Reduced modelling and optimal control of epidemiological individual‐based models with contact heterogeneity

Summary Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as they are able to take into account heterogeneity features, such as super‐spreaders, and describe the dynamics involved in small clusters. In r...

Full description

Saved in:
Bibliographic Details
Published inOptimal control applications & methods Vol. 45; no. 2; pp. 459 - 493
Main Authors Courtès, C., Franck, E., Lutz, K., Navoret, L., Privat, Y.
Format Journal Article
LanguageEnglish
Published Glasgow Wiley Subscription Services, Inc 01.03.2024
Wiley
Subjects
Online AccessGet full text
ISSN0143-2087
1099-1514
1099-1514
DOI10.1002/oca.2970

Cover

Abstract Summary Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as they are able to take into account heterogeneity features, such as super‐spreaders, and describe the dynamics involved in small clusters. In return, such models often involve large graphs which are expensive to simulate and difficult to optimize, both in theory and in practice. By combining the reinforcement learning philosophy with reduced models, we propose a numerical approach to determine optimal health policies for a stochastic individual‐based model taking into account heterogeneity in the population. More precisely, we introduce a deterministic reduced population‐based model involving a neural network, designed to faithfully mimic the local dynamics of the more complex individual‐based model. Then the optimal control is determined by sequentially training the network until an optimal strategy for the population‐based model succeeds in also containing the epidemic when simulated on the individual‐based model. After describing the practical implementation of the method, several numerical tests are proposed to demonstrate its ability to determine controls for models with contact heterogeneity.
AbstractList Modelling epidemics using classical population-based models suffers from shortcomings that so-called individual-based models are able to overcome, as they are able to take into account heterogeneity features, such as super-spreaders, and describe the dynamics involved in small clusters. In return, such models often involve large graphs which are expensive to simulate and difficult to optimize, both in theory and in practice.By combining the reinforcement learning philosophy with reduced models, we propose a nu- merical approach to determine optimal health policies for a stochastic individual-based model taking into account heterogeneity in the population. More precisely, we introduce a deterministic reduced population-based model involving a neural network, designed to faithfully mimic the local dynamics of the more complex individual-based model. Then the optimal control is determined by sequentially training the network until an optimal strategy for the population-based model succeeds in also containing the epidemic when simulated on the individual-based model.After describing the practical implementation of the method, several numerical tests are pro- posed to demonstrate its ability to determine controls for models with contact heterogeneity.
Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as they are able to take into account heterogeneity features, such as super‐spreaders, and describe the dynamics involved in small clusters. In return, such models often involve large graphs which are expensive to simulate and difficult to optimize, both in theory and in practice. By combining the reinforcement learning philosophy with reduced models, we propose a numerical approach to determine optimal health policies for a stochastic individual‐based model taking into account heterogeneity in the population. More precisely, we introduce a deterministic reduced population‐based model involving a neural network, designed to faithfully mimic the local dynamics of the more complex individual‐based model. Then the optimal control is determined by sequentially training the network until an optimal strategy for the population‐based model succeeds in also containing the epidemic when simulated on the individual‐based model. After describing the practical implementation of the method, several numerical tests are proposed to demonstrate its ability to determine controls for models with contact heterogeneity.
Summary Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as they are able to take into account heterogeneity features, such as super‐spreaders, and describe the dynamics involved in small clusters. In return, such models often involve large graphs which are expensive to simulate and difficult to optimize, both in theory and in practice. By combining the reinforcement learning philosophy with reduced models, we propose a numerical approach to determine optimal health policies for a stochastic individual‐based model taking into account heterogeneity in the population. More precisely, we introduce a deterministic reduced population‐based model involving a neural network, designed to faithfully mimic the local dynamics of the more complex individual‐based model. Then the optimal control is determined by sequentially training the network until an optimal strategy for the population‐based model succeeds in also containing the epidemic when simulated on the individual‐based model. After describing the practical implementation of the method, several numerical tests are proposed to demonstrate its ability to determine controls for models with contact heterogeneity.
Author Courtès, C.
Franck, E.
Navoret, L.
Lutz, K.
Privat, Y.
Author_xml – sequence: 1
  givenname: C.
  surname: Courtès
  fullname: Courtès, C.
  organization: Université de Strasbourg
– sequence: 2
  givenname: E.
  surname: Franck
  fullname: Franck, E.
  organization: IRMA, Université de Strasbourg
– sequence: 3
  givenname: K.
  surname: Lutz
  fullname: Lutz, K.
  organization: Ecole Centrale de Lyon
– sequence: 4
  givenname: L.
  surname: Navoret
  fullname: Navoret, L.
  organization: Université de Strasbourg
– sequence: 5
  givenname: Y.
  orcidid: 0000-0002-2039-7223
  surname: Privat
  fullname: Privat, Y.
  email: yannick.privat@unistra.fr
  organization: Institut Universitaire de France (IUF)
BackLink https://hal.science/hal-03664271$$DView record in HAL
BookMark eNp9kN9KwzAUxoMoOP-Aj1DwRi86T5K2aS_HUCcMBqLXIU3SLZIltU0du_MRfEafxM4pA1GvDpzz-77D9x2hfeedRugMwxADkCsvxZAUDPbQAENRxDjFyT4aAE5oTCBnh-iobZ8AgGFKBmh5r1UntYqWXmlrjZtHwqnI18EshY2kd6HxNvJVpGuj9NJ46-dG9ifjlHkxqhP2_fWtFO23RxutTFh8KoUM0UIH3fi5dtqE9Qk6qIRt9enXPEaPN9cP40k8nd3ejUfTWNIMQ5xlZVZCUZaVIJomjCWsVKyghJJc0SotVIUVA0yzIheQp1Wl0xLStKB5SVOp6DG63Pp2rhbrlbCW100fqFlzDHzTE-974pueduxC7CgvDJ-MpnyzA5plCWH4hfbs-ZatG__c6TbwJ981ro_SeyUEMMlZ2lMXW0o2vm0bXf33fPgDlSaIYDa1C2N_E8RbwcpYvf7TmM_Go0_-A64gpPU
CitedBy_id crossref_primary_10_1007_s00033_024_02278_9
crossref_primary_10_1002_oca_3114
crossref_primary_10_1038_s41467_024_55461_x
Cites_doi 10.1063/5.0061577
10.1007/978-1-4684-9486-0
10.1109/TNET.2008.925623
10.1016/j.physa.2006.08.050
10.1109/TCNS.2015.2482221
10.1098/rspb.2022.0232
10.1109/GlobalSIP.2013.6737024
10.1142/S0218202521500512
10.1016/0021-9991(76)90041-3
10.1016/j.jtbi.2020.110557
10.1016/j.mbs.2006.03.002
10.21105/joss.01731
10.1016/j.jtbi.2019.110056
10.1017/S0963548398003526
10.1007/978-3-319-50806-1
10.1007/s11538-016-0225-6
10.1137/1.9781611971088
10.3390/a14030094
10.1007/s10957-021-01830-1
10.1088/1361-6420/aab586
10.3390/ijerph15112369
10.1137/1.9780898718768
10.1007/BF00178324
10.1016/j.cma.2021.113891
10.25080/TCWV9851
10.1080/00207160.2021.1929942
10.1109/MCS.2015.2495000
10.1007/978-3-540-78911-6_6
10.1038/nature04153
10.1016/j.jtbi.2008.02.038
10.1007/978-1-4614-7551-4
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
7SP
8FD
JQ2
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1002/oca.2970
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1099-1514
EndPage 493
ExternalDocumentID 10.1002/oca.2970
oai:HAL:hal-03664271v3
10_1002_oca_2970
OCA2970
Genre article
GrantInformation_xml – fundername: ANR Project TRECOS
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AENEX
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UCJ
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
7SP
8FD
JQ2
L7M
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c3610-66b6b09bbfa2e347747bd7932328d3f59df1d7013698a085ffe5b055938b35cd3
IEDL.DBID UNPAY
ISSN 0143-2087
1099-1514
IngestDate Sun Oct 26 04:10:46 EDT 2025
Tue Oct 14 20:43:01 EDT 2025
Tue Aug 12 09:41:07 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Wed Oct 01 03:32:17 EDT 2025
Wed Jan 22 16:13:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Individual-based models
Super-spreaders
Reduced models
Neural network
Optimal control
Language English
License Attribution-NonCommercial-NoDerivs
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3610-66b6b09bbfa2e347747bd7932328d3f59df1d7013698a085ffe5b055938b35cd3
Notes Funding information
ANR Project TRECOS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2039-7223
0009-0000-5753-2241
0009-0009-1732-3723
0000-0003-3029-0283
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/oca.2970
PQID 2942012875
PQPubID 1036362
PageCount 35
ParticipantIDs unpaywall_primary_10_1002_oca_2970
hal_primary_oai_HAL_hal_03664271v3
proquest_journals_2942012875
crossref_primary_10_1002_oca_2970
crossref_citationtrail_10_1002_oca_2970
wiley_primary_10_1002_oca_2970_OCA2970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March/April 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March/April 2024
PublicationDecade 2020
PublicationPlace Glasgow
PublicationPlace_xml – name: Glasgow
PublicationTitle Optimal control applications & methods
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2019; 4
2015; 4
1976; 22
2021; 189
2010
2008; 17
2009
2005; 438
2008
2021; 382
2020; 486
1992
2021; 71
2016; 36
2014; 87
1999
1955
2021; 14
2021; 31
2021; 33
2021
2021; 511
1990; 28
2020
2007; 374
2017; 79
2018
2017
1984
2016
2015
2013
1998; 7
2018; 34
2006; 203
2008; 253
2018; 15
2022; 289
1967
e_1_2_10_46_1
e_1_2_10_24_1
Coddington EA (e_1_2_10_44_1) 1955
e_1_2_10_21_1
Press WH (e_1_2_10_39_1) 1992
Levine S (e_1_2_10_37_1)
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
Grimm V (e_1_2_10_18_1) 2020
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
Capobianco R (e_1_2_10_23_1) 2021; 71
e_1_2_10_31_1
Lee EB (e_1_2_10_45_1) 1967
e_1_2_10_30_1
Sutton RS (e_1_2_10_22_1) 2018
Zhang A (e_1_2_10_33_1) 2021
Pastor‐Satorras R (e_1_2_10_4_1) 2014; 87
Martcheva M (e_1_2_10_32_1) 2015
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
Goodfellow I (e_1_2_10_34_1) 2016
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – year: 2009
– volume: 14
  issue: 3
  year: 2021
  article-title: An integrated neural network and SEIR model to predict COVID‐19
  publication-title: Algorithms
– volume: 79
  start-page: 63
  issue: 1
  year: 2017
  end-page: 87
  article-title: Optimization and control of agent‐based models in biology: a perspective
  publication-title: Bull Math Biol
– start-page: 847
  year: 2013
  end-page: 850
– volume: 486
  year: 2020
  article-title: Simple epidemic network model for highly heterogeneous populations
  publication-title: J Theor Biol
– volume: 36
  start-page: 26
  issue: 1
  year: 2016
  end-page: 46
  article-title: Analysis and control of epidemics: a survey of spreading processes on complex networks
  publication-title: IEEE Control Syst Mag
– volume: 15
  start-page: 2369
  issue: 11
  year: 2018
  article-title: Agent‐based modeling for super‐spreading events: a case study of MERS‐CoV transmission dynamics in the Republic of Korea
  publication-title: Int J Environ Res Public Health
– volume: 511
  year: 2021
  article-title: How best can finite‐time social distancing reduce epidemic final size?
  publication-title: J. Theor. Biol.
– volume: 87
  year: 2014
  article-title: Epidemic processes in complex networks
  publication-title: Rev Mod Phys
– volume: 17
  start-page: 1
  issue: 1
  year: 2008
  end-page: 14
  article-title: Virus spread in networks
  publication-title: IEEE/ACM Trans Netw
– year: 2021
– volume: 289
  issue: 1974
  year: 2022
  article-title: The source of individual heterogeneity shapes infectious disease outbreaks
  publication-title: Proc Royal Soc B: Biol Sci
– year: 2016
– year: 2018
– volume: 189
  start-page: 408
  issue: 2
  year: 2021
  end-page: 436
  article-title: Optimal immunity control and final size minimization by social distancing for the SIR epidemic model
  publication-title: J. Optim. Theory Appl.
– year: 1992
– year: 2010
– volume: 7
  start-page: 295
  issue: 3
  year: 1998
  end-page: 305
  article-title: The size of the giant component of a random graph with a given degree sequence
  publication-title: Comb Probab Comput
– volume: 382
  year: 2021
  article-title: COVID‐19 dynamics across the US: a deep learning study of human mobility and social behavior
  publication-title: Comput Methods Appl Mech Eng
– year: 1984
– volume: 438
  start-page: 355
  issue: 7066
  year: 2005
  end-page: 359
  article-title: Superspreading and the effect of individual variation on disease emergence
  publication-title: Nature
– volume: 4
  start-page: 159
  issue: 2
  year: 2015
  end-page: 169
  article-title: Optimal resource allocation for control of networked epidemic models
  publication-title: IEEE Trans Control Netw Syst
– volume: 203
  start-page: 124
  issue: 1
  year: 2006
  end-page: 136
  article-title: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size
  publication-title: Math Biosci
– year: 1967
– year: 2008
– volume: 71
  start-page: 953
  year: 2021
  end-page: 992
  article-title: Agent‐based Markov modeling for improved COVID‐19 mitigation policies
  publication-title: J. Artif. Int. Res.
– volume: 4
  start-page: 1731
  issue: 44
  year: 2019
  article-title: EoN (Epidemics on Networks): a fast, flexible Python package for simulation, analytic approximation, and analysis of epidemics on networks
  publication-title: J Open Source Softw
– year: 2020
– volume: 28
  issue: 4
  year: 1990
  article-title: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations
  publication-title: J Math Biol
– start-page: 159
  year: 2008
  end-page: 178
– volume: 374
  start-page: 843
  issue: 2
  year: 2007
  end-page: 852
  article-title: Effects of superspreaders in spread of epidemic
  publication-title: Phys A: Stat Mech Appl
– volume: 22
  start-page: 403
  issue: 4
  year: 1976
  end-page: 434
  article-title: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
  publication-title: J Comput Phys
– volume: 253
  start-page: 228
  issue: 2
  year: 2008
  end-page: 237
  article-title: The effect of superspreading on epidemic outbreak size distributions
  publication-title: J Theor Biol
– volume: 34
  issue: 6
  year: 2018
  article-title: A function space framework for structural total variation regularization with applications in inverse problems
  publication-title: Inverse Probl
– year: 2017
– volume: 31
  start-page: 2399
  issue: 12
  year: 2021
  end-page: 2424
  article-title: Control of COVID‐19 outbreak using an extended SEIR model
  publication-title: Math. Models Methods Appl. Sci.
– year: 1955
– volume: 33
  issue: 9
  year: 2021
  article-title: On closures for reduced order models—a spectrum of first‐principle to machine‐learned avenues
  publication-title: Phys Fluids
– year: 2015
– year: 2013
– year: 1999
– ident: e_1_2_10_36_1
  doi: 10.1063/5.0061577
– ident: e_1_2_10_47_1
  doi: 10.1007/978-1-4684-9486-0
– ident: e_1_2_10_12_1
  doi: 10.1109/TNET.2008.925623
– volume-title: Model Based Reinforcement Learning
  ident: e_1_2_10_37_1
– volume-title: Estimating the Time‐Dependent Contact Rate of SIR and SEIR Models in Mathematical Epidemiology using Physics‐Informed Neural Networks
  year: 2020
  ident: e_1_2_10_18_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.physa.2006.08.050
– ident: e_1_2_10_20_1
  doi: 10.1109/TCNS.2015.2482221
– ident: e_1_2_10_6_1
  doi: 10.1098/rspb.2022.0232
– volume-title: Numerical Recipes in C: The Art of Scientific Computing
  year: 1992
  ident: e_1_2_10_39_1
– ident: e_1_2_10_21_1
  doi: 10.1109/GlobalSIP.2013.6737024
– ident: e_1_2_10_27_1
  doi: 10.1142/S0218202521500512
– ident: e_1_2_10_29_1
  doi: 10.1016/0021-9991(76)90041-3
– ident: e_1_2_10_35_1
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jtbi.2020.110557
– volume-title: Foundations of Optimal Control Theory
  year: 1967
  ident: e_1_2_10_45_1
– ident: e_1_2_10_13_1
  doi: 10.1016/j.mbs.2006.03.002
– ident: e_1_2_10_30_1
  doi: 10.21105/joss.01731
– volume: 87
  year: 2014
  ident: e_1_2_10_4_1
  article-title: Epidemic processes in complex networks
  publication-title: Rev Mod Phys
– ident: e_1_2_10_7_1
  doi: 10.1016/j.jtbi.2019.110056
– ident: e_1_2_10_28_1
  doi: 10.1017/S0963548398003526
– ident: e_1_2_10_3_1
  doi: 10.1007/978-3-319-50806-1
– ident: e_1_2_10_9_1
  doi: 10.1007/s11538-016-0225-6
– ident: e_1_2_10_38_1
  doi: 10.1137/1.9781611971088
– ident: e_1_2_10_17_1
  doi: 10.3390/a14030094
– ident: e_1_2_10_24_1
– ident: e_1_2_10_26_1
  doi: 10.1007/s10957-021-01830-1
– volume: 71
  start-page: 953
  year: 2021
  ident: e_1_2_10_23_1
  article-title: Agent‐based Markov modeling for improved COVID‐19 mitigation policies
  publication-title: J. Artif. Int. Res.
– ident: e_1_2_10_46_1
  doi: 10.1088/1361-6420/aab586
– ident: e_1_2_10_8_1
  doi: 10.3390/ijerph15112369
– volume-title: An Introduction to Mathematical Epidemiology. Number 61 in Texts in Applied Mathematics
  year: 2015
  ident: e_1_2_10_32_1
– ident: e_1_2_10_41_1
  doi: 10.1137/1.9780898718768
– ident: e_1_2_10_42_1
  doi: 10.1007/BF00178324
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cma.2021.113891
– ident: e_1_2_10_31_1
  doi: 10.25080/TCWV9851
– ident: e_1_2_10_19_1
  doi: 10.1080/00207160.2021.1929942
– ident: e_1_2_10_5_1
  doi: 10.1109/MCS.2015.2495000
– ident: e_1_2_10_14_1
– ident: e_1_2_10_43_1
  doi: 10.1007/978-3-540-78911-6_6
– ident: e_1_2_10_2_1
  doi: 10.1038/nature04153
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jtbi.2008.02.038
– volume-title: Dive into Deep Learning
  year: 2021
  ident: e_1_2_10_33_1
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_10_34_1
– volume-title: Theory of Ordinary Differential Equations
  year: 1955
  ident: e_1_2_10_44_1
– ident: e_1_2_10_40_1
  doi: 10.1007/978-1-4614-7551-4
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: e_1_2_10_22_1
– ident: e_1_2_10_11_1
– ident: e_1_2_10_48_1
SSID ssj0007132
Score 2.3504736
Snippet Summary Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as...
Modelling epidemics using classical population‐based models suffers from shortcomings that so‐called individual‐based models are able to overcome, as they are...
Modelling epidemics using classical population-based models suffers from shortcomings that so-called individual-based models are able to overcome, as they are...
SourceID unpaywall
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Computer Science
Epidemics
Heterogeneity
individual‐based models
Machine Learning
Mathematical models
Mathematics
Modeling and Simulation
Modelling
neural network
Neural networks
Optimal control
Optimization
Optimization and Control
reduced models
super‐spreaders
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-DupBfOL6IoroqbpNmjQ9LovLIr4QBW8laRIU1q64q-LNn-Bv9Jc403argoqnQjuTQmYm8yXMfCFkR3otQp34QLNQBpFRSZBg4Rq3ykhnhVYK-51PTmX3Kjq6FtdVVSX2wpT8EPWBG0ZGsV5jgGszOPgkDYWlfp8lMWzXJ0OAMejdLDqvV2HYfLGyfJGDJ6h4RDzbZAcjzW-paPwGCyG_oMypx_xevzzrXu87bi0ST2eOzFaIkbZKE8-TMZcvkJkvPIKL5O4CCVidpcW9NthgTnVuaR-WgztQrcrRad9T93khLFqH3tb9WO-vb5jRqjEGFA9oC02dDekNFs30wdccgPYlctU5vGx3g-oehSDjgI4CKY00zcQYr5njEQC-2FiISwBTynIvEutDGyN5W6I0QDDvnTBN2GpwZbjILF8mE3k_dyuENrmw1mvrHUCZJGZKZdKKUIJlNdM6bJC90ZSmWUUyjndd9NKSHpmlMPkpTn6DbNWS9yWxxg8y22CV-jMyYXdbxym-g8QLO6c4fOINsj4yWlrF3wC0I4apNxYwRm3IP360W1j4V4H0rN3C5-p_BdfINAP4U1arrZOJ4cOj2wD4MjSbhZ9-AAqk7MU
  priority: 102
  providerName: Wiley-Blackwell
Title Reduced modelling and optimal control of epidemiological individual‐based models with contact heterogeneity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.2970
https://www.proquest.com/docview/2942012875
https://hal.science/hal-03664271
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/oca.2970
UnpaywallVersion publishedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0143-2087
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7R7QE48I9YKJVBCE5ZNnbsOMdVoVohKFXFSuUU2bGtVt1mV3QXBCcegWfsk3Qm8YYtAoS4JFJiOz-e8Xy2Z74BeKaCkakpQmJ4qpLM6iIpyHFNOG2Vd9JoTfHO7_bUeJK9OZSHccGNYmFafohuwY00oxmvScHnLrTjfNzd5y9xuB_wIscp-6aSiMV7sDnZ2x99bP0WBYpAkyGPdn8SNG3Zin12reole7RxRN6Qa1Dz6rKem69fzHR6Gbw21mf3JpSr926dTk4Gy4UdVN9-oXT8_w-7BTciMGWjVpJuwxVf34Hra3SFd-H0gHhevWNN-hyKY2emdmyGo84pVo1e72wWmP-Zd5aEgB13YV_n33-Q4YxtnDFaB25qmmrBjsg3Z4Yi7XFucA8mu68_7IyTmK4hqQSCsEQpq-ywsDYY7kWGuDK3DtUfMZt2IsjChdTlxBFXaINILwQv7RBnNEJbISsn7kOvntX-AbChkM4F44JHxFTkXOtKOZkqFCDDjUn78GLVaWUVucwppca0bFmYeYk_sKQf2IcnXcl5y9_xmzJPsd-720S4PR69Leka2necoOXpZ9GHrZVYlFHNz7B2xsnC5xLb6ETlLw963nT8HwuU73dGdH74L609gmscEVbrELcFvcWnpX-MCGlht2GDZ_t4fHXAt6NKXAAbXxMW
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEA6uHtw9LD7ZcX1EET21TieddBpPgyijjg9EwVuTdBJcGHtkHRVv_gR_o7_Eqn6poOKpoTuVhlSq6qtQ-YqQVem1CHXiA81CGURGJUGChWvcKiOdFVopvO98eCS759H-hbgYIVv1XZiSH6I5cEPLKPw1GjgeSG--soaCr99gSQz5-lgkQ4mZF4tOGjcM2Rcr6xc5bAUV18yzbbZZS76LRT8usRLyDcwcv82v9cO97vffA9ci8uxOkN8VZKSdUseTZMTlU-TXGyLBaXJ1igysztKisQ3eMKc6t3QA_uAKRKt6dDrw1L12hEX10H_NhaznxycMadUcNxRPaAtJnQ3pJVbNDGCzOUDtM-R8d-dsuxtUjRSCjAM8CqQ00rQTY7xmjkeA-GJjwTABTSnLvUisD22M7G2J0oDBvHfCtCHX4MpwkVk-S0bzQe7-ENrmwlqvrXeAZZKYKZVJK0IJqtVM67BF1uslTbOKZRybXfTTkh-ZpbD4KS5-iyw3I69LZo0PxqyAVprPSIXd7fRSfAeRF1KnOLzjLTJfKy2tDPAGpCOGsTcWMEejyC9-tFZo-NMB6fF2B59z3x24RMa7Z4e9tLd3dPCX_GSAhcrStXkyOvx_6xYAywzNYrFnXwDTnvAx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fTxQxEG8QEsUH8B_xALUao0973LbbbhufLuDlVERDJOHBZNNu22A89i5wp4EnP4KfkU_CzP47MGqMT5vstt3dzkznN83Mr4Q8l8GI2OgQGRbLKLFKRxoT17hTVnonjFJY7_x-Tw4PkreH4nCBvGpqYSp-iHbDDS2jXK_RwP3Eha05ayis9V2mU4jXlxKhFebz7ezPuaMg-mJV_iIHVVBpwzzbY1tNz2u-6MYRZkJegZm3ZsXEnH03o9F14Fp6nsEq-dx8c5Vw8rU7m9pufv4LneN__tQdslIjUtqvVOguWfDFPXL7Ck_hfXK8jwSv3tHy3BwsYKemcHQMy80xdK3T3ek4UD8_cBalT7-09V4XP36ix6zHOKW4AVz2NPmUHmFSzhh02UNQ8IAcDF5_2h5G9TkNUc4BfUVSWml72tpgmOcJAMrUOrB7AGvK8SC0C7FLkRxOKwMQLwQvbA9CGa4sF7nja2SxGBf-IaE9LpwLxgUPUEmnTKlcOhFL0BzDjIk75GUjsSyvSczxLI1RVtEvswwmMMMJ7JCnbctJRdzxmzbPQOjtY2TaHvZ3M7wHjh0iszT-xjtks9GJrLbvU-idMHTtqYAxWj35y4telFL_Y4Psw3Yfr-v_2vAJuflxZ5Dtvtl7t0GWGSCtKjFukyxOT2b-ESClqX1cWsQlsb4QPA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELZYeWB7YIwNUcaQNyH2lNLYseM8VmioQhugiUrwFNmxLRAlrUa7aXviJ_Ab90t2l7ihIIamPUVKbCex73zf2efvCNmWXotYZz7SLJZRYlQWZRi4xq0y0lmhlcLzzl8OZX-QHJyK07Dghmdhan6IZsENNaOar1HBx9bX83zY3We7MN13WJaCy74oBWDxFlkcHB73zuq4RQ4iUGXIw92fCExbMmOfnat6zx49O8doyDmouTQtx_rnDz0c3gevlfXZf0ny2XfXQSeXnenEdIpfDygd___HVshyAKa0V0vSK7LgylXyYo6u8DW5-oo8r87SKn0OnmOnurR0BLPOFVQNUe905Km7yzuLQkAvmmNfv29u0XCGNq4prgNXNXUxoecYmzMCkXbgG7whg_1PJ3v9KKRriAoOICyS0kjTzYzxmjmeAK5MjQX1B8ymLPcisz62KXLEZUoD0vPeCdMFj4Yrw0Vh-RpplaPSrRPa5cJar613gJiylClVSCtiCQKkmdZxm3ycDVpeBC5zTKkxzGsWZpZDB-bYgW3yvik5rvk7HinzAca9eYyE2_3e5xzvgX0HBy2Nv_M22ZyJRR7U_BpqJwwtfCqgjUZUnnjRTjXwfy2QH-318LrxL629Jc8ZIKw6IG6TtCbfpu4dIKSJ2Qpq8AdIDhFW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+modelling+and+optimal+control+of+epidemiological+individual%E2%80%90based+models+with+contact+heterogeneity&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Court%C3%A8s%2C+C&rft.au=Franck%2C+E&rft.au=Lutz%2C+K&rft.au=Navoret%2C+L&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=45&rft.issue=2&rft.spage=459&rft.epage=493&rft_id=info:doi/10.1002%2Foca.2970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon