A methodology to benchmark flexible payload architectures in a megaconstellation use case

Summary This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of satellite communications and networking Vol. 39; no. 1; pp. 29 - 46
Main Authors Vidal, Florian, Legay, Hervé, Goussetis, George, Garcia Vigueras, Maria, Tubau, Ségolène, Gayrard, Jean‐Didier
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2021
Wiley
Subjects
Online AccessGet full text
ISSN1542-0973
1542-0981
DOI10.1002/sat.1344

Cover

Abstract Summary This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed. Each benchmarked payload may be characterized by a graph relating the throughput to this parameter further denoted μ. The payload provides the same throughput trends for different scenarios of user distributions with the same μ parameter. As a consequence, the average capacity of the system may be estimated by (a) calculating the probability distribution of μ over the orbit and (b) integrating the throughput based on this payload response. It thus results in a straightforward way for benchmarking payloads directly on an estimation of the averaged capacity, accounting for the user distribution over the earth. A simulation platform has been developed to characterize the payload throughput including the implementation of a resource allocation algorithm that accounts for constraints of various payloads. Using this definition and the developed tool, we benchmark a bent‐pipe architecture, a beam hopping architecture and a hybrid beam‐steering architecture for a LEO megaconstellation use case. The methodology showcases the interest for investigating different payload architectures depending on realistic traffic scenario analysis. This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between flexibility and complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfil the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed.
AbstractList Summary This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed. Each benchmarked payload may be characterized by a graph relating the throughput to this parameter further denoted μ. The payload provides the same throughput trends for different scenarios of user distributions with the same μ parameter. As a consequence, the average capacity of the system may be estimated by (a) calculating the probability distribution of μ over the orbit and (b) integrating the throughput based on this payload response. It thus results in a straightforward way for benchmarking payloads directly on an estimation of the averaged capacity, accounting for the user distribution over the earth. A simulation platform has been developed to characterize the payload throughput including the implementation of a resource allocation algorithm that accounts for constraints of various payloads. Using this definition and the developed tool, we benchmark a bent‐pipe architecture, a beam hopping architecture and a hybrid beam‐steering architecture for a LEO megaconstellation use case. The methodology showcases the interest for investigating different payload architectures depending on realistic traffic scenario analysis. This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between flexibility and complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfil the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed.
This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed. Each benchmarked payload may be characterized by a graph relating the throughput to this parameter further denoted . The payload provides the same throughput trends for different scenarios of user distributions with the same parameter. As a consequence, the average capacity of the system may be estimated by (a) calculating the probability distribution of over the orbit and (b) integrating the throughput based on this payload response. It thus results in a straightforward way for benchmarking payloads directly on an estimation of the averaged capacity, accounting for the user distribution over the earth. A simulation platform has been developed to characterize the payload throughput including the implementation of a resource allocation algorithm that accounts for constraints of various payloads. Using this definition and the developed tool, we benchmark a bent‐pipe architecture, a beam hopping architecture and a hybrid beam‐steering architecture for a LEO megaconstellation use case. The methodology showcases the interest for investigating different payload architectures depending on realistic traffic scenario analysis.
This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non‐uniformity of user distributions is proposed. Each benchmarked payload may be characterized by a graph relating the throughput to this parameter further denoted μ. The payload provides the same throughput trends for different scenarios of user distributions with the same μ parameter. As a consequence, the average capacity of the system may be estimated by (a) calculating the probability distribution of μ over the orbit and (b) integrating the throughput based on this payload response. It thus results in a straightforward way for benchmarking payloads directly on an estimation of the averaged capacity, accounting for the user distribution over the earth. A simulation platform has been developed to characterize the payload throughput including the implementation of a resource allocation algorithm that accounts for constraints of various payloads. Using this definition and the developed tool, we benchmark a bent‐pipe architecture, a beam hopping architecture and a hybrid beam‐steering architecture for a LEO megaconstellation use case. The methodology showcases the interest for investigating different payload architectures depending on realistic traffic scenario analysis.
This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade-offs between high flexibility and low complexity. High flexibility would enable the satellite to adapt to various distributions of user terminals on the ground and fulfill the data rate demand of these users. Besides, low complexity is required to keep satellite networks competitive in the context of emerging 5G networks. To estimate the flexibility of a payload, an indicator to characterize the non-uniformity of user distributions is proposed. Each benchmarked payload may be characterized by a graph relating the throughput to this parameter further denoted mu. The payload provides the same throughput trends for different scenarios of user distributions with the same mu parameter. As a consequence, the average capacity of the system may be estimated by (a) calculating the probability distribution of mu over the orbit and (b) integrating the throughput based on this payload response. It thus results in a straightforward way for benchmarking payloads directly on an estimation of the averaged capacity, accounting for the user distribution over the earth. A simulation platform has been developed to characterize the payload throughput including the implementation of a resource allocation algorithm that accounts for constraints of various payloads. Using this definition and the developed tool, we benchmark a bent-pipe architecture, a beam hopping architecture and a hybrid beam-steering architecture for a LEO megaconstellation use case. The methodology showcases the interest for investigating different payload architectures depending on realistic traffic scenario analysis.
Author Goussetis, George
Tubau, Ségolène
Gayrard, Jean‐Didier
Garcia Vigueras, Maria
Vidal, Florian
Legay, Hervé
Author_xml – sequence: 1
  givenname: Florian
  orcidid: 0000-0001-6834-1475
  surname: Vidal
  fullname: Vidal, Florian
  email: florian.vidal@thalesaleniaspace.com
– sequence: 2
  givenname: Hervé
  surname: Legay
  fullname: Legay, Hervé
– sequence: 3
  givenname: George
  surname: Goussetis
  fullname: Goussetis, George
  organization: Heriot‐Watt University
– sequence: 4
  givenname: Maria
  surname: Garcia Vigueras
  fullname: Garcia Vigueras, Maria
  organization: INSA Rennes
– sequence: 5
  givenname: Ségolène
  surname: Tubau
  fullname: Tubau, Ségolène
– sequence: 6
  givenname: Jean‐Didier
  surname: Gayrard
  fullname: Gayrard, Jean‐Didier
BackLink https://univ-rennes.hal.science/hal-02530973$$DView record in HAL
BookMark eNp1kM1LAzEQxYMoWD_APyHgRQ9bk81-ZI9F1AoFD9aDpzDNzrap6aYmqdr_3l0rHkRPMwy_93jzjsh-61ok5IyzIWcsvQoQh1xk2R4Z8DxLE1ZJvv-zl-KQHIWw7MiC5XxAnkd0hXHhamfdfEujozNs9WIF_oU2Fj_MzCJdw9Y6qCl4vTARddx4DNS0FDrxHLRrQ0RrIRrX0k1AqiHgCTlowAY8_Z7H5On2Zno9TiYPd_fXo0miRcGzRNSQZw2mKPM047rAVIiikYAlr6QsORNMYFFUPKtKTGc15wJFLeUMGoCScXFMLne-C7Bq7U0XfascGDUeTVR_Y2ku-s_fevZ8x669e91giGrpNr7t4qk0K6RkVS5lR13sKO1dCB6bH1vOVF-y6kpWfckdOvyFahO_eogejP1LkOwE78bi9l9j9TiafvGfia2OIA
CitedBy_id crossref_primary_10_3390_s23031425
crossref_primary_10_1002_sat_1412
crossref_primary_10_1109_TAES_2023_3278253
crossref_primary_10_1109_COMST_2022_3197695
crossref_primary_10_1002_sat_1504
crossref_primary_10_1109_TNET_2023_3260166
Cites_doi 10.1109/ASMS-SPSC.2014.6934570
10.1109/TED.2009.2016128
10.1109/ASMS-SPSC.2010.5586860
10.1109/TAP.2018.2846768
10.1109/JSTSP.2016.2520912
10.23919/EuCAP.2017.7928493
10.1109/MWC.2005.1522108
10.1109/COMST.2016.2532458
10.1109/TBC.2017.2755263
10.1109/JPROC.2015.2511661
10.1109/JSTSP.2007.914876
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Attribution
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
– notice: Attribution
DBID AAYXX
CITATION
7SP
8FD
FR3
H8D
JQ2
KR7
L7M
1XC
VOOES
DOI 10.1002/sat.1344
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1542-0981
EndPage 46
ExternalDocumentID oai_HAL_hal_02530973v1
10_1002_sat_1344
SAT1344
Genre article
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  funderid: MSCA-ITN-2016-722840
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IN-
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
JQ2
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-c3614-3da54fe2e85241c6e2336f8ae71988710303e6691497e2bd113e3d88bafaa7013
IEDL.DBID DR2
ISSN 1542-0973
IngestDate Fri Sep 12 12:50:20 EDT 2025
Wed Aug 13 11:24:56 EDT 2025
Tue Jul 01 00:33:17 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Wed Jan 22 16:59:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords megaconstellation
hybrid beamforming
resource allocation
payload
multibeam
LEO
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3614-3da54fe2e85241c6e2336f8ae71988710303e6691497e2bd113e3d88bafaa7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6834-1475
0000-0002-8042-2347
OpenAccessLink https://univ-rennes.hal.science/hal-02530973
PQID 2468809588
PQPubID 1026343
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_02530973v1
proquest_journals_2468809588
crossref_primary_10_1002_sat_1344
crossref_citationtrail_10_1002_sat_1344
wiley_primary_10_1002_sat_1344_SAT1344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2021
2021-01-00
20210101
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January/February 2021
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of satellite communications and networking
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2009; 56
2010
2016; 10
2019
2018
2017
2005
2016
2016; 104
2014
2016; 18
2018; 66
2008; 2
1979; 22
2018; 64
2005; 12
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
Legay H (e_1_2_8_10_1) 2016
e_1_2_8_2_1
e_1_2_8_5_1
Brélaz D (e_1_2_8_14_1) 1979; 22
e_1_2_8_4_1
e_1_2_8_7_1
Maral G (e_1_2_8_3_1) 2005
e_1_2_8_9_1
(e_1_2_8_17_1) 2018
e_1_2_8_8_1
e_1_2_8_20_1
Portillo I (e_1_2_8_6_1) 2018
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
References_xml – volume: 66
  start-page: 4426
  issue: 9
  year: 2018
  end-page: 4436
  article-title: Analytical model and study of continuous parallel plate waveguide lens‐like multiple‐beam antennas
  publication-title: IEEE Trans Antenna Propagation
– volume: 64
  start-page: 266
  issue: 12
  year: 2018
  end-page: 280
  article-title: Radio resource management optimization of flexible satellite payloads for dvb‐s2 systems
  publication-title: IEEE Trans Broadcast
– start-page: 2409
  year: 2017
  end-page: 2412
– volume: 56
  start-page: 951
  issue: 5
  year: 2009
  end-page: 958
  article-title: Accurate characterization of TWTA distortion in multicarrier operation by means of a correlation‐based method
  publication-title: IEEE Trans Electron Devices
– volume: 2
  start-page: 57
  issue: 1
  year: 2008
  end-page: 73
  article-title: Dynamic spectrum management: complexity and duality
  publication-title: IEEE J Sel Top Signal Process
– year: 2005
– start-page: 118
  year: 2016
  end-page: 119
  article-title: Multiple beam antenna based on a parallel platewaveguide continuous delay lens beamformer
  publication-title: Proc Int Symp Antennas Propag
– volume: 22
  issue: 14
  year: 1979
  article-title: New methods to color the vertices of a graph
  publication-title: Commun ACM
– year: 2018
  article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
  publication-title: 69th International Astronautical Congress (IAC)
– start-page: 12
  year: 2018
  article-title: European electronic communications code
  publication-title: Off J Eur Union
– start-page: 2413
  year: 2017
  end-page: 2417
– volume: 12
  start-page: 72
  issue: 5
  year: 2005
  end-page: 80
  article-title: Integration of satellite and terrestrial systems in future multimedia communications
  publication-title: IEEE Wirel Commun
– volume: 104
  start-page: 623
  issue: 13
  year: 2016
  end-page: 632
  article-title: A new era in elemental digital beamforming for spaceborne communications phased arrays
  publication-title: Proc IEEE
– volume: 10
  start-page: 501
  issue: 13
  year: 2016
  end-page: 513
  article-title: Hybrid digital and analog beamforming design for large‐scale antenna arrays
  publication-title: IEEE J Sel Top Signal Process
– year: 2019
– start-page: 374
  year: 2014
  end-page: 381
– volume: 18
  start-page: 1617
  issue: 18
  year: 2016
  end-page: 1655
  article-title: Next generation 5G wireless networks: a comprehensive survey
  publication-title: IEEE Commun Surv Tutor
– year: 2010
– start-page: 12
  year: 2018
  ident: e_1_2_8_17_1
  article-title: European electronic communications code
  publication-title: Off J Eur Union
– ident: e_1_2_8_18_1
  doi: 10.1109/ASMS-SPSC.2014.6934570
– ident: e_1_2_8_20_1
  doi: 10.1109/TED.2009.2016128
– ident: e_1_2_8_7_1
  doi: 10.1109/ASMS-SPSC.2010.5586860
– volume: 22
  issue: 14
  year: 1979
  ident: e_1_2_8_14_1
  article-title: New methods to color the vertices of a graph
  publication-title: Commun ACM
– volume-title: Satellite communications systems
  year: 2005
  ident: e_1_2_8_3_1
– ident: e_1_2_8_15_1
  doi: 10.1109/TAP.2018.2846768
– ident: e_1_2_8_11_1
  doi: 10.1109/JSTSP.2016.2520912
– ident: e_1_2_8_4_1
  doi: 10.23919/EuCAP.2017.7928493
– ident: e_1_2_8_8_1
– ident: e_1_2_8_22_1
– ident: e_1_2_8_2_1
  doi: 10.1109/MWC.2005.1522108
– ident: e_1_2_8_5_1
  doi: 10.1109/COMST.2016.2532458
– ident: e_1_2_8_12_1
– ident: e_1_2_8_16_1
  doi: 10.1109/TBC.2017.2755263
– start-page: 118
  year: 2016
  ident: e_1_2_8_10_1
  article-title: Multiple beam antenna based on a parallel platewaveguide continuous delay lens beamformer
  publication-title: Proc Int Symp Antennas Propag
– ident: e_1_2_8_9_1
  doi: 10.1109/JPROC.2015.2511661
– ident: e_1_2_8_19_1
  doi: 10.1109/JSTSP.2007.914876
– year: 2018
  ident: e_1_2_8_6_1
  article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
  publication-title: 69th International Astronautical Congress (IAC)
– ident: e_1_2_8_21_1
– ident: e_1_2_8_13_1
SSID ssj0026051
Score 2.3100367
Snippet Summary This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low...
This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade‐offs between high flexibility and low complexity....
This paper proposes a methodology to benchmark satellite payload architectures and find the optimal trade-offs between high flexibility and low complexity....
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms Algorithms
Beam steering
Benchmarks
Complexity
Flexibility
hybrid beamforming
LEO
Life Sciences
megaconstellation
Methodology
multibeam
Parameters
payload
Payloads
Resource allocation
Satellite networks
Wireless networks
Title A methodology to benchmark flexible payload architectures in a megaconstellation use case
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsat.1344
https://www.proquest.com/docview/2468809588
https://univ-rennes.hal.science/hal-02530973
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9i4wIHBgNEoVTehNgp3WI7TnKMKFWF2h1oK3XiEDmOzVBLNy0ph_31vJePrkMgoZ0iJbaS-H39_PLyewAffDyPONV5vhHOk9JIsrnAQ3_pnMUttK7ykJNzNZrLL4tg0VRV0r8wNT_ENuFGllH5azJwnRWnd6ShhS77vpBEBeoLRbT5g69b5ihC6TVVquQeMdK0vLNn_LSdeC8S7V1SHeQOyNyFqlWsGR7At_Yp6xKTZX9TZn1z-weB48Ne4zk8ayAoS2qdeQGP7PoQnu4QE76Ei4TVraWrpDsrr1iG2nz5U98smSMKzWxl2TVt9nXOdr9FFOzHmmmc_B09LSJPqq0i0bNNYZnBiPkK5sPPs08jr2nC4BmBodsTuQ6ks9xGAQZ7oywXQrlI29CP0UFRlzJhlYpxpxVanuU-pVXzKMq00zpEgPka9tdXa_sGGMZClecqNFYGUmQmjkIduyAPVWwRdfIOnLQCSU3DUE6NMlZpza3MU1yslBarA0fbkdc1K8dfxhyjTLeXiUZ7lIxTOoc4T5BS_PI70G1FnjbGW6RcKvRqcRBFHfhYye6fN0mnyYyOb_934Dt4wqkqpkridGG_vNnY9whryqwHj5PBZDztVYr8GwhD9HE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-i5bBxYF8gCt3mTdM4pSy24yTaqZpA3VY4bEXqJCTLceyBKC0iKYf99XsvaboygTTtFMmxlcTv6-fnl58B3oXYjjjVB6EVPpDSSrK5KEB_6b3DJbSp8pDHJ2pwKr-Mo_EafGz-han5IZYJN7KMyl-TgVNC-uAPa2hhyl4opGzBerU9R4jo25I7inB6TZYqeUCcNA3z7Ad-0Iy8E4ta51QJuQIzV8FqFW2OnsBZ8551kcllb15mPfvrLwrH__yQp7C5QKGsX6vNM1hz0-ewscJN-AJ-9Fl9unSVd2fljGWo0OdX5uaSeWLRzCaOXdN63-RsdTuiYBdTZnDwT3S2CD6pvIqkz-aFYxaD5hacHh2OPg2CxTkMgRUYvQORm0h6x10SYby3ynEhlE-Mi8MUfRQdVCacUikutmLHszykzGqeJJnxxsSIMbehPZ1N3Q4wDIcqz1VsnYykyGyaxCb1UR6r1CHw5B3YbySi7YKknM7KmOiaXplrnCxNk9WBN8ue1zUxxz193qJQl7eJSXvQH2pqQ6gnSCtuww50G5nrhf0WmkuFji2NkqQD7yvhPfgQ_b0_ouvuv3Z8DY8Go-OhHn4--boHjzkVyVQ5nS60y5u5e4kop8xeVdr8G5xs9vs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkFA5lEdBbAvUoKo9ZSG24yTHFbDa8lLVgkTVg-U4NiDosmKzHPj1zOSx3aIioZ4iJbaSeF6fJ5NvAD6FeB5xqg9CK3wgpZVkc1GA_tJ7h1toU-YhT05V71weXkQXdVUl_QtT8UOME25kGaW_JgMf5H7nD2no0BTtUEg5DbNSYZQkQPR9TB1FML3iSpU8IEqahnh2l-80M_8KRdNXVAg5gTInsWoZbLoL8Kt5zKrG5KY9KrK2fXzG4Ph_77EIb2sMyjqV0izBlOsvw_wEM-E7-NlhVW_pMuvOijuWoTpf_Tb3N8wTh2Z269iAdvsmZ5MfI4bsus8MTr5EV4vQk4qrSPZsNHTMYshcgfPuwdleL6i7MARWYOwORG4i6R13SYTR3irHhVA-MS4OU_RQ1KZMOKVS3GrFjmd5SHnVPEky442JEWGuwkz_ru_WgGEwVHmuYutkJEVm0yQ2qY_yWKUOYSdvwZdGINrWFOXUKeNWV-TKXONiaVqsFmyNRw4qWo5_jNlGmY4vE492r3Os6RwCPUFK8RC2YL0Rua6td6i5VOjW0ihJWvC5lN2LN9E_Omd0fP_agR9h7tt-Vx9_PT36AG84VciUCZ11mCnuR24DIU6RbZa6_ATD1fWq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+methodology+to+benchmark+flexible+payload+architectures+in+a+megaconstellation+use+case&rft.jtitle=International+journal+of+satellite+communications+and+networking&rft.au=Vidal%2C+Florian&rft.au=Legay%2C+Herv%C3%A9&rft.au=Goussetis%2C+George&rft.au=Garcia+Vigueras%2C+Maria&rft.date=2021-01-01&rft.issn=1542-0973&rft.eissn=1542-0981&rft.volume=39&rft.issue=1&rft.spage=29&rft.epage=46&rft_id=info:doi/10.1002%2Fsat.1344&rft.externalDBID=10.1002%252Fsat.1344&rft.externalDocID=SAT1344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-0973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-0973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-0973&client=summon