Evapotranspiration trends and variability in southeastern South America: The roles of land‐cover change and precipitation variability
Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land‐cover changes (LCCs) since the middle of the past century. The influence of local LCC and precipitation as drivers of regional evapotranspiration (ET) l...
Saved in:
Published in | International journal of climatology Vol. 42; no. 4; pp. 2019 - 2038 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.03.2022
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0899-8418 1097-0088 |
DOI | 10.1002/joc.7350 |
Cover
Abstract | Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land‐cover changes (LCCs) since the middle of the past century. The influence of local LCC and precipitation as drivers of regional evapotranspiration (ET) long‐term trends and variability remains largely unknown in the region. Here, ensembles of stand‐alone dynamic global vegetation models (DGVMs) with different atmospheric forcings are used to disentangle the influence of those two drivers on austral summer ET from 1950 to 2010. This paper examines the influence of both the El Niño‐Southern Oscillation (ENSO) and the dipole‐like first‐mode of southeastern South American precipitation variability (EOF1) on regional ET. We found that in the lower La Plata Basin, ET was driven by precipitation variability and showed a positive summer trend. Moreover, the region showed marked seasonal anomalies during El Niño and La Niña summers but mainly during EOF1 phases. On the contrary, in the upper La Plata Basin, LCCs forced the negative summer ET trend and particularly reduced the summer anomalies of the late 1990s, a period of ENSO and EOF1‐positive phases. In the South Atlantic Convergence Zone region, the high ET uncertainty across ensemble members impeded finding robust results, which highlights the importance of using multiple DGVMs and atmospheric forcings instead of relying on single model/forcing results.
The South Atlantic Convergence Zone has considerable uncertainty in evapotranspiration (ET) interannual variability and no detectable summer trends despite major land‐cover change (LCC) since 1950. In the upper La Plata Basin, extreme LCC (27% of natural vegetation left by 2010) caused a negative summer ET trend. During summer, ET in the lower La Plata Basin shows a positive trend attributable to precipitation, and variability is governed by El Niño‐Southern Oscillation and the first mode of southeastern South American precipitation variability. |
---|---|
AbstractList | Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land‐cover changes (LCCs) since the middle of the past century. The influence of local LCC and precipitation as drivers of regional evapotranspiration (ET) long‐term trends and variability remains largely unknown in the region. Here, ensembles of stand‐alone dynamic global vegetation models (DGVMs) with different atmospheric forcings are used to disentangle the influence of those two drivers on austral summer ET from 1950 to 2010. This paper examines the influence of both the El Niño‐Southern Oscillation (ENSO) and the dipole‐like first‐mode of southeastern South American precipitation variability (EOF1) on regional ET. We found that in the lower La Plata Basin, ET was driven by precipitation variability and showed a positive summer trend. Moreover, the region showed marked seasonal anomalies during El Niño and La Niña summers but mainly during EOF1 phases. On the contrary, in the upper La Plata Basin, LCCs forced the negative summer ET trend and particularly reduced the summer anomalies of the late 1990s, a period of ENSO and EOF1‐positive phases. In the South Atlantic Convergence Zone region, the high ET uncertainty across ensemble members impeded finding robust results, which highlights the importance of using multiple DGVMs and atmospheric forcings instead of relying on single model/forcing results.
The South Atlantic Convergence Zone has considerable uncertainty in evapotranspiration (ET) interannual variability and no detectable summer trends despite major land‐cover change (LCC) since 1950. In the upper La Plata Basin, extreme LCC (27% of natural vegetation left by 2010) caused a negative summer ET trend. During summer, ET in the lower La Plata Basin shows a positive trend attributable to precipitation, and variability is governed by El Niño‐Southern Oscillation and the first mode of southeastern South American precipitation variability. Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land-cover changes (LCCs) since the middle of the past century. The influence of local LCC and precipitation as drivers of regional evapotranspiration (ET) long-term trends and variability remains largely unknown in the region. Here, ensembles of stand-alone dynamic global vegetation models (DGVMs) with different atmospheric forcings are used to disentangle the influence of those two drivers on austral summer ET from 1950 to 2010. This paper examines the influence of both the El Niño-Southern Oscillation (ENSO) and the dipole-like first-mode of southeastern South American precipitation variability (EOF1) on regional ET. We found that in the lower La Plata Basin, ET was driven by precipitation variability and showed a positive summer trend. Moreover, the region showed marked seasonal anomalies during El Niño and La Niña summers but mainly during EOF1 phases. On the contrary, in the upper La Plata Basin, LCCs forced the negative summer ET trend and particularly reduced the summer anomalies of the late 1990s, a period of ENSO and EOF1-positive phases. In the South Atlantic Convergence Zone region, the high ET uncertainty across ensemble members impeded finding robust results, which highlights the importance of using multiple DGVMs and atmospheric forcings instead of relying on single model/forcing results. |
Author | Diaz, Leandro B. Papastefanou, Phillip Randow, Celso Thonicke, Kirsten Castro, Aline Sörensson, Anna A. Sakschewski, Boris Vera, Carolina Ruscica, Romina C. Rezende, Luiz F. C. Viovy, Nicolas Rammig, Anja |
Author_xml | – sequence: 1 givenname: Romina C. orcidid: 0000-0003-0127-9579 surname: Ruscica fullname: Ruscica, Romina C. email: ruscica@cima.fcen.uba.ar organization: CNRS‐IRD‐CONICET‐UBA – sequence: 2 givenname: Anna A. orcidid: 0000-0001-5093-9655 surname: Sörensson fullname: Sörensson, Anna A. organization: CNRS‐IRD‐CONICET‐UBA – sequence: 3 givenname: Leandro B. orcidid: 0000-0002-9237-6704 surname: Diaz fullname: Diaz, Leandro B. organization: CNRS‐IRD‐CONICET‐UBA – sequence: 4 givenname: Carolina orcidid: 0000-0003-4032-5232 surname: Vera fullname: Vera, Carolina organization: CNRS‐IRD‐CONICET‐UBA – sequence: 5 givenname: Aline orcidid: 0000-0003-0318-6536 surname: Castro fullname: Castro, Aline organization: National Institute for Space Research (INPE) – sequence: 6 givenname: Phillip orcidid: 0000-0002-4613-2565 surname: Papastefanou fullname: Papastefanou, Phillip organization: Technical University of Munich – sequence: 7 givenname: Anja orcidid: 0000-0001-5425-8718 surname: Rammig fullname: Rammig, Anja organization: Technical University of Munich – sequence: 8 givenname: Luiz F. C. orcidid: 0000-0003-2569-9797 surname: Rezende fullname: Rezende, Luiz F. C. organization: National Institute for Space Research (INPE) – sequence: 9 givenname: Boris surname: Sakschewski fullname: Sakschewski, Boris organization: Leibniz Association – sequence: 10 givenname: Kirsten orcidid: 0000-0001-5283-4937 surname: Thonicke fullname: Thonicke, Kirsten organization: Leibniz Association – sequence: 11 givenname: Nicolas orcidid: 0000-0002-9197-6417 surname: Viovy fullname: Viovy, Nicolas organization: Université Paris‐Saclay, CNRS, CEA, UVSQ – sequence: 12 givenname: Celso orcidid: 0000-0003-1045-4316 surname: Randow fullname: Randow, Celso organization: National Institute for Space Research (INPE) |
BackLink | https://hal.science/hal-03337111$$DView record in HAL |
BookMark | eNp1kc1uEzEURi1UJNKCxCNYYgOLCdfjiX_YRVGhoEhdtKytG9cmjqb2YE-CsmPHlmfkSZjpVKiq6Mqydb5zr_ydkpOYoiPkNYM5A6jf75KdS76AZ2TGQMsKQKkTMgOldaUapl6Q01J2AKA1EzPy6_yAXeozxtKFjH1IkfbZxZtCMd7QA-aAm9CG_khDpCXt-63D0rsc6dV4octbl4PFD_R662hOrSs0edoO4T8_f9t0cJnaLcZv7s7XZWdDF_pp0AP7S_LcY1vcq_vzjHz9eH69uqjWl58-r5brynLBoNrUyi-85iCFaPxGLrBWwqMWglnLrd_YGlijvJWSeaskonCNHSCt6oZJzc_Iu8m7xdZ0OdxiPpqEwVws12Z8A865ZIwd2MC-mdgup-97V3qzS_sch_VMLRrGh6kwGt9OlM2plOz8Py0DM1YypKwZKxnQ-SPU3n_FUEBo_xeopsCP0Lrjk2Lz5XJ1x_8FNfqhJQ |
CitedBy_id | crossref_primary_10_1002_joc_8523 crossref_primary_10_1080_02626667_2023_2192874 crossref_primary_10_1007_s11027_024_10160_2 crossref_primary_10_1002_joc_8233 crossref_primary_10_5194_hess_26_6457_2022 crossref_primary_10_1016_j_rse_2024_114489 crossref_primary_10_1029_2021JD034608 crossref_primary_10_1016_j_atmosres_2023_106840 crossref_primary_10_1016_j_atmosres_2024_107613 |
Cites_doi | 10.1088/1748-9326/aa6b3f 10.1016/j.gloplacha.2015.02.009 10.1007/s00484-015-1087-6 10.1002/joc.3633 10.1007/978-3-642-04898-2_420 10.1007/s00382-019-04668-6 10.1029/2011RG000373 10.5194/bg-18-4091-2021 10.1002/joc.4153 10.1038/nature09396 10.1175/2008JCLI2345.1 10.1038/s41612-018-0053-5 10.1175/JCLI-D-16-0287.1 10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2 10.1002/grl.50206 10.1002/2017WR021682 10.1002/joc.2346 10.1038/s41598-019-51857-8 10.1175/JCLI-D-18-0677.1 10.1111/j.1654-1103.2010.01218.x 10.1175/JHM-D-14-0040.1 10.1016/j.agee.2011.01.008 10.1002/joc.4810 10.1029/2010JD014545 10.1038/srep19124 10.3390/cli2040264 10.1016/j.palaeo.2007.10.032 10.1111/j.1600-0870.2010.00468.x 10.1038/s43017-020-0040-3 10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2 10.1111/nyas.13912 10.1080/07900629849376 10.1016/j.ejrh.2019.100593 10.1175/JCLI3896.1 10.1175/JCLI-D-14-00046.1 10.1002/joc.3736 10.1038/nclimate2068 10.1002/joc.5031 10.1002/asl2.552 10.1175/JCLI-D-13-00463.1 10.1175/JCLI-D-16-0836.1 10.1038/nclimate2056 10.1175/2007JCLI1684.1 10.3354/cr01373 10.1002/2014WR015638 10.1007/s00382-003-0368-7 10.1029/2003GB002199 10.1016/j.jag.2017.08.016 10.1175/JCLI3790.1 10.1007/978-3-540-32730-1_15 10.1002/asl.635 10.1175/2011JHM1369.1 10.1029/2008GL033707 10.1002/joc.4274 10.1038/nclimate1632 10.1007/s00477-010-0420-1 10.1175/JCLI-D-12-00508.1 10.3389/fpls.2020.00373 10.1175/BAMS-85-3-381 10.1007/s00382-021-05684-1 10.1002/joc.2228 10.1002/joc.2254 10.1175/JHM-D-11-021.1 10.5194/gmd-10-1903-2017 10.5194/bg-11-2027-2014 10.1038/nclimate2430 10.5194/hess-21-1455-2017 10.1029/2008GL036584 10.1007/s00704-016-1800-3 10.1002/wcc.144 10.5194/gmd-11-1343-2018 10.1029/2010GL046230 10.1029/2002JD003296 10.5194/gmd-13-5425-2020 |
ContentType | Journal Article |
Copyright | 2021 Royal Meteorological Society 2022 Royal Meteorological Society Attribution |
Copyright_xml | – notice: 2021 Royal Meteorological Society – notice: 2022 Royal Meteorological Society – notice: Attribution |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 1XC VOOES |
DOI | 10.1002/joc.7350 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1097-0088 |
EndPage | 2038 |
ExternalDocumentID | oai_HAL_hal_03337111v1 10_1002_joc_7350 JOC7350 |
Genre | article |
GeographicLocations | South America |
GeographicLocations_xml | – name: South America |
GrantInformation_xml | – fundername: SÃO PAULO STATE RESEARCH FOUNDATION funderid: 2015/50687‐8; 2017/03048‐5 – fundername: TGCC‐GENCI funderid: 2018‐6328 – fundername: Fondo para la Investigación Científica y Tecnológica funderid: PICT 2017‐1406; PICT 2018‐02511 – fundername: Universidad de Buenos Aires funderid: UBACyT20020170100428BA – fundername: CLIMAX Project/Belmont Forum funderid: BMBF FKZ 01LP1610A; Belmont Forum/ANR‐15‐JCL/‐0002‐01; FAPESP‐BELMONT‐Process 2015/50687‐8 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 301084/2020‐3 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G .Y3 1XC 31~ AANHP AASGY ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF DDYGU EJD FEDTE HF~ HVGLF LW6 M62 PALCI RIWAO RJQFR SAMSI VOH VOOES XJT |
ID | FETCH-LOGICAL-c3610-b28f5f9307664fb75a286fa9661cc3cfbc20148fc771fc87aa6e4ca2898241793 |
IEDL.DBID | DR2 |
ISSN | 0899-8418 |
IngestDate | Fri Sep 12 12:39:37 EDT 2025 Sat Jul 26 00:48:32 EDT 2025 Tue Jul 01 01:20:51 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Wed Jan 22 16:25:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | South America climate Land-cover changes Precipitation variability Evapotranspiration Vegetation models Dipole evolution Trends analysis |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3610-b28f5f9307664fb75a286fa9661cc3cfbc20148fc771fc87aa6e4ca2898241793 |
Notes | Funding information CLIMAX Project/Belmont Forum, Grant/Award Numbers: BMBF FKZ 01LP1610A, Belmont Forum/ANR‐15‐JCL/‐0002‐01, FAPESP‐BELMONT‐Process 2015/50687‐8; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Number: 301084/2020‐3; Fondo para la Investigación Científica y Tecnológica, Grant/Award Numbers: PICT 2017‐1406, PICT 2018‐02511; SÃO PAULO STATE RESEARCH FOUNDATION, Grant/Award Numbers: 2015/50687‐8, 2017/03048‐5; TGCC‐GENCI, Grant/Award Number: 2018‐6328; Universidad de Buenos Aires, Grant/Award Number: UBACyT20020170100428BA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0318-6536 0000-0003-0127-9579 0000-0003-2569-9797 0000-0003-1045-4316 0000-0001-5283-4937 0000-0001-5093-9655 0000-0001-5425-8718 0000-0002-4613-2565 0000-0003-4032-5232 0000-0002-9237-6704 0000-0002-9197-6417 |
OpenAccessLink | https://hal.science/hal-03337111 |
PQID | 2641396609 |
PQPubID | 996368 |
PageCount | 20 |
ParticipantIDs | hal_primary_oai_HAL_hal_03337111v1 proquest_journals_2641396609 crossref_primary_10_1002_joc_7350 crossref_citationtrail_10_1002_joc_7350 wiley_primary_10_1002_joc_7350_JOC7350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2022 |
PublicationDateYYYYMMDD | 2022-03-30 |
PublicationDate_xml | – month: 03 year: 2022 text: 30 March 2022 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of climatology |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2011; 116 2015; 35 2004; 22 2002; 15 2013; 3 2013; 26 2019; 53 2009; 281 2010; 467 2014; 27 2003; 16 2008; 35 2020; 13 2011; 12 2016a; 29 2020; 11 2012; 13 2018; 1436 2010; 21 2017; 30 2014; 4 2020; 1 2014; 2 2017; 37 2018; 1 2019; 22 2011; 63 2011; 25 2007; 20 2014; 50 2014; 11 1998; 14 2017; 129 2009; 22 2004; 85 2019; 9 2010; 31 2015; 16 2015; 5 2011; 2 2012 2011 2020; 41 2019; 32 2013; 40 2017; 21 2007 2006; 19 2015; 128 2011; 38 2016; 17 2018; 64 2016c; 6 2012; 32 1999 2012; 50 2009; 36 2003; 108 2015; 28 2005; 19 2012; 154 2021; 56 2013; 33 2015; 60 2021; 18 2017; 10 2017; 12 2019 2014 2018; 11 2018; 54 2014; 34 2016; 68 e_1_2_7_5_1 Grimm A.M. (e_1_2_7_22_1) 2020 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hollander M. (e_1_2_7_27_1) 1999 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Giles J.A. (e_1_2_7_17_1) 2020; 41 |
References_xml | – year: 2011 – volume: 467 start-page: 951 issue: 7318 year: 2010 end-page: 954 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – volume: 32 start-page: 1 issue: 1 year: 2012 end-page: 21 article-title: Recent developments on the South American monsoon system publication-title: International Journal of Climatology – volume: 19 start-page: 3088 issue: 13 year: 2006 end-page: 3111 article-title: Development of a 50‐year high‐resolution global dataset of meteorological forcings for land surface modeling publication-title: Journal of Climate – volume: 35 year: 2008 article-title: Land use impact on the Uruguay River discharge publication-title: Geophysical Research Letters – volume: 40 start-page: 972 year: 2013 end-page: 977 article-title: Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion publication-title: Geophysical Research Letters – volume: 56 start-page: 4027 year: 2021 end-page: 4049 article-title: Hydroclimatic trends during 1950–2018 over global land publication-title: Climate Dynamics – volume: 10 start-page: 1903 issue: 5 year: 2017 end-page: 1925 article-title: GLEAM v3: satellite‐based land evaporation and root‐zone soil moisture publication-title: Geoscientific Model Development – volume: 21 start-page: 1172 year: 2010 end-page: 1178 article-title: The concept of potential natural vegetation: an epitaph? publication-title: Journal of Vegetation Science – volume: 22 start-page: 123 issue: 2–3 year: 2004 end-page: 138 article-title: How do La Niña events disturb the summer monsoon system in Brazil? publication-title: Climate Dynamics – volume: 21 start-page: 1455 issue: 3 year: 2017 end-page: 1475 article-title: Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi‐model analysis with a new set of land‐cover change scenarios publication-title: Hydrology and Earth System Sciences – volume: 116 year: 2011 article-title: Global intercomparison of 12 land surface heat flux estimates publication-title: Journal of Geophysical Research – start-page: 175 year: 2007 end-page: 192 – volume: 34 start-page: 929 year: 2014 end-page: 953 article-title: Land‐cover changes and their biogeophysical effects on climate publication-title: International Journal of Climatology – volume: 2 start-page: 828 year: 2011 end-page: 850 article-title: Land use/land‐cover changes and climate: modeling analysis and observational evidence publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 85 start-page: 381 issue: 3 year: 2004 end-page: 394 article-title: The Global Land Data Assimilation System publication-title: Bulletin of the American Meteorological Society – volume: 17 start-page: 141 year: 2016 end-page: 147 article-title: Land surface‐atmosphere interaction in future South American climate using a multi‐model ensemble publication-title: Atmospheric Science Letters – volume: 38 issue: 6 year: 2011 article-title: Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations publication-title: Geophysical Research Letters – volume: 12 issue: 5 year: 2017 article-title: Biophysical effects on temperature and precipitation due to land‐cover change publication-title: Environmental Research Letters – volume: 54 start-page: 2891 year: 2018 end-page: 2908 article-title: Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America publication-title: Water Resources Research – volume: 22 start-page: 2257 issue: 9 year: 2009 end-page: 2275 article-title: Interannual variability and seasonal evolution of summer monsoon rainfall in South America publication-title: Journal of Climate – volume: 16 start-page: 1449 issue: 4 year: 2015 end-page: 1455 article-title: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets publication-title: Journal of Hydrometeorology – year: 2014 – volume: 5 start-page: 27 year: 2015 end-page: 36 article-title: Effects of tropical deforestation on climate and agriculture publication-title: Nature Climate Change – volume: 129 start-page: 521 issue: 1‐2 year: 2017 end-page: 538 article-title: Improving precipitation simulation from updated surface characteristics in South America publication-title: Theoretical and Applied Climatology – volume: 50 year: 2012 article-title: A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability publication-title: Reviews of Geophysics – volume: 20 start-page: 5929 issue: 24 year: 2007 end-page: 5945 article-title: Connection between spring conditions and peak summer monsoon rainfall in South America: role of soil moisture, surface temperature, and topography in eastern Brazil publication-title: Journal of Climate – volume: 35 start-page: 4151 year: 2015 end-page: 4166 article-title: An estimation of the land‐atmosphere coupling strength in South America using the global land data assimilation system publication-title: International Journal of Climatology – volume: 19 start-page: 4977 issue: 20 year: 2006 end-page: 5000 article-title: Toward a unified view of the American monsoon systems publication-title: Journal of Climate – volume: 29 start-page: 8515 issue: 23 year: 2016a end-page: 8534 article-title: Detection, attribution, and projection of regional rainfall changes on (multi‐) decadal time scales: a focus on southeastern South America publication-title: Journal of Climate – volume: 33 start-page: 2923 year: 2013 end-page: 2928 article-title: Twentieth‐century summer precipitation in south eastern South America: comparison of gridded and station data publication-title: International Journal of Climatology – volume: 16 start-page: 263 issue: 2 year: 2003 end-page: 280 article-title: The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences publication-title: Journal of Climate – volume: 12 start-page: 823 issue: 5 year: 2011 end-page: 848 article-title: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century publication-title: Journal of Hydrometeorology – volume: 14 start-page: 157 issue: 2 year: 1998 end-page: 173 article-title: Environmental issues in the La Plata Basin publication-title: International Journal of Water Resources Development – volume: 28 start-page: 755 issue: 2 year: 2015 end-page: 775 article-title: Interdecadal variability of the South American precipitation in the monsoon season publication-title: Journal of Climate – volume: 3 start-page: 59 year: 2013 end-page: 62 article-title: Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration publication-title: Nature Climate Change – volume: 35 start-page: 3172 year: 2015 end-page: 3177 article-title: Anthropogenic influence on summer precipitation trends over South America in CMIP5 models publication-title: International Journal of Climatology – volume: 6 issue: 1 year: 2016c article-title: Multi‐decadal trends in global terrestrial evapotranspiration and its components publication-title: Scientific Reports – volume: 31 start-page: 2234 year: 2010 end-page: 2248 article-title: Attribution of the river flow growth in the Plata Basin publication-title: International Journal of Climatology – year: 2019 – volume: 27 start-page: 6754 issue: 17 year: 2014 end-page: 6778 article-title: Regional model simulations of the 2008 drought in southern South America using a consistent set of land surface properties publication-title: Journal of Climate – volume: 108 start-page: 8851 year: 2003 article-title: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model publication-title: Journal of Geophysical Research – volume: 1 start-page: 215 year: 2020 end-page: 231 article-title: Climate impacts of the El Niño–Southern Oscillation on South America publication-title: Nature Reviews Earth & Environment – volume: 2 start-page: 264 year: 2014 end-page: 278 article-title: Trends and spatial patterns of drought affected area in southern South America publication-title: Climate – volume: 4 start-page: 27 issue: 1 year: 2014 end-page: 35 article-title: Pervasive transition of the Brazilian land‐use system publication-title: Nature Climate Change – volume: 64 start-page: 96 year: 2018 end-page: 103 article-title: Land‐atmosphere interaction patterns in southeastern South America using satellite products and climate models publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 32 start-page: 4473 year: 2019 end-page: 4490 article-title: Isolating the observed influence of vegetation variability on the climate of La Plata River Basin publication-title: Journal of Climate – volume: 18 start-page: 4091 issue: 13 year: 2021 end-page: 4116 article-title: Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests publication-title: Biogeosciences – volume: 16 start-page: 267 year: 2015 end-page: 272 article-title: Pathways between soil moisture and precipitation in southeastern South America publication-title: Atmospheric Science Letters – volume: 11 start-page: 2027 year: 2014 end-page: 2054 article-title: Implications of incorporating N cycling and N limitations on primary production in an individual‐based dynamic vegetation model publication-title: Biogeosciences – volume: 37 start-page: 1774 year: 2017 end-page: 1793 article-title: Low‐frequency variability and trends in centennial precipitation stations in southern South America publication-title: International Journal of Climatology – volume: 37 start-page: 681 year: 2017 end-page: 695 article-title: Austral summer precipitation interannual variability and trends over southeastern South America in CMIP5 models publication-title: International Journal of Climatology – volume: 281 start-page: 180 issue: 3‐4 year: 2009 end-page: 195 article-title: Present‐day South American climate publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 25 start-page: 537 issue: 4 year: 2011 end-page: 554 article-title: Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change publication-title: Stochastic Environmental Research and Risk Assessment – volume: 30 start-page: 8179 issue: 20 year: 2017 end-page: 8205 article-title: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and Intercomparisons publication-title: Journal of Climate – volume: 11 start-page: 373 year: 2020 article-title: A dynamic model for strategies and dynamics of plant water‐potential regulation under drought conditions publication-title: Frontiers in Plant Science – volume: 60 start-page: 945 issue: 7 year: 2015 end-page: 955 article-title: Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO publication-title: International Journal of Biometeorology – volume: 41 start-page: 1 year: 2020 end-page: 11 article-title: Warm‐season precipitation drivers in northeastern Argentina: diurnal cycle of the atmospheric moisture balance and land–atmosphere coupling publication-title: International Journal of Climatology – volume: 13 start-page: 84 issue: 1 year: 2012 end-page: 102 article-title: Land‐cover change effects on the climate of the La Plata Basin publication-title: Journal of Hydrometeorology – volume: 53 start-page: 2919 issue: 5‐6 year: 2019 end-page: 2930 article-title: Temperature variability and soil–atmosphere interaction in South America simulated by two regional climate models publication-title: Climate Dynamics – volume: 11 start-page: 1343 issue: 4 year: 2018 end-page: 1375 article-title: LPJmL4 – a dynamic global vegetation model with managed land – part 1: model description publication-title: Geoscientific Model Development – year: 2012 – volume: 9 issue: 1 year: 2019 article-title: A recent systematic increase in vapor pressure deficit over tropical South America publication-title: Scientific Reports – start-page: 1 year: 1999 end-page: 816 – volume: 1 start-page: 43 issue: 1 year: 2018 article-title: Terrestrial evaporation response to modes of climate variability publication-title: npj Climate and Atmospheric Science – volume: 128 start-page: 103 year: 2015 end-page: 119 article-title: Land use and land‐cover change impacts on the regional climate of non‐Amazonian South America: a review publication-title: Global and Planetary Change – volume: 36 year: 2009 article-title: A regional perspective on trends in continental evaporation publication-title: Geophysical Research Letters – volume: 4 start-page: 122 issue: 2 year: 2014 end-page: 126 article-title: El Niño–La Niña cycle and recent trends in continental evaporation publication-title: Nature Climate Change – volume: 63 start-page: 56 year: 2011 end-page: 68 article-title: Summer soil—precipitation coupling in South America publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 13 start-page: 5425 issue: 11 year: 2020 end-page: 5464 article-title: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 publication-title: Geoscience Model Development – volume: 68 start-page: 231 issue: 2‐3 year: 2016 end-page: 241 article-title: Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change publication-title: Climate Research – volume: 22 year: 2019 article-title: A new global database of meteorological drought events from 1951 to 2016 publication-title: Journal of Hydrology: Regional Studies – volume: 50 start-page: 7505 year: 2014 end-page: 7514 article-title: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA‐Interim reanalysis data publication-title: Water Resources Research – volume: 15 start-page: 3394 issue: 23 year: 2002 end-page: 3410 article-title: Midsummer low‐level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic publication-title: Journal of Climate – volume: 154 start-page: 2 year: 2012 end-page: 11 article-title: The hydrologic consequences of land‐cover change in central Argentina publication-title: Agriculture, Ecosystems & Environment – volume: 32 start-page: 1206 year: 2012 end-page: 1225 article-title: Modelling the effects of land‐use/land‐cover changes on the near‐surface atmosphere in southern South America publication-title: International Journal of Climatology – volume: 26 start-page: 9384 issue: 23 year: 2013 end-page: 9392 article-title: A long‐term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions publication-title: Journal of Climate – volume: 11 start-page: 49 year: 2020 end-page: 66 – volume: 19 year: 2005 article-title: A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system publication-title: Global Biogeochemical Cycles – volume: 1436 start-page: 19 year: 2018 end-page: 35 article-title: Land‐atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges publication-title: Annals of the New York Academy of Sciences – ident: e_1_2_7_53_1 doi: 10.1088/1748-9326/aa6b3f – ident: e_1_2_7_62_1 doi: 10.1016/j.gloplacha.2015.02.009 – ident: e_1_2_7_34_1 – ident: e_1_2_7_56_1 doi: 10.1007/s00484-015-1087-6 – ident: e_1_2_7_18_1 doi: 10.1002/joc.3633 – ident: e_1_2_7_16_1 doi: 10.1007/978-3-642-04898-2_420 – ident: e_1_2_7_44_1 doi: 10.1007/s00382-019-04668-6 – ident: e_1_2_7_78_1 doi: 10.1029/2011RG000373 – ident: e_1_2_7_61_1 doi: 10.5194/bg-18-4091-2021 – ident: e_1_2_7_76_1 doi: 10.1002/joc.4153 – ident: e_1_2_7_33_1 doi: 10.1038/nature09396 – ident: e_1_2_7_25_1 doi: 10.1175/2008JCLI2345.1 – ident: e_1_2_7_43_1 doi: 10.1038/s41612-018-0053-5 – ident: e_1_2_7_74_1 – ident: e_1_2_7_81_1 doi: 10.1175/JCLI-D-16-0287.1 – ident: e_1_2_7_82_1 – ident: e_1_2_7_19_1 doi: 10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2 – ident: e_1_2_7_15_1 doi: 10.1002/grl.50206 – ident: e_1_2_7_69_1 doi: 10.1002/2017WR021682 – ident: e_1_2_7_4_1 doi: 10.1002/joc.2346 – ident: e_1_2_7_3_1 doi: 10.1038/s41598-019-51857-8 – ident: e_1_2_7_7_1 doi: 10.1175/JCLI-D-18-0677.1 – ident: e_1_2_7_6_1 doi: 10.1111/j.1654-1103.2010.01218.x – ident: e_1_2_7_2_1 doi: 10.1175/JHM-D-14-0040.1 – ident: e_1_2_7_50_1 doi: 10.1016/j.agee.2011.01.008 – ident: e_1_2_7_64_1 doi: 10.1002/joc.4810 – ident: e_1_2_7_32_1 doi: 10.1029/2010JD014545 – ident: e_1_2_7_30_1 – ident: e_1_2_7_83_1 doi: 10.1038/srep19124 – ident: e_1_2_7_57_1 doi: 10.3390/cli2040264 – ident: e_1_2_7_14_1 doi: 10.1016/j.palaeo.2007.10.032 – ident: e_1_2_7_68_1 doi: 10.1111/j.1600-0870.2010.00468.x – ident: e_1_2_7_5_1 doi: 10.1038/s43017-020-0040-3 – ident: e_1_2_7_11_1 doi: 10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2 – ident: e_1_2_7_47_1 doi: 10.1111/nyas.13912 – ident: e_1_2_7_75_1 doi: 10.1080/07900629849376 – ident: e_1_2_7_72_1 doi: 10.1016/j.ejrh.2019.100593 – ident: e_1_2_7_77_1 doi: 10.1175/JCLI3896.1 – ident: e_1_2_7_24_1 doi: 10.1175/JCLI-D-14-00046.1 – ident: e_1_2_7_40_1 doi: 10.1002/joc.3736 – ident: e_1_2_7_46_1 doi: 10.1038/nclimate2068 – ident: e_1_2_7_9_1 doi: 10.1002/joc.5031 – ident: e_1_2_7_60_1 doi: 10.1002/asl2.552 – ident: e_1_2_7_49_1 doi: 10.1175/JCLI-D-13-00463.1 – ident: e_1_2_7_28_1 doi: 10.1175/JCLI-D-16-0836.1 – ident: e_1_2_7_36_1 doi: 10.1038/nclimate2056 – ident: e_1_2_7_23_1 doi: 10.1175/2007JCLI1684.1 – ident: e_1_2_7_45_1 doi: 10.3354/cr01373 – ident: e_1_2_7_79_1 doi: 10.1002/2014WR015638 – ident: e_1_2_7_20_1 doi: 10.1007/s00382-003-0368-7 – ident: e_1_2_7_35_1 doi: 10.1029/2003GB002199 – ident: e_1_2_7_70_1 doi: 10.1016/j.jag.2017.08.016 – ident: e_1_2_7_66_1 doi: 10.1175/JCLI3790.1 – ident: e_1_2_7_55_1 doi: 10.1007/978-3-540-32730-1_15 – ident: e_1_2_7_59_1 doi: 10.1002/asl.635 – start-page: 1 volume-title: Nonparametric Statistical Methods year: 1999 ident: e_1_2_7_27_1 – ident: e_1_2_7_80_1 doi: 10.1175/2011JHM1369.1 – ident: e_1_2_7_63_1 doi: 10.1029/2008GL033707 – ident: e_1_2_7_71_1 doi: 10.1002/joc.4274 – ident: e_1_2_7_10_1 doi: 10.1038/nclimate1632 – volume: 41 start-page: 1 year: 2020 ident: e_1_2_7_17_1 article-title: Warm‐season precipitation drivers in northeastern Argentina: diurnal cycle of the atmospheric moisture balance and land–atmosphere coupling publication-title: International Journal of Climatology – ident: e_1_2_7_21_1 doi: 10.1007/s00477-010-0420-1 – ident: e_1_2_7_39_1 doi: 10.1175/JCLI-D-12-00508.1 – ident: e_1_2_7_51_1 doi: 10.3389/fpls.2020.00373 – ident: e_1_2_7_58_1 doi: 10.1175/BAMS-85-3-381 – ident: e_1_2_7_8_1 doi: 10.1007/s00382-021-05684-1 – ident: e_1_2_7_12_1 doi: 10.1002/joc.2228 – ident: e_1_2_7_41_1 doi: 10.1002/joc.2254 – ident: e_1_2_7_38_1 doi: 10.1175/JHM-D-11-021.1 – start-page: 49 volume-title: The Multi‐Scale Global Monsoon System, World Scientific Series on Asia‐Pacific Weather and Climate year: 2020 ident: e_1_2_7_22_1 – ident: e_1_2_7_42_1 doi: 10.5194/gmd-10-1903-2017 – ident: e_1_2_7_67_1 doi: 10.5194/bg-11-2027-2014 – ident: e_1_2_7_37_1 doi: 10.1038/nclimate2430 – ident: e_1_2_7_26_1 doi: 10.5194/hess-21-1455-2017 – ident: e_1_2_7_73_1 doi: 10.1029/2008GL036584 – ident: e_1_2_7_52_1 doi: 10.1007/s00704-016-1800-3 – ident: e_1_2_7_54_1 doi: 10.1002/wcc.144 – ident: e_1_2_7_65_1 doi: 10.5194/gmd-11-1343-2018 – ident: e_1_2_7_48_1 doi: 10.1029/2010GL046230 – ident: e_1_2_7_13_1 doi: 10.1029/2002JD003296 – ident: e_1_2_7_29_1 doi: 10.5194/gmd-13-5425-2020 – ident: e_1_2_7_31_1 |
SSID | ssj0009916 |
Score | 2.4587493 |
Snippet | Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land‐cover... Southeastern South America is subject to considerable precipitation variability on seasonal to decadal timescales and has undergone very heavy land-cover... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2019 |
SubjectTerms | Anomalies Atmospheric models Continental interfaces, environment Convergence zones Dipoles dynamic global vegetation models El Nino El Nino phenomena El Nino-Southern Oscillation event Evapotranspiration Evapotranspiration trends La Nina Land cover land‐cover change Ocean, Atmosphere Precipitation Precipitation variability Sciences of the Universe Seasonal variability Seasonal variations South America South Atlantic Convergence Zone (SACZ) Southern Oscillation subtropical dipole Summer summer variability and trends Trends Variability Vegetation |
Title | Evapotranspiration trends and variability in southeastern South America: The roles of land‐cover change and precipitation variability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7350 https://www.proquest.com/docview/2641396609 https://hal.science/hal-03337111 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0899-8418 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0088 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009916 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwELUKp16AtlSkpcggRE9ZEjuOnd7QqmiFgEoVSEg9RLY3FgsoWe0GJDhx67Xf2C9hxkmWLQIJ9RQlGTuOPbaf7Zk3hGwPYeCNNBOhMpEMk9jIUBd4XGiZ4A4ASOK3Lo6O08FpcnAmzlqrSvSFafghZhtu2DP8eI0dXJvp7iNp6EVle5L75XrMhT-h_fnIHIWwxwPILAtVEquOdzZiu13Cf2aihXO0g5wDmfNQ1c81-8vkV1fKxsTksnddm569e0Lg-H-_sUKWWghK9xqdeUfeFOV7EhwBeq4mfpOd7tD-1QigrL_7QH4D3B5XtadBHzUaQ2tvS0t1OaQ3sNxu2L5v6aikUwzKhxGBiklJfYQ-2h4LfaOglBTtGae0chRtKv_e_7FoREobB2Sf3xgJN8Ytd_h87qvkdP_7SX8QtgEcQssBloWGKSdcBsNImibOSKGZSp2GFVZsLbfOWIYbms5KGTurpNZpkVgQyhTDyGj8I1ksq7JYI1SplFudDLkzHFIYw4XURhSAjqyNhyIgX7vGzG1bQgyycZU3vMwsh4rOsaIDsjmTHDeMHs_IbIE-zF4jBfdg7zDHZxHnXMIEcRMHZL1Tl7zt-NMc8CVg6jSNsoDs-HZ_8SP5wY8-Xj-9VvAzecvQ-QI9IqN1slhProsvAIlqs-GV_wGAVAuU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALb9RAAYNQOWWb2Hk4cKoWqqXsFgm1Ug9Ilu2NxUKVrHbTSnDixpXfyC9hxkm2CwIJcYqS2I5jz9ifx-NvAJ5OceCNNE9DaaI8TGKTh7qk7ULLU-EQgCTedDE5zEbHycFJerIBL_qzMC0_xMrgRprhx2tScDJI716whn6s7SAXtF6_TNtzpJUv311wRxHw8RCyKEKZxLJnno34bp_zl7no0gfyhFyDmetg1c82-9fhfV_P1snk0-CsMQP75TcKx__8kRtwrUOhbK8Vm5uwUVa3IJgggK4X3s7OdtjwdIZo1t_dhm-IuOd145nQZ63QsMa70zJdTdk5rrhbwu_PbFaxJcXlo6BA5aJiPkgf63aGnjOUS0YujUtWO0ZulT--frfkR8raM8i-vDlxbsw7-vD10u_A8f6ro-Eo7GI4hFYgMgsNly51BY4kWZY4k6eay8xpXGTF1grrjOVk03Q2z2NnZa51ViYWExWSU3A0cRc2q7oqt4BJmQmrk6lwRmAOY0Saa5OWCJCsjadpAM_63lS2qyHF2ThVLTUzV9jQiho6gMerlPOW1OMPaZ6gQKxeEwv3aG-s6FkkhMhxjjiPA9ju5UV1ur9UCDERVmdZVASw4zv-rx9RB2-HdL33rwkfwZXR0WSsxq8P39yHq5zOYtAByWgbNpvFWfkAEVJjHnpN-Akc7Q-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIhL-VYDBQxC5ZRtYid2wq1aWC2lLQhRqRIHy3ZidaFKot20Epy49drfyC9hxkm2CwIJcYqSjB3HHtvP9swbQp4XMPBGmqVhZiIZJrGRoS7xuNCylDsAIInfutg_ENPDZPcoPeqtKtEXpuOHWG64Yc_w4zV28KZw25ekoZ9rO5Icl-vXEgGLKwREHy6poxD3eASZ52GWxNlAPBux7SHlL1PR1WM0hFxBmatY1U82k5vk01DMzsbky-i0NSP77TcGx__7j1tkvcegdKdTmtvkSlndIcE-wOd67nfZ6RYdn8wAy_q7u-Qc8HZTt54HfdapDG29MS3VVUHPYL3d0X1_pbOKLjAqH4YEKucV9SH6aH8u9JKCVlI0aFzQ2lE0qvzx_cKiFSntPJB9fg0ybjQ9efhq7vfI4eT1x_E07CM4hJYDLgsNy1zqchhHhEickalmmXAallixtdw6YxnuaDorZexsJrUWZWJBKM8Yhkbj98laVVflBqFZJrjVScGd4ZDCGJ5KbdIS4JG1cZEG5MXQmMr2JcQoGyeqI2ZmCipaYUUH5OlSsukoPf4g8wz0YfkaObinO3sKn0WccwkzxFkckM1BXVTf8xcKACaAaiGiPCBbvt3_-hG1-26M1wf_KviEXH__aqL23hy8fUhuMHTEQO_IaJOstfPT8hHAo9Y89v3gJ_JMDl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evapotranspiration+trends+and+variability+in+southeastern+South+America&rft.jtitle=International+journal+of+climatology&rft.au=Ruscica%2C+Romina&rft.au=S%C3%B6rensson%2C+Anna&rft.au=Diaz%2C+Leandro&rft.au=Vera%2C+Carolina&rft.date=2022-03-30&rft.pub=Wiley&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=42&rft.issue=4&rft.spage=2019&rft.epage=2038&rft_id=info:doi/10.1002%2Fjoc.7350&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03337111v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |