: 23 issue: 2 year: 1981 end-page: 28 article-title: Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints publication-title: Technical Soaring – volume: 28 start-page: 75 year: 1977 end-page: 81 article-title: Maximum altitude sailplane winch launch trajectories publication-title: Aeronautical Quarterly – year: 1942 – volume: 27 start-page: 632 issue: 7 year: 1990 end-page: 638 article-title: Optimization of glides for constant wind fields and course headings publication-title: Journal of Aircraft – year: 1994 – volume: 30 start-page: 795 issue: 5 year: 1993 end-page: 797 article-title: Alternative solution to optimum gliding velocity in a steady head wind to tail wind publication-title: Journal of Aircraft – volume: 12 start-page: 1743 year: 1978 end-page: 1759 article-title: Cross‐country sailplane flight as a dynamic optimization problem publication-title: International Journal for Numerical Methods in Engineering – year: 1986 – volume: 4 start-page: 27 issue: 2 year: 1976 end-page: 30 article-title: Some notes on soaring flight optimization theory publication-title: Technical Soaring – volume: 22 start-page: 219 issue: 2 year: 1999 end-page: 228 article-title: Sensitivity of trajectory prediction in air traffic management publication-title: Journal of Guidance Control and Dynamics – volume: 12 start-page: 867 issue: 11 year: 1975 end-page: 871 article-title: Optimal flight paths for soaring flight publication-title: Journal of Aircraft – year: 1988 – volume: 20 start-page: 57 issue: 1 year: 1997 end-page: 60 article-title: Conversion of optimal control problems into parameter optimization problems publication-title: Journal of Guidance Control and Dynamics – volume: 22 start-page: 350 year: 1980 end-page: 357 article-title: Minimum‐time soaring through a specified vertical wind distribution publication-title: Lecture Notes in Control and Information Sciences – volume: 25 start-page: 67 year: 2004 end-page: 89 article-title: Optimal patterns of glider dynamic soaring publication-title: Optimal Control Applications and Methods – volume: 16 start-page: 287 year: 1979 end-page: 288 article-title: Minimum landing‐approach distance for a sailplane publication-title: Journal of Aircraft – volume: 3 start-page: 175 issue: 4 year: 1978 end-page: 182 article-title: A singular‐arc approximation to a dynamic sailplane flight path optimization problem publication-title: Engineering Optimization – volume: 8 start-page: 98 issue: 3 year: 1983 end-page: 117 article-title: The ‘convex‐combination approach’. A geometric approach to the optimization of sailplane trajectories publication-title: Technical Soaring – volume: 15 start-page: 49 issue: 2 year: 1991 end-page: 55 article-title: Optimal utilization of wind energy for dynamic soaring publication-title: Technical Soaring – volume: 6 start-page: 113 year: 1985 end-page: 124 article-title: Instationary dolphin flight: the optimal energy exchange between a sailplane and vertical currents in the atmosphere publication-title: Optimal Control Applications and Methods – ident: e_1_2_1_8_2 doi: 10.1080/03052157808902389 – ident: e_1_2_1_9_2 doi: 10.1002/nme.1620121111 – ident: e_1_2_1_25_2 doi: 10.2514/3.21695 – ident: e_1_2_1_11_2 doi: 10.1002/oca.4660010302 – volume: 8 start-page: 98 issue: 3 year: 1983 ident: e_1_2_1_14_2 article-title: The ‘convex‐combination approach’. A geometric approach to the optimization of sailplane trajectories publication-title: Technical Soaring – ident: e_1_2_1_3_2 doi: 10.1002/oca.739 – ident: e_1_2_1_27_2 doi: 10.21236/ADA169115 – ident: e_1_2_1_26_2 doi: 10.2514/2.4033 – volume: 6 start-page: 23 issue: 2 year: 1981 ident: e_1_2_1_13_2 article-title: Optimal flight strategy in a given space distribution of lifts with minimum and maximal altitude constraints publication-title: Technical Soaring – ident: e_1_2_1_7_2 doi: 10.1017/S0001925900007976 – ident: e_1_2_1_18_2 doi: 10.2514/3.46415 – start-page: 394 volume-title: Introduction to Flight ident: e_1_2_1_21_2 – volume: 3 start-page: 20 issue: 1 year: 1973 ident: e_1_2_1_4_2 article-title: Optimal dolphin soaring as a variational problem publication-title: Technical Soaring – ident: e_1_2_1_12_2 doi: 10.1007/BFb0036412 – ident: e_1_2_1_22_2 doi: 10.1007/978-94-009-3027-8 – ident: e_1_2_1_10_2 doi: 10.2514/3.58520 – volume: 48 start-page: 225 year: 1999 ident: e_1_2_1_20_2 article-title: Modified direct optimization method for optimal control problems publication-title: Theoretical and Applied Mechanics – ident: e_1_2_1_17_2 doi: 10.2514/3.25333 – volume: 15 start-page: 49 issue: 2 year: 1991 ident: e_1_2_1_19_2 article-title: Optimal utilization of wind energy for dynamic soaring publication-title: Technical Soaring – ident: e_1_2_1_6_2 doi: 10.2514/3.59886 – volume-title: Atmospheric Boundary Layer Flows, Their Structure and Measurement year: 1994 ident: e_1_2_1_23_2 doi: 10.1093/oso/9780195062397.001.0001 – ident: e_1_2_1_16_2 doi: 10.1002/oca.4660060206 – ident: e_1_2_1_24_2 doi: 10.2514/2.4398 – volume-title: The Art of Gliding and Soaring year: 1942 ident: e_1_2_1_2_2 – ident: e_1_2_1_15_2 doi: 10.1002/oca.4660060205 – volume: 4 start-page: 27 issue: 2 year: 1976 ident: e_1_2_1_5_2 article-title: Some notes on soaring flight optimization theory publication-title: Technical Soaring |
| SSID | ssj0007132 |
| Score | 1.9852109 |
| Snippet | This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low‐altitude wind gradients for reducing fuel... This paper studies optimal powered dynamic soaring flights of unmanned aerial vehicles (UAVs) that utilize low-altitude wind gradients for reducing fuel... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 211 |
| SubjectTerms | dynamic soaring Dynamics Mathematical models non-linear optimal control Nonlinear dynamics Optimal control Optimization Soaring Unmanned aerial vehicles wind gradients Wind power generation |
| Title | Minimum fuel powered dynamic soaring of unmanned aerial vehicles utilizing wind gradients |
| URI | https://api.istex.fr/ark:/67375/WNG-2HP7ZCRQ-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.744 https://www.proquest.com/docview/1671238827 https://www.proquest.com/docview/29389973 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0143-2087 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007132 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-h8QIPfCPCp5GmvaVLY8cfj1PFqEAbMDEx9mI5jg3V2nRqG0D76znbbdeBJiGeIjlnxfGdfXfJz78D2Hay4bywMpec1zmrFM2VxIUnfGWsRZdgRTgofHDIh8fs3Ul1slHqK_FDrD-4hZUR9-uwwE09370kDcWtvidYYALtUx6TqaNL4ihMvcoEXqRoB1Kk47Kh5-6y3xU_dDNM6a8rQeZmqBp9zf5dOF2NMkFMznrdou7Ziz8IHP_rNe7BnWUESvaSydyHG659ALc3eAkfwteDUTuadBPiOzcm56GQmmtIk4rXk_nUBDEy9aRrJyZs1MREQyY_3PcIsyNozuPRRZD6iUk_-TaLyLLF_BEc77_5PBjmyxoMuaXouXPujVPSS-8KqqomoKyVdVb6umZMGSu4MEIoXxa-H9tYaXld2UpSi7GWoI9hq5227gkQqaQwmBAV0jNGjauVZLLAVnyQYA3PYGelEW2XBOWhTsZYJ2rlUuNcaZyrDMha8DxxcvwtshNVur5vZmcBwiYq_eXwrS6HH8Xp4OiTfp_B65XONS6s8LfEtG7azXWfC_TqmICIDF5dI4OxEuargmawHXV83XD0h8EeXp7-m9gzuJXwQQHJ9hy2FrPOvcDQZ1G_jFb-G2x6AWU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_B9gA88I3I-JiRpr2lyxLHH49TxShsLTBtYrAHy3FsVq1Np7YBtL-es5N2G2gS4imSc1YS-8535_z8O4ANK0rGEiNiwVgR01xmsRRoeNzl2hh0CYb7g8L9Aesd0Q_H-XGLqvRnYRp-iOWGm7eMsF57A_cb0luXrKG41nc4pbdhlTLMUnxAdHBJHYXJV9rAFzPUBMGbA7O-61bb8ZonWvWD-utamHk1WA3eZvcBnCzeswGZnHXqedExF39QOP7fhzyE-20QSnYarXkEt2z1GO5doSZ8Al_7w2o4rsfE1XZEzn0tNVuSsqlfT2YT7cXIxJG6Gmu_VhMddJn8sKcBaUdQo0fDCy_1E_N-8n0awGXz2VM42n172O3FbRmG2GTovGPmtJXCCWeTTOalB1pLY41wRUGp1IYzrjmXLk3cdmijqWFFbnKRGQy3ePYMVqpJZZ8DEVJwjTlRIhylmbaFFFQk2IoP4rRkEWwupkSZlqPcl8oYqYZdOVU4VgrHKgKyFDxvaDn-FtkMc7q8r6dnHsXGc_Vl8E6lvU_8W_fgs9qL4M1i0hXalv9hois7qWdqm3F07JiD8AjWb5DBcAlTVp5FsBEm-abXUR-7O3hZ-zexdbjTO-zvq_33g70XcLeBC3lg20tYmU9r-wojoXnxOqj8b4D7BYY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJiF44BsRvmakaW_pssSxncepoxTGypiYGPBgOY4N1dq0ahtA--s522m3gSYhniI5Zzmx73x3yc-_A9g0omIs0SIWjJUxzYssLgQaHre50hpdgubuoPDBgPWP6duT_KRFVbqzMIEfYvXBzVmG36-dgZtpZbfPWUNxr-9wSq_DOg4hHJxv7-icOgqTrzTAFzPUBMHDgVnXdbvteMkTrbtJ_XUpzLwYrHpv07sDX5fPGUAmp51mUXb02R8Ujv_3InfhdhuEkt2gNffgmqnvw60L1IQP4PPBsB6OmzGxjRmRqaulZipShfr1ZD5RToxMLGnqsXJ7NVFel8kP890j7Qhq9Gh45qR-Yt5Pvs08uGwxfwjHvVcfu_24LcMQ6wydd8ysMoWwwpokK_LKAa0LbbSwZUlpoTRnXHFe2DSxO76NppqVuc5FpjHc4tkjWKsntXkMRBSCK8yJEmEpzZQpC0FFgq04EKcVi2BruSRStxzlrlTGSAZ25VTiXEmcqwjISnAaaDn-Ftnya7q6r2anDsXGc_lp8Fqm_UP-pXv0Qe5H8HK56BJty_0wUbWZNHO5wzg6dsxBeAQbV8hguIQpK88i2PSLfNXjyPfdXbw8-TexDbhxuNeT794M9p_CzYAWcri2Z7C2mDXmOQZCi_KF1_jfIk8FCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+fuel+powered+dynamic+soaring+of+unmanned+aerial+vehicles+utilizing+wind+gradients&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Zhao%2C+Yiyuan+J.&rft.au=Qi%2C+Ying+Celia&rft.date=2004-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=25&rft.issue=5&rft.spage=211&rft.epage=233&rft_id=info:doi/10.1002%2Foca.744&rft.externalDBID=10.1002%252Foca.744&rft.externalDocID=OCA744 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon |